
Software Engineering – Lecture 8

Verification and Validation ( V & V )

Adapted after ©Ian Sommerville     

Software Engineering, 2010, chapter 8 ;

Engineering Software Products, 2019, chapter 9



Topics covered

⚫ Verification and validation

⚫ Testing

⚫ Functional testing

⚫ Test-driven development

⚫ Quality testing



V&V process is a whole life-cycle process - V & V must be applied at each 

stage in the software process.

Objectives:

• The discovery of defects in a system (verification);

⚫ "Are we building the product right ?”.

• The assessment of whether or not the system is useful and useable in 

an operational situation (validation).

"Are we building the right product ?”.

• Static V&V – software inspections

• Dynamic V&V – testing

The V & V process



Testing - part of V&V.

⚫ Intended to show that a program does what it is intended to do

(validation) and to discover program defects (verification) before it is 

put into use. 

⚫ Testing implies executing a program using artificial data.

⚫ The results of the test run are checked for errors, anomalies or 

information about the program’s extra-functional attributes. 

⚫ Can reveal the presence of errors NOT their absence.

Software testing



Validation testing

Objective:To demonstrate to the developer and the system customer that 

the software meets its requirements.

• The system is expected to perform correctly using a given set of test 

cases that reflect the system’s expected use.

• A successful test shows that the system operates as intended.

Verification (defect) testing

Objective: To discover faults or defects in the software where its behaviour

is incorrect or not in conformance with its specification

• The test cases are designed to expose defects. The test cases in defect 

testing can be deliberately obscure and need not reflect how the system 

is normally used.

• A successful test is a test that makes the system perform incorrectly and 

so exposes a defect in the system.

V&V testing



Software inspections

• Software inspections involve people examining the source 

representation with the aim of discovering anomalies and defects.

• Inspections do not require execution of a system, so may be used 

before implementation.

• They may be applied to any representation of the system (requirements, 

design,configuration data, code, test data, etc.).

They have been shown to be an effective technique for discovering program errors.

Advantages of inspections

• Many different defects may be discovered in a single inspection. In testing, 

one defect may mask another, so several executions are required.

• Incomplete versions of a system can be inspected. If a program is incomplete -

specialized test harnesses to test the parts that are available must be developed.

• Inspection can also consider broader quality attributes of a program, 

such as compliance with standards, portability and maintainability.



⚫ Software inspections. Concerned with analysis of the static system 

representation to discover problems

Static verification and validation

May be supplemented by 

tool-based document and code analysis

Inspections and testing

⚫ Software testing. Concerned with exercising and observing product 

behaviour

Dynamic verification and validation

The system is executed with test data and its operational behaviour is observed.



Inspections and testing



Inspections and testing

⚫ Inspections and testing are complementary V&V techniques.

⚫ Both should be used during the V & V process.

⚫ Inspections can check conformance with a specification but not 

conformance with the customer’s real requirements.

⚫ Inspections cannot check non-functional characteristics such as 

performance, usability, etc.



Code reviews (inspections of the code)

• Code reviews are effective in finding bugs that arise through misunderstandings

and bugs that may only arise when unusual sequences of code are executed.

• Many software companies insist that all code has to go through a process of 

code review before it is integrated into the product codebase.

Figure 9.9 Code reviews

Ian Sommerville –

Engineering Software 

Products

Contacts a reviewer and 

arranges a review date.

Collects the code and tests for review 

and annotates them with information 

for the reviewer about the intended 

purpose of the code and tests.

Sends code and tests 

to the reviewer.

Systematically checks the code and tests against their 

understanding of what they are supposed to do.

Annotates the code and tests 

with a report of the issues to be 

discussed at the review meeting.

Discuss the issues and agree 

on the actions to resolve these.

Documents the outcome of the 

review as a to-do list and shares 

this with the reviewer.

Modifies their code and tests to address 

the issues raised in the review.



Part of a check list for a Python code review

• Are meaningful variable and function names used? (General)

Meaningful names make a program easier to read and understand.

