Data Compression = Modeling + Coding

November 8, 2015

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

uniform codes

{ul uli]
[ulu]
ooo1
on
oolo
ool
ooLl
ul
0100
[uh]
0101
ol
0110
011
0111
1000
100
1001
10
1010
101
1011
1
1100
110
11 1101
1110
111
1111

Data Compression = Modeling + Coding

Symbol codes

E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Symbol codes

2

pi

1 a 00575 a
2 b 00128 p
3 ¢ 00263 ¢
4 4 00285 aq
5 e 00913 e
6 £ 00173 f
7 g 00133 g
8 n 00313 1
9 i 00599 i
10§ 00006 j
11k 0.0084 k
12 1 00335 1
13 m 0025 o
14 n 00596 n
15 o 00689 o
16 p 00192 P

7 q 00008 4
18 r 00508
19 s 00567 s
20 t 00706 ¢
21 uw 00334 u
22 v 00069 v
23 w 00119 W
24 x 00073 x
25 y 00164 Y
2% =z 00007 2

27 0.1928

Data Compressio Modeling + Coding

Symbol codes
Ent Prefix Code
Probability Coding Relationship to Entropy

Huffman Codes

Some definitions

Definition

A code (source code) C for a random variable X is a mapping from
{X1,X2,...,%s} to Dxthe set of finite-length strings of symbols from an
alphabet of length D.

Note:
- C(x) the codeword of x
- I(x) the length of codeword C(x)

Definition

The expectation length L(C) of a source code C(X) for a random
variable X with probability mass function p(x)is given by:

E p XI XI § P: i
Data Compression = Modeling + Coding

Symbol codes
Entro Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

source code examples

SEPE

Unary codes

ASCII (American Standard Code for Information Interchange)
codes

- 96 printable keyboard characters

- log(96) 77

Morse code

- special stop symbol

Definition
A code is called a prefix code or instantaneous code (prefix-free
code) if no codeword is a prefix of any other codeword.

Data Compression = Modeling + Coding

Symbol codes
Entro Prefix Code
Probability Coding Relationship to Entropy

Huffman Codes

Kraft-McMillan Inequality.

Theorem

For any uniquely decodable code C

Z o—1(x) <1,

xeC

where [(x) is the length of the codeword. Also,
for any set of lengths L such that:), 2=/ < 1, there is a prefix
code C of the same size such that I(x) = ; jcp1,..|1)]

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

o defined in 1992 as an extention for ASCII

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

o defined in 1992 as an extention for ASCII
e is a variable-width encoding

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

o defined in 1992 as an extention for ASCII

e is a variable-width encoding

e default character encoding in operating systems, programming
languages, APls, and software applications

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

defined in 1992 as an extention for ASCII

is a variable-width encoding

default character encoding in operating systems, programming
languages, APls, and software applications

o labelled "Unicode"

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Prefix code application

@ UTF-8 : Universal Character Set Transformation
Format—8-bit

defined in 1992 as an extention for ASCII

is a variable-width encoding

default character encoding in operating systems, programming
languages, APls, and software applications

labelled "Unicode"

the most common encoding for HTML files

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

UTF-8, 16, 32

Bits of First Last Bytes in
code point code point| code point |[sequence

7 U+0000 U+007F
11 U+0080 U+07FF
16 U+0800 U+FFFF
21 U+10000 |U+1FFFFF
26 U+200000 |U+3FFFFFF
31 U+4000000 U+7FFFFFFF

Bytel Byte2 Byte3 | Byte4 | Byte 5 Byte 6

OXXXXXXX

110XXXXX | TOXXXXXX

TT10XXXX | TOXXXXXX | TOXXXXXX

11110X%X | TOXXXXXX | T0XXXXXX | TOXXXXXX

T11170%xX | TOXXXXXX | TOXXXXXX | TOXXXXXX | TOXXXXXX

o u s W N R

TTT1110% | 10XXXXXX | TOXXXXXX | T0XXXXXX | TOXXXXXX | TOXXXXXX

Data Compression = Modeling + Coding

Symbol codes
Ent Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Source Coding Theorem

There exists a variable-length encoding C of an ensemble X such
that the average length of an encoded symbol L(C, X) satify:

H(X)< L(C,X) <H(X)+1.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy

Huffman Codes

Huffman Codes

o Are optimal prefix codes

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Huffman Codes

o Are optimal prefix codes

o Generated from a set of probabilities

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Huffman Codes

o Are optimal prefix codes
o Generated from a set of probabilities

@ David Huffman developed the algorithm as a student on
information theory at MIT in 1950

@ The professor, Robert M. Fano proposed the problem of
finding the most efficient binary code.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Huffman Codes

o Are optimal prefix codes
o Generated from a set of probabilities

@ David Huffman developed the algorithm as a student on
information theory at MIT in 1950

@ The professor, Robert M. Fano proposed the problem of
finding the most efficient binary code.

