
Software Engineering – Lecture 9

Configuration management

Adapted after ©Ian Sommerville

Software Engineering, 2010, Configuration management ;

Engineering Software Products, 2019, chapter 10

Topics covered

⚫ Software configuration management

⚫ Version management

⚫ System building

⚫ Change management

⚫ Release management

Rationale: New versions of software systems are created as they change:

• For different machines/OS;

• Offering different functionality;

• Tailored for particular user requirements.

Software changes frequently software systems can be thought of

as a set of versions, each of which has to be maintained and

managed.

SCM is concerned with policies, processes and tools for managing changing

software systems.

SCM allows keeping track of what changes and component versions have

been incorporated into each system version.

Software Configuration Management (SCM)

SCM activities

Component

versions

System

versions

System

releases

Change

proposals
System
building

Change
management

Version
management

Release
management

Keeping track of the multiple versions of

system components and ensuring that

changes made to components by different

developers do not interfere with each other.

The process of creating a complete,

executable system by compiling and linking

the system components, external libraries,

configuration files, and other related artifacts

implied in the specific system.

Preparing software for external release and

keeping track of the system versions that have

been released for customer use.

Keeping track of requests for changes to the

software from customers and developers,

working out the costs and impact of changes,

and deciding the changes should be

implemented.

Development - the development team is responsible for managing the

software configuration and new functionality is being added to the

software.

System testing - a version of the system is released internally for

testing.

• No new system functionality is added. Changes made are bug fixes,

performance improvements and security vulnerability repairs.

Release - the software is released to customers for use.

• New versions of the released system are developed to repair bugs

and vulnerabilities and to include new features.

Development phases

For large systems

• there is never just one ‘working’ version of a system.

• there are always several versions of the system at different stages of

development.

• several teams may be involved in the development of different system

versions.

Multi-version systems

SCM terminology (1)

Term Explanation

Configuration item
or software
configuration item
(SCI)

Anything associated with a software project (design, code, test data,
document, etc.) that has been placed under configuration control. There
are often different versions of a configuration item. Configuration items
have a unique name.

Configuration
control

The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions
of components are identified and stored for the lifetime of the system.

Version An instance of a configuration item that differs, in some way, from other
instances of that item. Versions always have a unique identifier, which is
often composed of the configuration item name plus a version number.

Baseline A baseline is a collection of component versions that make up a system.
Baselines are controlled, which means that the versions of the
components making up the system cannot be changed. This means that
it should always be possible to recreate a baseline from its constituent
components.

Codeline A codeline is a set of versions of a software component and other
configuration items on which that component depends.

SCM terminology (2)

Term Explanation

Mainline A sequence of baselines representing different versions of a system.

Release A version of a system that has been released to customers (or other
users in an organization) for use.

Workspace A private work area where software can be modified without affecting
other developers who may be using or modifying that software.

Branching The creation of a new codeline from a version in an existing codeline.
The new codeline and the existing codeline may then develop
independently.

Merging The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have
been created by a previous branch of one of the codelines involved.

System building The creation of an executable system version by compiling and
linking the appropriate versions of the components and libraries
making up the system.

SCM process

SCM goal – to assure that all source code is compiled and linked to

form a release package easy to install and execute.

⚫ Discipline :

• Clear records of all versions of source materials the possibility to

use them anytime in order to build the correspondent release.

• Posibly, the need for a SCM administrator

SCM is a natural extension of the software process.

Desiderate:

• Clear defined software process

• Well defined set of artifacts generated during the activities of the

software process

• Integrated SCM system

• Team motivation and training with SCM

⚫ Defines the types of documents to be managed and a document

naming scheme.

⚫ Defines who takes responsibility for the CM procedures and

creation of baselines.

⚫ Defines policies for change control and version management.

⚫ Defines the SCM records which must be maintained.

⚫ Describes the tools which should be used to assist the SCM

process and any limitations on their use.

⚫ Defines the process of tool use.

⚫ Defines the SCM database used to record configuration

information.

⚫ May include information such as the configuration management of

external software, process auditing, etc.

