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Some de�nitions

De�nition

A code (source code) C for a random variable X is a mapping from
{x1, x2, . . . , xn} to D∗the set of �nite-length strings of symbols from an
alphabet of length D.

Note:
- C (x) the codeword of x
- l(x) the length of codeword C (x)

De�nition

The expectation length L(C ) of a source code C (X ) for a random
variable X with probability mass function p(x)is given by:

L(C ) =
∑
xi

p(xi )l(xi ) =
∑
i

pi li
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source code examples

Example

Unary codes

ASCII (American Standard Code for Information Interchange )

codes

- 96 printable keyboard characters

- log(96) ??

Morse code

- special stop symbol

De�nition

A code is called a pre�x code or instantaneous code (pre�x-free

code) if no codeword is a pre�x of any other codeword.

Data Compression = Modeling + Coding



Entropy
Probability Coding

Symbol codes
Pre�x Code
Relationship to Entropy
Hu�man Codes

Kraft-McMillan Inequality.

Theorem

For any uniquely decodable code C

∑
x∈C

2−l(x) ≤ 1,

where l(x) is the length of the codeword. Also,

for any set of lengths L such that:
∑

l∈L 2
−l ≤ 1, there is a pre�x

code C of the same size such that l(x) = li ,i∈[1,...,|L|]
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Pre�x code application

UTF-8 : Universal Character Set Transformation

Format�8-bit

de�ned in 1992 as an extention for ASCII
is a variable-width encoding
default character encoding in operating systems, programming
languages, APIs, and software applications
labelled "Unicode"
the most common encoding for HTML �les
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UTF-8, 16, 32
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Source Coding Theorem

Theorem

There exists a variable-length encoding C of an ensemble X such

that the average length of an encoded symbol L(C ,X ) satify:

H(X ) ≤ L(C ,X ) < H(X ) + 1.
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Hu�man Codes

Are optimal pre�x codes

Generated from a set of probabilities

David Hu�man developed the algorithm as a student on

information theory at MIT in 1950

The professor, Robert M. Fano proposed the problem of

�nding the most e�cient binary code.

The algorithm is the most used component of compression

algorithms

used as the back end of GZIP, JPEG
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JPEG
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The Hu�man algorithm

How it generates the pre�x-code tree.

Start with a forest of trees, one for each message. Each tree

contains a single vertex with weight wi = pi

Repeat until only a single tree remains

Select two trees with the lowest weight roots (wi and w2)
Combine them into a single tree by adding a new root with
weight w1 + w2, and making the two trees its children.
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The Hu�man implementation

Implementation with priority queue:

Create a leaf node for each symbol and add it to the priority

queue.

While there is more than one node in the queue:

Pop the two nodes of highest priority (lowest probability) from
the queue
Create a new internal node with these two nodes as children
and with probability equal to the sum of the two nodes'
probabilities.
Add the new node to the queue.

The remaining node is the root node and the tree is complete.

Complexity: priority queue insert O(log n) → Hu�man O(n log n)
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The Hu�man in O(n)

Implementation with 2 queues:

Create a leaf node for each symbol and add it to the �rst

queue in increasing order

While there is more than one node in the both queues:

Remove the two nodes of lowest weight from the both queues
Create a new internal node with these two nodes as children
and with weight equal to the sum of the two nodes'
probabilities.
Add the new node at the end of the second queue.

The remaining node (should apear in the second) is the root

node and the tree is complete.
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Adaptive Hu�man coding

Involves calculating the probabilities dynamically

It is used rarely in practice because of the cost of updating the

tree
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