• Have all data errors been considered and tests written for them? (General)

It is easy to write tests for the most common cases but it is equally important to check 

that the program won’t fail when presented with incorrect data.

• Are all exceptions explicitly handled? (General)

Unhandled exceptions may cause a system to crash.

• Are default function parameters used? (Python)

Python allows default values to be set for function parameters when the function is 

defined. This often leads to errors when programmers forget about or misuse them.  

• Are types used consistently? (Python)

Python does not have compile-time type checking so it it is possible to assign values of 

different types to the same variable. This is best avoided but, if used, it should be 

justified.

• Is the indentation level correct? (Python)

Python uses indentation rather than explicit brackets after conditional statements to 

indicate the code to be executed if the condition is true or false. If the code is not properly 

indented in nested conditionals this may mean that incorrect code is executed.



Formative evaluation

1. When is considered to be successful a validation test and when a 

verification test ?

2. What is the method to statically realize verifications and 

validations and what artifacts, obtained during software 

development process, are verified and validated in this way ?

3. Which are the advantages offered by source code inspections 

compared with code testing ?

https://forms.gle/Vbx7b7kCcZkutMWL9

https://forms.gle/Vbx7b7kCcZkutMWL9


Topics covered

⚫ Verification and validation

⚫ Testing

⚫ Functional testing

⚫ Test-driven development

⚫ Quality testing



Types of testing

Functional testing
Test the functionality of the overall system. The goals of functional testing are to 

discover as many bugs as possible in the implementation of the system and to 

provide convincing evidence that the system is fit for its intended purpose.

Quality testing

• Usability testing

Test that the software product is useful to and usable by end-users. You need to show 

that the features of the system help users do what they want to do with the software. 

You should also show that users understand how to access the software’s features 

and can use these features effectively.

• Performance and load testing

Test that the software works quickly and can handle the expected load placed on the 

system by its users. You need to show that the response and processing time of your 

system is acceptable to end-users. You also need to demonstrate that your system can 

handle different loads and scales gracefully as the load on the software increases.

• Security testing

Test that the software maintains its integrity and can protect user information from theft 

and damage.



A model of the software testing process

Test 
cases

Design
test cases

Prepare
test data

Run program 
with

test data

Compare results 
to test cases

Test
results

Test
reports

Test
data

Test case : specification of the inputs to 

the test and the expected output from the 

system plus a statement of what is being 

tested.



Stages of testing

Development testing - the system is tested during development to 

discover bugs and defects.

Levels of development testing :

• Unit testing : units of code are tested in isolation

• Feature testing : system features are tested 

• System testing : system is tested as a whole

Release testing - a separate testing team tests a complete version of the 

system before it is released to users.

User testing - users of a system test the system in their own 

environment.



User testing

• User (customer) testing - stage in the testing process of project-based software 

in which users or customers provide input and advice on system testing.

• User testing is essential, even when comprehensive system and release testing 

have been carried out.

Reason : influences from the user’s working environment have a major effect on 

the reliability, performance, usability and robustness of a system; these cannot 

be replicated in a testing environment.

Stages of user testing

• Alpha testing - Users of the software work with the development team to test the 

software at the developer’s site.

• Beta testing - A release of the software is made available to users to allow them to 

experiment and to raise problems that they discover with the system developers.

• Acceptance testing (testing stage for custom systems ) - Customers test a system to 

decide whether or not it is ready to be accepted from the system developers and deployed 

in the customer environment. 



Test automation

Test automation is based on the idea that tests should be executable.

The tests are embedded in a program that can be run every time a 

change is made to a system.

Figure 9.5 The testing 

pyramid

Ian Sommerville –

Engineering Software 

Products



Topics covered

⚫ Verification and validation

⚫ Testing

⚫ Functional testing

⚫ Test-driven development

⚫ Quality testing



Key points

V&V must be applied at each stage in the software process. 

Verification is concerned with the discovery of defects in a system 

and validation is concerned with the assessment of usefulness and 

usability of the system in an operational situation.

Software inspections (static V&V) implies analysis of the static system 

representation to discover problems. Software testing (dynamic 

V&V) implies executing a program using artificial data and observing 

its behaviour. 