SCM plan

Artifacts

Categories of artifacts:

⚫ Source code and executable code

⚫ Code descriptions : requirements, models, user guide, etc.

⚫ Data : contained in the program or external.

⚫ Tipical artifacts:

• Requirements specifications

• Design specifications

• Source code (business logic, DB tables, user screen scripts)

• Executable code

• Test cases (test scenarios, test scripts and associated test data)

SCM Tools

Levels:

Version and change control

⚫ Example (mostly oriented on source code): RCS, CSSC, CVS, PRCS,
Subversion

Including build functionality

⚫ Example: Make, Odin, Cons, SCons, Ant, SourceForge

Integrating SCM activities with software process activities

⚫ Example - only comercial tools and only partial integration: ClearCase,
PVCS, Visual SourceSafe, AccuRev

For complete SCM (all artifacts of the software process and their
relationships) – more tools, selected on different criteria (ex. artifacts

that must be managed, execution infrastructure, cost, ...), are used.

Formative evaluation

1. Select what version management, as activity of the software

configuration management process, means:

a) keeping track of requests for changes to the software, cost and impact of

changes analysis and deciding which changes should be implemented.

b) keeping track of the multiple versions of system components and ensuring

that changes made to components by different developers do not interfere

with each other.

c) creating a complete, executable system by compiling and linking the system

components, external libraries, configuration files, and other related artifacts

implied in the specific system.

2. Enumerate the artifacts, realized during the software

development process, placed under version control.

https://forms.gle/LALX3BJZh5a7tqc36

https://forms.gle/LALX3BJZh5a7tqc36

Topics covered

⚫ Software configuration management

⚫ Version management

⚫ System building

⚫ Change management

⚫ Release management

Example : a version management problem

Alice and Bob worked for a company called FinanceMadeSimple and were team

members involved in developing a personal finance product. Alice discovered a bug

in a module called TaxReturnPreparation. The bug was that a tax return was

reported as filed but, sometimes, it was not actually sent to the tax office. She edited

the module to fix the bug. Bob was working on the user interface for the system and

was also working on TaxReturnPreparation. Unfortunately, he took a copy before

Alice had fixed the bug and, after making his changes, he saved the module. This

overwrote Alice’s changes but she was not aware of this.

The product tests did not reveal the bug as it was an intermittent failure that depended on

the sections of the tax return form that had been completed. The product was

launched with the bug. For most users, everything worked OK. However, for a small

number of users, their tax returns were not filed and they were fined by the revenue

service. The subsequent investigation showed the software company was negligent.

This was widely publicised and, as well as a fine from the tax authorities, users lost

confidence in the software. Many switched to a rival product. FinanceMade Simple

failed and both Bob and Alice lost their jobs

Version management

Artifacts implied in creating and running a software product are

• files (hundreds) containing lines of product code and of automated tests code (tens of

thousands).

• libraries (dozens)

• several, different programs (tools)

• Version management (VM) is the process keeping track of the

different versions of system components or configuration items and

the systems in which these components are used.

• It is used to manage an evolving codebase.

• It also involves ensuring that changes made by different

developers to these versions do not interfere with each other.

• Therefore version management can be thought of as the process

of managing codelines and baselines.

Version management fundamentals

Version management systems provide a set of features that support four

general areas:

Code transfer Developers take code into their personal file store to

work on it, then return it to the shared code management system.

Version storage and retrieval Files may be stored in several different

versions and specific versions of these files can be retrieved.

Merging and branching Parallel development branches may be

created for concurrent working. Changes made by developers in

different branches may be merged.

Version information Information about the different versions

maintained in the system may be stored and retrieved

Version control systems

Version control (VC) systems identify, store and control access to the

different versions of components. There are two types of modern

version control system

• Centralized - a single master repository that maintains all

versions of the software components that are being developed.

Example : Subversion

• Distributed - multiple versions of the component repository

exist at the same time.

Example : Git

Functions of version management systems (tools)

• Version and release identification
Versions are assigned unique identifiers when they are submitted to the system and can be

retrieved using their identifier and other file attributes.

• Storage management
To reduce the storage space required by multiple versions of components, only differences

between versions are stored.