@ The algorithm is the most used component of compression
algorithms

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Huffman Codes

o Are optimal prefix codes
o Generated from a set of probabilities

@ David Huffman developed the algorithm as a student on
information theory at MIT in 1950

@ The professor, Robert M. Fano proposed the problem of
finding the most efficient binary code.

@ The algorithm is the most used component of compression
algorithms

o used as the back end of GZIP, JPEG

Data Compression = Modeling + Coding

Symbol codes
Prefix Code

Probability Coding Relationship to Entropy
Huffman Codes

R = (optional)

For each plane

Quantization \ |
12T — [TTTT
= — LT

for each |7

8x8block [[T T TTT

ig-zag order

DC difference from prev. block

m Huffman or Arithmetic
RLE H

Bits

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

@ Start with a forest of trees, one for each message. Each tree
contains a single vertex with weight w; = p;

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

@ Start with a forest of trees, one for each message. Each tree
contains a single vertex with weight w; = p;

@ Repeat until only a single tree remains

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

@ Start with a forest of trees, one for each message. Each tree
contains a single vertex with weight w; = p;

@ Repeat until only a single tree remains

o Select two trees with the lowest weight roots (w; and w»)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman algorithm

How it generates the prefix-code tree.

@ Start with a forest of trees, one for each message. Each tree
contains a single vertex with weight w; = p;

@ Repeat until only a single tree remains

o Select two trees with the lowest weight roots (w; and w»)
o Combine them into a single tree by adding a new root with
weight wy + wy, and making the two trees its children.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:

@ Create a leaf node for each symbol and add it to the priority
queue.

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:

@ Create a leaf node for each symbol and add it to the priority
queue.

@ While there is more than one node in the queue:

o Pop the two nodes of highest priority (lowest probability) from
the queue

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:

@ Create a leaf node for each symbol and add it to the priority
queue.
@ While there is more than one node in the queue:
o Pop the two nodes of highest priority (lowest probability) from
the queue
o Create a new internal node with these two nodes as children

and with probability equal to the sum of the two nodes’
probabilities.

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:
@ Create a leaf node for each symbol and add it to the priority
queue.
@ While there is more than one node in the queue:
o Pop the two nodes of highest priority (lowest probability) from
the queue
o Create a new internal node with these two nodes as children
and with probability equal to the sum of the two nodes’

probabilities.
o Add the new node to the queue.

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman implementation

Implementation with priority queue:

@ Create a leaf node for each symbol and add it to the priority
queue.
@ While there is more than one node in the queue:
o Pop the two nodes of highest priority (lowest probability) from
the queue
o Create a new internal node with these two nodes as children
and with probability equal to the sum of the two nodes’

probabilities.
o Add the new node to the queue.

@ The remaining node is the root node and the tree is complete.

Complexity: priority queue insert O(log n) — Huffman O(n log n)

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

@ Create a leaf node for each symbol and add it to the first
queue in increasing order

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:

@ Create a leaf node for each symbol and add it to the first
queue in increasing order

@ While there is more than one node in the both queues:

o Remove the two nodes of lowest weight from the both queues

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:
@ Create a leaf node for each symbol and add it to the first
queue in increasing order
@ While there is more than one node in the both queues:

o Remove the two nodes of lowest weight from the both queues

o Create a new internal node with these two nodes as children
and with weight equal to the sum of the two nodes’
probabilities.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:
@ Create a leaf node for each symbol and add it to the first
queue in increasing order
@ While there is more than one node in the both queues:

o Remove the two nodes of lowest weight from the both queues

o Create a new internal node with these two nodes as children
and with weight equal to the sum of the two nodes’
probabilities.

o Add the new node at the end of the second queue.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

The Huffman in O(n)

Implementation with 2 queues:
@ Create a leaf node for each symbol and add it to the first
queue in increasing order
@ While there is more than one node in the both queues:
o Remove the two nodes of lowest weight from the both queues
o Create a new internal node with these two nodes as children
and with weight equal to the sum of the two nodes’
probabilities.
o Add the new node at the end of the second queue.
@ The remaining node (should apear in the second) is the root
node and the tree is complete.

Data Compression = Modeling + Coding

Symbol codes
E Prefix Code
Probability Coding Relationship to Entropy
Huffman Codes

Adaptive Huffman coding

@ Involves calculating the probabilities dynamically

@ It is used rarely in practice because of the cost of updating the
tree

Data Compression = Modeling + Coding

	Entropy
	Probability Coding
	Symbol codes
	Prefix Code
	Relationship to Entropy
	Huffman Codes

