Data Compression = Modeling + Coding

November 8, 2015

Data Compression = Modeling + Coding

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

臣

Symbol codes Prefix Code Relationship to Entrop Huffman Codes

uniform codes

O	00	000	0000
		000	0001
		001	0010
		001	0011
	01		0100
		010	0101
		011	0110
		011	0111
1	10	100	1000
		100	1001
		101	1010
		101	1011
	11	110	1100
		110	1101
		111	1110
			1111

Data Compression = Modeling + Coding

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

Symbol codes

Prefix Code Relationship to Entropy Huffman Codes

Symbol codes

i	a_i	p_i		
1	a	0.0575	a	
2	Ъ	0.0128	ь	
3	с	0.0263	с	
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	Р	0.0192	Р	
17	q	0.0008	q	•
18	r	0.0508	r	
19	s	0.0567	s	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	
23	w	0.0119	W	
24	x	0.0073	х	
25	У	0.0164	У	
26	z	0.0007	z	-
27	-	0.1928	-	

Data Compression = Modeling + Coding

◆□ > ◆舂 > ◆き > ◆き > ●

æ

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Some definitions

Definition

A code (source code) C for a random variable X is a mapping from $\{x_1, x_2, \ldots, x_n\}$ to \mathcal{D} *the set of finite-length strings of symbols from an alphabet of length D.

Note:

- C(x) the **codeword** of x
- I(x) the length of codeword C(x)

Definition

The expectation length L(C) of a source code C(X) for a random variable X with probability mass function p(x) is given by:

$$L(C) = \sum_{x_i} p(x_i) l(x_i) = \sum_i p_i l_i$$

Data Compression = Modeling + Coding

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

source code examples

Example

Unary codes

ASCII (American Standard Code for Information Interchange) codes

- 96 printable keyboard characters
- log(96) ??

Morse code

- special stop symbol

Definition

A code is called a *prefix code* or *instantaneous code (prefix-free code)* if no codeword is a prefix of any other codeword.

(D) (A) (A) (A)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Kraft-McMillan Inequality.

Theorem

For any uniquely decodable code C

$$\sum_{x\in C} 2^{-l(x)} \leq 1,$$

where l(x) is the length of the codeword. Also, for any set of lengths L such that: $\sum_{l \in L} 2^{-l} \leq 1$, there is a prefix code C of the same size such that $l(x) = l_{i,i \in [1,...,|L|]}$

(D) (A) (A)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

• UTF-8 : Universal Character Set Transformation Format—8-bit

- defined in 1992 as an extention for ASCII
- is a variable-width encoding
- default character encoding in operating systems, programming languages, APIs, and software applications
- Iabelled "Unicode"
- the most common encoding for HTML files

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

• UTF-8 : Universal Character Set Transformation Format—8-bit

- defined in 1992 as an extention for ASCII
- is a variable-width encoding
- default character encoding in operating systems, programming languages, APIs, and software applications
- Iabelled "Unicode"
- the most common encoding for HTML files

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

- UTF-8 : Universal Character Set Transformation Format—8-bit
 - defined in 1992 as an extention for ASCII
 - is a variable-width encoding
 - default character encoding in operating systems, programming languages, APIs, and software applications
 - abelled "Unicode"
 - the most common encoding for HTML files

<ロト <部ト < 国ト < 国ト

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

- UTF-8 : Universal Character Set Transformation Format—8-bit
 - defined in 1992 as an extention for ASCII
 - is a variable-width encoding
 - default character encoding in operating systems, programming languages, APIs, and software applications
 - Iabelled "Unicode"
 - the most common encoding for HTML files

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

- UTF-8 : Universal Character Set Transformation Format—8-bit
 - defined in 1992 as an extention for ASCII
 - is a variable-width encoding
 - default character encoding in operating systems, programming languages, APIs, and software applications
 - labelled "Unicode"
 - the most common encoding for HTML files

・ロト ・四ト ・ヨト ・ヨト

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Prefix code application

- UTF-8 : Universal Character Set Transformation Format—8-bit
 - defined in 1992 as an extention for ASCII
 - is a variable-width encoding
 - default character encoding in operating systems, programming languages, APIs, and software applications
 - labelled "Unicode"
 - the most common encoding for HTML files

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

UTF-8, 16, 32

Bits of code point	First code point	Last code point	Bytes in sequence	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
7	U+0000	U+007F	1	0xxxxxx					
11	U+0080	U+07FF	2	110xxxxx	10xxxxxx				
16	U+0800	U+FFFF	3	1110xxxx	10xxxxxx	10xxxxxx			
21	U+10000	U+1FFFFF	4	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx		
26	U+200000	U+3FFFFFF	5	111110xx	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx	
31	U+4000000	U+7FFFFFF	6	1111110x	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx

Data Compression = Modeling + Coding

《曰》 《聞》 《臣》 《臣》

æ

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Source Coding Theorem

Theorem

There exists a variable-length encoding C of an ensemble X such that the average length of an encoded symbol L(C, X) satify:

$H(X) \leq L(C,X) < H(X) + 1.$

Data Compression = Modeling + Coding

・ロト ・四ト ・ヨト ・ヨト

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Huffman Codes

• Are optimal prefix codes

- Generated from a set of probabilities
- David Huffman developed the algorithm as a student on information theory at MIT in 1950
- The professor, Robert M. Fano proposed the problem of finding the most efficient binary code.
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

イロト イヨト イヨト イヨト

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Huffman Codes

- Are optimal prefix codes
- Generated from a set of probabilities
- David Huffman developed the algorithm as a student on information theory at MIT in 1950
- The professor, Robert M. Fano proposed the problem of finding the most efficient binary code.
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

イロト イヨト イヨト イヨト

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Huffman Codes

- Are optimal prefix codes
- Generated from a set of probabilities
- David Huffman developed the algorithm as a student on information theory at MIT in 1950
- The professor, Robert M. Fano proposed the problem of finding the most efficient binary code.
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Huffman Codes

- Are optimal prefix codes
- Generated from a set of probabilities
- David Huffman developed the algorithm as a student on information theory at MIT in 1950
- The professor, Robert M. Fano proposed the problem of finding the most efficient binary code.
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

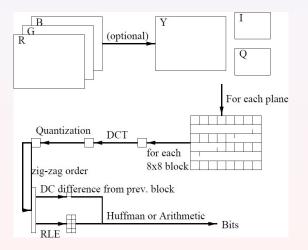
Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Huffman Codes

- Are optimal prefix codes
- Generated from a set of probabilities
- David Huffman developed the algorithm as a student on information theory at MIT in 1950
- The professor, Robert M. Fano proposed the problem of finding the most efficient binary code.
- The algorithm is the most used component of compression algorithms
- used as the back end of GZIP, JPEG

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

JPEG



Data Compression = Modeling + Coding

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains

Select two trees with the lowest weight roots (w) and w₂)
 Combine them into a single tree by adding a new root with weight w₁ + w₂, and making the two trees its children.

(D) (A) (A)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains

Select two trees with the lowest weight roots (w, and w₂)
 Combine them into a single tree by adding a new root with weight w₂ + w₂, and making the two trees its children.

(D) (A) (A)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains
 - Select two trees with the lowest weight roots (*w_i* and *w₂*)
 - Combine them into a single tree by adding a new root with weight $w_1 + w_2$, and making the two trees its children.

(ロ) (四) (三) (三)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains
 - Select two trees with the lowest weight roots $(w_i \text{ and } w_2)$
 - Combine them into a single tree by adding a new root with weight $w_1 + w_2$, and making the two trees its children.

(D) (A) (A)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

- Start with a forest of trees, one for each message. Each tree contains a single vertex with weight w_i = p_i
- Repeat until only a single tree remains
 - Select two trees with the lowest weight roots $(w_i \text{ and } w_2)$
 - Combine them into a single tree by adding a new root with weight $w_1 + w_2$, and making the two trees its children.

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes probabilities.

• The remaining node is the root node and the tree is complete. Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.

Add the new node to the queue.

• The remaining node is the root node and the tree is complete. Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
 - Add the new node to the queue.

• The remaining node is the root node and the tree is complete.

Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
 - Add the new node to the queue.

• The remaining node is the root node and the tree is complete.

Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
 - Add the new node to the queue.

• The remaining node is the root node and the tree is complete.

Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman implementation

Implementation with priority queue:

- Create a leaf node for each symbol and add it to the priority queue.
- While there is more than one node in the queue:
 - Pop the two nodes of highest priority (lowest probability) from the queue
 - Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
 - Add the new node to the queue.

• The remaining node is the root node and the tree is complete. Complexity: priority queue insert $O(\log n) \rightarrow \text{Huffman } O(n \log n)$

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

(ロ) (四) (三) (三)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 - Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

(ロ) (四) (三) (三)

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 - Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

・ロン ・四と ・ヨン ・ヨン

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 - Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

・ロン ・四と ・ヨン ・ヨン

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

- Create a leaf node for each symbol and add it to the first queue in increasing order
- While there is more than one node in the both queues:
 - Remove the two nodes of lowest weight from the both queues
 - Create a new internal node with these two nodes as children and with weight equal to the sum of the two nodes' probabilities.
 - Add the new node at the end of the second queue.
- The remaining node (should apear in the second) is the root node and the tree is complete.

Symbol codes Prefix Code Relationship to Entropy Huffman Codes

Adaptive Huffman coding

- Involves calculating the probabilities dynamically
- It is used rarely in practice because of the cost of updating the tree