• Change history recording
The reasons of all of the changes made to the code of a system or component are recorded

and maintained.

• Independent development support
The version management system keeps track of components that have been checked out for

editing and ensures that changes made to a component by different developers do not

interfere. When a piece of code on which several developers work is submitted to the code

management system, a new version is created so that files are never overwritten by later

changes.

• Project support
A version management system may support the development of several projects. All of the

files associated with a project may be checked out at the same time.

Artifact storage and access model

Functions:

⚫ Create artifact

⚫ Delete artifact

Facilities:

⚫ View (check-out for read-only)

⚫ Modify (check-out for edit)

has impact on consistency controlled retrieval: the artifact can only be

viewed and not modified by another user.

⚫ Return (check-in)

paired with modify - stores the modified artifact and re-enables modification

on it; may include automated incrementation of the returned artifact

version.

Public repository and private workspaces

To support independent development without interference, version

control systems use the concepts of project repository and

private workspace.

The project repository maintains the ‘master’ version of all

components. It is used to create baselines for system building.

When modifying components, developers copy (check-out)

these from the repository into their workspace and work on

these copies.

When they have finished their changes, the changed components
are returned (checked-in) to the repository.

Centralized version control

Check-out and check-in with a version repository

Workspace Developer 1 Workspace Developer 2

BA

C

X Y

C

A1.1 B1.1 C1.1 Y P Q

RXZCBA

Version management system

Check_inCheck_out Check_inCheck_out

Element C is marked as shared, and when check-

in, version management system ensures that file

copies are not in conflict.

Distributed version control

A ‘master’ repository is created on a server that maintains the code

produced by the development team.

Instead of checking out the files that they need, a developer creates

a clone of the project repository that is downloaded and installed

on their computer.

Developers work on the files they are responsible for and maintain

the new versions on their private repository on their own

computer.

When changes are done, they ‘commit’ these changes and update

their private server repository. They may then ‘push’ these

changes to the project repository.

Distributed version control

Repository cloning

Figure 10.5 Repository cloning

Ian Sommerville –Software Engineering, ed.10

Distributed version management system

Example: Git

In 2005, Linus Torvalds, the developer of

Linux, revolutionized source code

management by developing a

distributed version control system

(DVCS) called Git to manage the

code of the Linux kernel.

This was geared to supporting large-

scale open source development. It

took advantage of the fact that

storage costs had fallen to such an

extent that most users did not have

to be concerned with local storage

management.

Instead of only keeping the copies of the

files that users are working on, Git

maintains a clone of the repository

on every user’s computer

Figure 10.5 Repository cloning in Git

Ian Sommerville – Engineering Software Products

Benefits of distributed version control

Resilience

Everyone working on a project has their own copy of the repository. If the

shared repository is damaged or subjected to a cyberattack, work can

continue, and the clones can be used to restore the shared repository.

People can work offline if they don’t have a network connection.

Speed

Committing changes to the repository is a fast, local operation and does

not need data to be transferred over the network.

Flexibility

Local experimentation is much simpler. Developers can safely experiment

and try different approaches without exposing these to other project

members. With a centralized system, this may only be possible by working outside

the code management system.

Distributed Git repositories

Figure 10.6 Git repositories

Ian Sommerville – Engineering

Software Products

Variants for storing

the central Git

repository (repo):

• On a local server

of the company.

• At Git repository

hosting companies

(ex. Github or

Gitlab).

Open source development

Distributed version control is essential for open source development.
• Several people may be working simultaneously on the same system without any

central coordination.

As well as a private repository on their own computer, developers also maintain a

public server repository to which they push new versions of components that they

have changed.
• It is then up to the open-source system ‘manager’ to decide when to pull these

changes into the definitive system.

Figure 10.8 Using Github for open source development

Ian Sommerville – Engineering Software Products

Codelines and baselines

Def. Codeline = a sequence of versions of source code with later
versions in the sequence derived from earlier versions.

• Codelines normally apply to components of systems so that
there are different versions of each component.

Def. Baseline = a definition of the composition of a specific system.

• The baseline therefore specifies the component versions that
are included in the system plus a specification of the libraries
used, configuration files, and other related artifacts implied in
the specific system.

