Data Compression = Modeling + Coding

November 3, 2021

Data Compression = Modeling + Coding

イロン イヨン イヨン イヨン

E

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

uniform codes

O	00	000	0000			
			0001			
		001	0010			
			0011			
	01	010	0100			
			0101			
		011	0110			
			0111			
1	10	100	1000			
			1001			
		101	1010			
			1011			
	11	110	1100			
			1101			
		111	1110			
			1111			
(日)(四)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)						

Data Compression = Modeling + Coding

æ

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

Symbol codes

i	a_i	p_i		
1	a	0.0575	a	
2	Ъ	0.0128	ь	
3	с	0.0263	с	
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	Р	0.0192	Р	
17	q	0.0008	P	•
18	r	0.0508	r	
19	s	0.0567	s	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	E
23	w	0.0119	w	
24	х	0.0073	х	
25	У	0.0164	У	
26	z	0.0007	z	_
27	-	0.1928	-	

Data Compression = Modeling + Coding

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

some definitions

Definition

A code (source code) C for a random variable X is a mapping from $\{x_1, x_2, \ldots, x_n\}$ to \mathcal{D} *the set of finite-length strings of symbols from an alphabet of length D.

Note:

- C(x) the **codeword** of x
- I(x) the length of codeword C(x)

Definition

The expectation length L(C) of a source code C(X) for a random variable X with probability mass function p(x) is given by:

$$L(C) = \sum p(x_i)l(x_i) = \sum p_i l_i$$

Data Compression = Modeling + Coding

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

source code examples

Example

ASCII codes

- 96 printable keyboard characters
- log(96) ??

Example

Morse code

- special stop symbol

Definition

A code is called a *prefix code* or *instantaneous code (prefix-free code)* if no codeword is a prefix of any other codeword.

Data Compression = Modeling + Coding

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

Kraft-McMillan Inequality.

Theorem

For any uniquely decodable code C

$$\sum_{x\in C} 2^{-l(x)} \leq 1,$$

where I(x) is the length of the codeword. Also, for any set of lengths L such that

$$\sum_{l\in L} 2^{-l} \leq 1,$$

there is a prefix code C of the same size such that

I(x)

) 2 (~

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

Source Coding Theorem

Theorem

There exists a variable-length encoding C of an ensemble X such that the average length of an encoded symbol L(C, X) satify:

 $H(X) \leq L(C,X) < H(X) + 1.$

Data Compression = Modeling + Coding

イロト イヨト イヨト イヨト

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

are optimal prefix codes

- Generated from a set of probabilities
- David Huffman developed the algorithm as a student in a 12 class on information theory at MIT in 1950
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains
 - Select two trees with the lowest weight roots $(w_i \text{ and } w_2)$
 - Combine them into a single tree by adding a new root with weight $w_1 + w_2$, and making the two trees its children.

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

Arithmetic coding

- information from the messages is combined to share the same bits.
- asymptotically approach the sum of the self information of the individual messages
- The Shannon information content of an outcome

$$h(x = a_i) = log_2(\frac{1}{P(x = a_i)}) = log_2 \frac{1}{p_i}$$

• Using a Huffman code, each message has to take at least 1 bit

イロト イヨト イヨト イヨト

symbol codes Prefix Code Relationship to Entropy Huffman Codes Combining message

Arithmetic coding

Example

Entropy Coding Coding Coding Coding Combining message

Arithmetic coding

Let
$$X = \begin{pmatrix} x_1 & \dots & x_n \\ p_1 & \dots & p_n \end{pmatrix}$$

The Arithmetic coding algorithm

• define the accumulated probability

Probability Coding

$$f_i = \sum_{j=1}^{i-1} p(j)$$
 with $i = 1, ..., n$

• compute the interval length and size:

$$\begin{split} l_i &= \begin{cases} f_i & i = 1 \\ l_{i-1} + f_i * s_{i-1} & 1 < i \le n \end{cases} \\ s_i &= \begin{cases} p_i & i = 1 \\ s_{i-1} * p_i & 1 < i \le n \end{cases} \end{split}$$

Data Compression = Modeling + Coding

-≣->