Testing stages are : development testing (unit testing, feature testing, 

system testing), release testing and user testing. Both software 

functionality and software qualities must be tested.

Test automation is based on the idea that tests should be executable. 

The tests are embedded in a program that can be run every time a 

change is made to a system.



Functional testing

Figure 9.2 Functional testing 

Ian Sommerville – Engineering 

Software Products

⚫Functional testing involves developing a large set of 

program tests so that, ideally, all of a program’s code is 

executed at least once.

⚫The number of tests needed depends on the size and 

the functionality of the application.

⚫Functional testing is a staged activity : 

⚫ individual units of code testing, 

⚫ integrated code units testing, 

⚫ final system testing.



Process stage What is tested Who is testing

Unit testing Program units in isolation. All of the code in a 

unit should be executed at least once.

Programmer who 

developed that code.

Feature testing Code units are integrated to create features. All 

aspects of a feature are tested.

All of the 

programmers who 

contribute code units 

System testing A working (perhaps incomplete) version of a 

system. Checks that there are no unexpected 

interactions between the features in the system. 

May also involve checking the responsiveness, 

reliability and security of the system.

Dedicated testing 

team in large 

companies.

Product developers in 

small companies.

Release testing Packaged system, ready for release. Check 

that it operates as expected in specific 

environments (ex. cloud, computer,  mobile 

device).

A separate team.

The development 

team, if DevOps is 

used

Functional testing processes



Unit testing

Unit testing is the process of testing individual units in isolation.

⚫ It is a defect testing process.

Code unit = anything that has a clearly defined responsibility, 

and may be:

• Individual function or method within an object;

• Object class with several attributes and methods;

• Module, with defined interfaces used to access its functionality.

Object class testing 

⚫ Complete test coverage of a class involves:

• Testing all operations associated with an object;

• Setting and interrogating all object attributes;

• Exercising the object in all possible states.

Obs. Inheritance makes it more difficult to design object class tests as the information to be 

tested is not localized.

Because – all elements of the class must be tested, including the inherited ones, in the particular context of the 

tested class.

•Unit testing

•Feature testing

•System testing

•Release testing



Unit testing effectiveness

Test cases are defined for the developed code.

Test case = specification of the inputs to the test and the expected output 

from the system plus a statement of what is being tested.

Test cases objectives:

⚫ show that, when used as expected, the tested unit does what it is 

supposed to do.

⚫ reveal defects in the unit.



Types of unit test case:

⚫ reflect normal operation of a program and should show that the unit 

works as expected. 

⚫ use abnormal inputs to check that these are properly processed and do 

not crash the unit.

•Unit testing

•Feature testing

•System testing

•Release testing



Testing startegies

⚫ Partition testing - identify groups of inputs that have common 

characteristics and should be processed in the same way. 

• Tests are chosen from within each of these groups.

⚫ Guideline-based testing - use testing guidelines to choose 

test cases. 

• Guidelines reflect previous experience of the kinds of errors that 

programmers often make when developing software.

•Unit testing

•Feature testing

•System testing

•Release testing



Partition testing

⚫General principle:

If a program unit behaves as expected for a set of inputs that have some shared 

characteristics, it will behave in the same way for a larger set whose members share 

these characteristics.

• Input data and output results generally fall into different groups, where 

all members of a group are related as regards the behavior of the 

program.

• Each of these groups is an equivalence partition (or domain) where the 

program behaves in an equivalent way for each group member.

• Test cases should be chosen from each partition.

⚫Procedure:

• Identification of the equivalence partitions as sets of inputs that will be 

treated in the same way in the code.

• Identification of ‘incorrectness partitions’, where the inputs are 

deliberately incorrect.

•Unit testing

•Feature testing

•System testing

•Release testing



Example: Equivalence partitions

•Unit testing

•Feature testing

•System testing

•Release testing

3 4                     7                           9                    

9

10

99 100                   578                 1000 1001

number of input values : ni > 3 and ni < 10 

input value : iv ≥ 100 and iv ≤ 1000



Equivalence partitions for a name checking function

Correct names 1 : The inputs only includes 

alphabetic characters and are between 2 and 

40 characters long.