Baseline V1

Codelines and baselines

A A1.1 A1.2 A1.3

B B1.1 B1.2 B1.3

C C1.1 C1.2 C1.3

L1 L2 Ex1 Ex2

A B1.2 C1.1

L1 L2 Ex1

Baseline V2

A1.3 C1.2

L1 Ex2L2

B1.2

Codeline (A)

Codeline (B)

Codeline (C)

Libraries and external components

Mainline

Baselines

• Baselines may be specified using a configuration language,

which allows you to define what components are included in a

version of a particular system.

• Baselines are important because you often have to recreate a

specific version of a complete system.

• For example, a product line may be instantiated so that there

are individual system versions for different customers. You may

have to recreate the version delivered to a specific customer if,

for example, that customer reports bugs in their system that

have to be repaired.

Branching and merging

• Rather than a linear sequence of versions that reflect changes to the component

over time, there may be several independent sequences.

• This is normal in system development, where different developers work independently

on different versions of the source code and so change it in different ways.

• A branch is an independent, stand-alone version that is created when a developer

wishes to change a file.

• At some stage, it may be necessary to merge codeline branches to create a new

version of a component that includes all changes that have been made.

• If the changes made involve different parts of the code, the component versions may

be merged automatically by combining the deltas that apply to the code.

• For changes that imply the same part of the code, collaboration of the correspondent

developers is necessary.

Branching and merging
Example

Figure 10.7 Branching and merging

Ian Sommerville – Engineering Software Products

The repository ensures that branch files that have been changed cannot overwrite

repository files without a merge operation.

• If Alice or Bob make mistakes on the branch they are working on, they can easily revert

to the master file.

• If they commit changes, while working, they can revert to earlier versions of the work

they have done. When they have finished and tested their code, they can then replace

the master file by merging the work they have done with the master branch.

Storage management

To spare expensive disk space, instead of keeping a complete copy of each

version, the system stores a list of differences (deltas) between one version

and another.

As disk storage is now relatively cheap, Git uses an alternative, faster approach.

Git does not use deltas but applies a standard compression algorithm to stored

files and their associated meta-information.

Retrieving a file simply involves decompressing it, with no need to apply a chain of

operations.

Git also uses the notion of packfiles where several smaller files are combined into

an indexed single file.

Formative evaluation

1. Describe the operations “view”, “modify” and “return” provided by

a version management system. Consider a project where 3

developers (John, Alice and Dan) colaborate and work in parallel.

If at one moment John must read module X and Alice and Dan

must modify it, describe a sequence of such operations executed

by the 3 developers when using a centralized version control

system.

2. Realize a comparison between centralized version management

systems and the distributed ones. (similarities and differences).

https://forms.gle/XPu8XYWAeV7Fvbbc6

https://forms.gle/XPu8XYWAeV7Fvbbc6

Topics covered

⚫ Software configuration management

⚫ Version management

⚫ System integration (building)

⚫ Change management

⚫ Release management

System integration (system building) implies gathering all of the elements

required in a working system, moving them into the right directories, and

putting them together to create an operational system.

Typical activities that are part of the system integration process include:

• Installing database software and setting up the database with the appropriate schema.

• Loading test data into the database.

• Compiling the files that make up the product.

• Linking the compiled code with the libraries and other components used.

• Checking that external services used are operational.

• Deleting old configuration files and moving configuration files to the correct locations.

• Running a set of system tests to check that the integration has been successful.

System building

System building is the process of creating a complete, executable

system by compiling and linking the system components, external

libraries, configuration files, and other related artifacts implied in the

specific system.

System building tools and version management tools must

communicate because

• the build process involves checking out component versions from

the repository managed by the version management system.

• the configuration description used to identify a baseline is also

used by the system building tool.

System building

Development, building and execution platforms

Development system

Target system

Developers check out

code from the version

management system into

a private workspace

before making changes

to the system.

Build server: used to build definitive,

executable versions of the system.

Development tools

Private workspace

Version
management

system

Build
server

Executable system

Target platform
Check-in

Check-out
Check-out

Commit

System building

Automated built

system

Compilers and

other tools

Source code
files

Data
files

Libraries

Configuration
files

Executable
tests

Executable
target system

Test
results

Functionality of a building tool

⚫ Build script generation

⚫ Version management system integration

⚫ Minimal re-compilation

⚫ Executable system creation

⚫ Test automation

⚫ Reporting

⚫ Documentation generation

Daily building

⚫ The development organization sets a delivery time (say 2 p.m.) for

system components.

• If developers have new versions of the components that they

are writing, they must deliver them by that time.

• A new version of the system is built from these components

by compiling and linking them to form a complete system.

• This system is then delivered to the testing team, which

carries out a set of predefined system tests.

• Faults that are discovered during system testing are

documented and returned to the system developers. They

repair these faults in a subsequent version of the component.

Continous integration

Continuous integration means that an integrated version of the system

is created and tested every time a change is pushed to the

system’s shared repository.

On completion of the push operation, the repository sends a message

to an integration server to build a new version of the product

The advantage of continuous integration compared to less frequent

integration is that it is faster to find and fix bugs in the system.

If after a small change some system tests fail, the problem almost

certainly lies in the new code that have been pushed to the project

repo.

This is the code to focus on in order to find the bug that’s causing the

problem.

Continous integration

Figure 10.9 Continous integration

Ian Sommerville – Engineering Software Products

Figure 10.10 Local integration

Ian Sommerville – Engineering Software Products

Solution : ‘Integrate twice’ approach

to system integration.

Integration and test is done on local

computer, before pushing code to

the project repository to trigger the

integration server.

Problem : Breaking the build – after

pushing code to the project repository,

when integrated, causes some of the

system tests to fail.

System building

Continuous integration is only effective if the integration

process is fast and developers do not have to wait for the

results of their tests of the integrated system.

However, some activities in the build process, such as

populating a database or compiling hundreds of system files,

are inherently slow.

It is therefore essential to have an automated build process

that minimizes the time spent on these activities.

Fast system building is achieved using a process of

incremental building, where only those parts of the system

that have been changed are rebuilt.

System building

Running a set of system tests depends on the

existence of executable object code for both

the program being tested and the system tests.

In turn, these depend on the source code for

the system and the tests that are compiled to

create the object code.

Figure 10.11 A dependency model

Ian Sommerville – Engineering Software Products

An automated build system uses the specification of dependencies to work out

what needs to be done. It uses the file modification timestamp to decide

if a source code file has been changed.

• The modification date of the compiled code is after the modification date of the

source code The build system infers that no changes have been made to the

source code and does nothing.

• The modification date of the compiled code is before the modification date of the

source code The build system recompiles the source and replaces the existing file

of compiled code with an updated version.

System building

An automated build system uses the specification of dependencies to work out

what needs to be done. It uses the file modification timestamp to decide

if a source code file has been changed.

• The modification date of the compiled code is after the modification date of
the source code. However, the modification date of Classdef is after the

modification date of the source code of Mycode. Mycode has to be

recompiled to incorporate these changes.

A lower-level dependency model shows

the dependencies involved in creating the

object code for a source code files called
Mycode.

Figure 10.12 File dependencies

Ian Sommerville – Engineering Software Products

Continuous delivery and deployment (CD)

• Continuous integration (CI) means creating an executable version of a

software system whenever a change is made to the repository. The CI tool

builds the system and runs tests on the development computer or project

integration server.

• However, the real environment in which software runs will inevitably be

different from the development system.

• When the software runs in its real, operational environment bugs may be

revealed that did not show up in the test environment.

• Continuous delivery (CD) means that, after making changes to a system,

one ensures that the changed system is ready for delivery to customers.

• This means that the system has to be tested it in a production environment

to make sure that environmental factors do not cause system failures or

slow down its performance.

Continuous delivery and deployment

Figure 10.13 Continous delivery and deployment

Ian Sommerville – Engineering Software Products

The deployment pipeline

• Initial integration testing

• Creating a staged test environment (a replica of the actual production

environment in which the system will run).

• Running the system validation tests (functionality, load and performance) to

check that the software works as expected.

• Testing and working until all of these tests pass

• Installing the changed on the production servers.