Correct names 2 : The inputs only includes 

alphabetic characters, hyphens or apostrophes 

and are between 2 and 40 characters long.

Incorrect names 1 : The inputs are between 2 

and 40 characters long but include disallowed 

characters.

Incorrect names 2 : The inputs include 

allowed characters but are either a single 

character or are more than 40 characters long.

Incorrect names 3 : The inputs are between 2 

and 40 characters long but the first character 

is a hyphen or an apostrophe.

Incorrect names 4 : The inputs include valid 

characters, are between 2 and 40 characters 

long, but include either a double hyphen, 

quoted text or both.

⚫def namecheck (s):

# Checks that a name only includes

# alphabetic characters, - or a single quote.

# Names must be between 2 and 40 

# characters long

# quoted strings and -- are disallowed

⚫ namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"

⚫ if re.match (namex, s):

⚫ if re.search ("'.*'", s) or re.search ("--", 

s):

⚫ return False

⚫ else:

⚫ return True

⚫ else:

⚫ return False

•Unit testing

•Feature testing

•System testing

•Release testing



Example: Search routine specification

procedure Search (Key : ELEM ; T: SEQ of ELEM;

Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition

-- the sequence has at least one element

T’FIRST <= T’LAST 

Post-condition

-- the element is found and is referenced by L

( Found and T (L) = Key) 

or

-- the element is not in the array

( not Found and

not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key ))

•Unit testing

•Feature testing

•System testing

•Release testing



Input partitions

⚫ Inputs which conform to the pre-conditions.

⚫ Inputs where a pre-condition does not hold.

⚫ Inputs where the key element is a member of  the array.

⚫ Inputs where the key element is not a member of the array.

Testing guidelines for sequences

⚫ Test software with sequences which have only a single value (length =1).

⚫ Use sequences of different sizes in different tests.

⚫ Derive tests so that the first, middle and last elements of the sequence 

are accessed.

⚫ Test with sequences of zero length.

Example: Search routine

•Unit testing

•Feature testing

•System testing

•Release testing



Example: Search routine - input partitions

Sequence Element Input sequence 

(T)

Key 

(Key)

Output 

element 

(Found, L)

Single value In sequence 17 17 True, 1

Single value Not in sequence 17 0 False, ??

More then 1 value First element in 

sequence

17,29,21,23 17 True, 1

More then 1 value Last element in 

sequence

41,18,9,3,30,16,45 45 True, 7

More then 1 value Middle element in 

sequence

17,18,21,23,29,41,38 23 True, 4

More then 1 value Not in sequence 21,23,29,33,38 25 False, ??

Empty - - 10 False, ??

•Unit testing

•Feature testing

•System testing

•Release testing



Testing guidelines are hints for the testing team to help them 

choose tests that will reveal defects in the system:

Test edge cases

If your partition has upper and lower bounds (e.g. length of strings, 

numbers, etc.) choose inputs at the edges of the range.

Force errors

Choose test inputs that force the system to generate all error 

messages. Choose test inputs that should generate invalid outputs.

Fill buffers

Choose test inputs that cause all input buffers to overflow.

Repeat yourself

Repeat the same test input or series of inputs several times.

Unit testing guidelines (1)

•Unit testing

•Feature testing

•System testing

•Release testing



Unit testing guidelines (2)

Overflow and underflow

If your program does numeric calculations, choose test inputs that cause it 

to calculate very large or very small numbers.

Don’t forget null and zero

If your program uses pointers or strings, always test with null pointers and 

strings. If you use sequences, test with an empty sequence. For numeric 

inputs, always test with zero.

Keep count

When dealing with lists and list transformation, keep count of the number of 

elements in each list and check that these are consistent after each 

transformation.

One is different

If your program deals with sequences, always test with sequences that 

have a single value.

•Unit testing

•Feature testing

•System testing

•Release testing



Automated unit testing

⚫ Automated unit testing  executable tests that run and check without 

manual intervention.