• stop momentarily all new requests for service and the older version is

left to process the outstanding transactions.

• switch to the new version of the system and restart processing.

Benefits of continuous deployment

Reduced costs

Together with continuous deployment, investment in a completely

automated deployment pipeline is needed. Manual deployment is a

time-consuming and error-prone process. Setting up an automated

system is expensive and time-consuming, but these costs can be

recovered if regular updates are made to the product.

Faster problem solving

If a problem occurs, it will probably only affect a small part of the

system and it will be obvious what the source of that problem is.

Faster customer feedback

When new features are ready, they can be deployed for customer use.

User feedback helps to identify improvements that are needed.

Formative evaluation

1. How must be done system building so that continous integration

to be efficient ?

2. How is installed on the production servers a new version of a

software system which has passed all validation tests ?

https://forms.gle/44wZ4svHhXdT6PHL9

https://forms.gle/44wZ4svHhXdT6PHL9

Topics covered

⚫ Software configuration management

⚫ Version management

⚫ System building

⚫ Change management

⚫ Release management

⚫ Keeping track of requests for changes to the software from

customers and developers, working out the costs and impact of

changes, and deciding the changes should be implemented.

⚫ Priority is given to the most urgent and cost-effective changes.

⚫ Main activities:

• Analyse the costs and benefits of proposed changes

• Approve changes that are worthwhile

• Give priorities to the changes to be done

• Track which components in the system have been changed

Change management

Change management requirements

⚫ Some means for users and developers to suggest required
system changes

⚫ A process to decide if changes should be included in a system

⚫ Software to keep track of suggested changes and their status

⚫ Software support for managing changing system configurations
and building new systems

Change management process

CR = change request

The definition of a change request form is part of the change

management planning process.

Initially this form records

• change proposed

• requestor of change

• reason why change was suggested

• urgency of change

Further it records

• change evaluation

• impact analysis

• change cost and recommendations

Change request form

Change Request Form

Project: SICSA/AppProcessing Number: 23/02

Change requester: I. Sommerville Date: 20/01/09

Requested change: The status of applicants (rejected, accepted, etc.) should

be shown visually in the displayed list of applicants.

Change analyzer: R. Looek Analysis date: 25/01/09

Components affected: ApplicantListDisplay, StatusUpdater

Associated components: StudentDatabase

...

Change assessment: Relatively simple to implement by changing the display

color according to status. A table must be added to relate status to colors. No

changes to associated components are required.

Change priority: Medium

Change implementation:

Estimated effort: 2 hours

Date to SGA app. team: 28/01/09 CCB decision date: 30/01/09

Decision: Accept change. Change to be implemented in Release 1.2

Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:

Comments:

⚫ Changes should be reviewed by an external group (CCB –

change control board) who decides whether or not they are cost-

effective from a strategic and organizational viewpoint rather than

a technical viewpoint.

Factors in change analysis

⚫ The consequences of not making the change

⚫ The benefits of the change

⚫ The number of users affected by the change

⚫ The costs of making the change

⚫ The product release cycle

Change approval

• In some agile methods, customers are directly involved in change

management.

• They propose a change to the requirements and work with the

team to assess its impact and decide whether the change should

take priority over the features planned for the next increment of the

system.

• Changes to improve the software development activities are

decided by the programmers working on the system.

• Refactoring, where the software is continually improved, is not

seen as an overhead but as a necessary part of the development

process.

Change management and agile methods

Topics covered

⚫ Software configuration management

⚫ Version management

⚫ System building

⚫ Change management

⚫ Release management

Preparing software for external release and keeping track of the

system versions that have been released for customer use.

Def. Release = a version of a software system that is distributed to

customers.

• For mass market software - types of release

• major releases which deliver significant new functionality

• minor releases, which repair bugs and fix customer problems

that have been reported.

• For custom software or software product lines

• releases of the system may have to be produced for each

individual customer.

Release management

Release components

• the executable cod of the system

• configuration files - defining how the release should be configured for

particular installations;

• data files (such as files of error messages) - are needed for successful

system operation;

• an installation program - used to help install the system on target

hardware;

• electronic and paper documentation - describing the system;

• packaging and associated publicity - designed for that release.

Objective : actual release for using.

Factors influencing system release planning

Factor Description

Technical quality of
the system

If serious system faults are reported which affect the way in
which many customers use the system, it may be necessary
to issue a fault repair release. Minor system faults may be
repaired by issuing patches (usually distributed over the
Internet) that can be applied to the current release of the
system.

Platform changes You may have to create a new release of a software
application when a new version of the operating system
platform is released.

Competition For mass-market software, a new system release may be
necessary because a competing product has introduced new
features and market share may be lost if these are not
provided to existing customers.

Marketing
requirements

The marketing department of an organization may have made
a commitment for releases to be available at a particular date.

Release creation

The executable code of the programs and all associated data files

must be identified in the version control system.

Configuration descriptions may have to be written for different

hardware and operating systems.

Update instructions may have to be written for customers who need

to configure their own systems.

Scripts for the installation program may have to be written.

Web pages have to be created describing the release, with links to

system documentation.

When all information is available, an executable master image of

the software must be prepared and handed over for distribution

to customers or sales outlets.

Release reproduction

⚫ In the event of a problem, it may be necessary to reproduce exactly

the software that has been delivered to a particular customer.

This is particularly important for customized, long-lifetime embedded

systems, such as those that control complex machines.

Customers may use a single release of these systems for many years and may require specific changes

to a particular software system long after its original release date.

⚫ To document a release, you have to record the specific versions of

the source code components that were used to create the executable

code.

⚫ You must keep copies of the source code files, corresponding

executables and all data and configuration files.

⚫ You should also record the versions of the operating system, libraries,

compilers and other tools used to build the software.

Objective : re-creating the executables.

Release planning

Preparing advertising and publicity material and put in place marketing

strategies to convince customers to buy the new release of the

system.

⚫ Release timing:

• Releases too frequent or requiring hardware upgrades

customers may not move to the new release, especially if they have

to pay for it.

• Too infrequent releases market share may be lost as customers

move to alternative systems.

Release management for SaaS

Software as a service (SaaS) is a software distribution model in

which a cloud provider hosts applications and makes them

available to end users over the internet.

Delivering Software as a service (SaaS) reduces the problems of

release management.

It simplifies both release management and system installation for

customers.

The software developer is responsible for replacing the existing

release of a system with a new release and this is made

available to all customers at the same time.

Formative evaluation

1. In the change management process, what is the role of cost and

impact analysis of the software system change requests ?

2. What categories of information must be kept, by the development

team, for each release of a software system and for what are

these necessary ?

https://forms.gle/vrxULPFeZMdq4CSz5

https://forms.gle/vrxULPFeZMdq4CSz5

Key points (1)

Configuration management is the management of an evolving software

system. When maintaining a system, a CM team is put in place to ensure that

changes are incorporated into the system in a controlled way and that records

are maintained with details of the changes that have been implemented.

The main configuration management processes are version management,

change management, system building and release management.

Version management involves keeping track of the different versions of

software components as changes are made to them, aiming to avoid changes

made by different developers interfering with each other.

All version management systems are based around a shared code repository

with a set of features that support code transfer, version storage and retrieval,

branching and merging and maintaining version information.

Git is a distributed code management system that is the most widely used

system for software product development. Each developer works with their

own copy of the repository which may be merged with the shared project

repository.

Key points (2)

System building is the process of assembling system components into

an executable program to run on a target computer system.

Software should be frequently rebuilt and tested immediately after a

new version has been built. This makes it easier to detect bugs and

problems that have been introduced since the last build.

Continuous integration means that as soon as a change is committed to

a project repository, it is integrated with existing code and a new version

of the system is created for testing.

Automated system building tools reduce the time needed to compile

and integrate the system by only recompiling those components and

their dependents that have changed.

Change management involves assessing proposals for changes from

system customers and other stakeholders and deciding if it is cost-

effective to implement these in a new version of a system.

System releases include executable code, data files, configuration files

and documentation.

Release management involves making decisions on system release

dates, preparing all information for distribution and documenting each

system release.

Key points (3)

7

9