⚫ A test automation framework e.g. PyUnit, JUnit) is used to write and run

the program tests.

⚫ Unit testing frameworks 

• provide generic test classes that must be extended to create specific 

test cases. 

• run all of the tests that have been implemented and report test results.

Figure 9.4 Automated testing

Ian Sommerville – Engineering 

Software Products

•Unit testing

•Feature testing

•System testing

•Release testing



Automated unit test structure 

⚫Automated tests are structured into three parts:

⚫ Setup (arrange) part 

System initialization with the test case, namely the inputs and expected 

outputs. This involves defining the test parameters and, if necessary, mock objects 

that emulate the functionality of code that has not yet been developed.

⚫ Call (action) part 

Call the unit that is being tested with the test parameters.

⚫ Assertion part 

Compare the result of the call with the expected result. 

If the assertion evaluates to true, the test has been successful  if false, then it has 

failed.

Obs. 

1. If equivalence partitions are used, several tests based on correct and incorrect 

inputs from each partition should be designed.

2. Normally, thousands of executable tests are developed for an industrial software 

product.

•Unit testing

•Feature testing

•System testing

•Release testing



Test automation
Example : Test methods for an interest calculator

⚫# TestInterestCalculator inherits attributes and methods from the class TestCase in the testing framework 
# unittest (PyUnit)

⚫class TestInterestCalculator (unittest.TestCase):
⚫ # Define a set of unit tests where each test tests one thing only
⚫ # Tests should start with test_ and the name should explain what is being tested
⚫ def test_zeroprincipal (self):
⚫ #Arrange - set up the test parameters
⚫ p = 0; r = 3; n = 31
⚫ result_should_be = 0
⚫ #Action - Call the method to be tested
⚫ interest = interest_calculator (p, r, n)
⚫ #Assert - test what should be true
⚫ self.assertEqual (result_should_be, interest)

⚫ def test_yearly_interest (self):
⚫ #Arrange - set up the test parameters
⚫ p = 17000; r = 3; n = 365
⚫ result_should_be = 270.36
⚫ #Action - Call the method to be tested
⚫ interest = interest_calculator (p, r, n)
⚫ #Assert - test what should be true
⚫ self.assertEqual (result_should_be, interest)

•Unit testing

•Feature testing

•System testing

•Release testing



Automated unit tests
Example : Executable tests for namecheck function (1)

⚫import unittest

⚫from RE_checker import namecheck

⚫class TestNameCheck (unittest.TestCase):

⚫ def test_alphaname (self):

⚫ self.assertTrue (namecheck ('Sommerville'))

⚫ def test_doublequote (self):

⚫ self.assertFalse (namecheck ("Thisis'maliciouscode'"))

⚫ def test_namestartswithhyphen (self):

⚫ self.assertFalse (namecheck ('-Sommerville'))

⚫ def test_namestartswithquote (self):

⚫ self.assertFalse (namecheck ("'Reilly"))

⚫ def test_nametoolong (self):

⚫ self.assertFalse (namecheck ('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

⚫ def test_nametooshort (self):

⚫ self.assertFalse (namecheck ('S'))

⚫ def test_namewithdigit (self):

⚫ self.assertFalse (namecheck('C-3PO'))

•Unit testing

•Feature testing

•System testing

•Release testing



Automated unit tests
Example : Executable tests for namecheck function (2)

⚫def test_namewithdoublehyphen (self):

⚫ self.assertFalse (namecheck ('--badcode'))

⚫def test_namewithhyphen (self):

⚫ self.assertTrue (namecheck ('Washington-Wilson'))

⚫ def test_namewithinvalidchar (self):

⚫ self.assertFalse (namecheck('Sommer_ville'))

⚫ def test_namewithquote (self):

⚫ self.assertTrue (namecheck ("O'Reilly"))

⚫ def test_namewithspaces (self):

⚫ self.assertFalse (namecheck ('Washington Wilson'))

⚫ def test_shortname (self):

⚫ self.assertTrue ('Sx')

⚫ def test_thiswillfail (self):

⚫ self.assertTrue (namecheck ("O Reilly"))

•Unit testing

•Feature testing

•System testing

•Release testing



Automated unit tests
Code to run unit tests from files

⚫import unittest

⚫loader = unittest.TestLoader()

⚫#Find the test files in the current directory

⚫tests = loader.discover('.')

⚫#Specify the level of information provided by the test runner

⚫testRunner = unittest.runner.TextTestRunner(verbosity=2)

⚫testRunner.run(tests)

•Unit testing

•Feature testing

•System testing

•Release testing



Formative evaluation

1. Why automated testing is useful ?

2. What is the role of equivalence partitions in unit testing ?

3. Give examples of criteria for selecting tests that reveal defects in 

the system.

4. Which are the elements of the automated unit test ?

https://forms.gle/8aYS96jjTajvPN47A

https://forms.gle/8aYS96jjTajvPN47A


Feature (requirements) testing

⚫Features have to be tested to show that the functionality is implemented 

as expected and that the functionality meets the real needs of users.

•For example, if a product has a feature that allows users to login using their Google account, 

then one has to check that this registers the user correctly and informs them of what 

information will be shared with Google.

•It may be also checked that it gives users the option to sign up for email information about 

the product.

⚫Normally, a feature that does several things is implemented by multiple, 

interacting, program units.

⚫These units may be implemented by different developers and all of 

these developers should be involved in the feature testing process.

•Unit testing

•Feature testing

•System testing

•Release testing



Types of feature test

⚫Interaction tests : 

⚫Test 

• the interactions between the units that implement the feature. 

•Reveal :

• Different understandings, by the developers of the units that are combined 

to make up the feature, about of what is required of that feature. 

• Bugs in program units, which were not exposed by unit testing.

⚫Usefulness tests : 

⚫Test 

• Conformance of the feature implementation with what users are likely to want.

•For example, the developers of a login with Google feature may have implemented an opt-out default on 

registration so that users receive all emails from a company. They must expressly choose what type of 

emails that they don’t want.

•What might be preferred is an opt-in default so that users choose what types of email they do want to 

receive.

•Unit testing

•Feature testing

•System testing

•Release testing



Feature test
Example : User stories for the sign-in Google feature

⚫User registration

⚫As a user, I want to be able to login without creating a new account so that I don’t 

have to remember another login id and password.

⚫Information sharing

⚫As a user, I want to know what information you will share with other companies. I 

want to be able to cancel my registration if I don’t want to share this information.

⚫Email choice

⚫As a user, I want to be able to choose the types of email that I’ll get from you when 

I register for an account.

⚫

Guideline: Design a set of tests including valid and invalid inputs.

•Unit testing

•Feature testing

•System testing

•Release testing



Feature test
Example : Tests for the sign-in Google feature

Initial login screen

• Test that the screen displaying a request for Google account credentials is 

correctly displayed when a user clicks on the ‘Sign-in with Google’ link. 

• Test that the login is completed if the user is already logged in to Google.

⚫Incorrect credentials

• Test that the error message and retry screen is displayed if the user inputs 

incorrect Google credentials.

⚫Shared information

• Test that the information shared with Google is displayed, along with a cancel or 

confirm option.  

• Test that the registration is cancelled if the cancel option is chosen.

⚫Email opt-in

• Test that the user is offered a menu of options for email information and can 

choose multiple items to opt-in to emails. 

• Test that the user is not registered for any emails if no options are selected.

•Unit testing

•Feature testing

•System testing

•Release testing



Automated feature testing

Design the product so that its features can be directly accessed through an API.



The feature tests can access features directly through the API.

Benefits:

• Less expensive than to automated testing the GUI

• Possibility to re-implement the GUI without changing the functional 

components of the software.

Figure 9.6 Feature editing through an API

Ian Sommerville – Engineering Software 

Products

•Unit testing

•Feature testing

•System testing

•Release testing



System testing

System testing during development involves :

• integrating components to create a version of the system 

• testing the integrated system.

Obs. May involve testing an increment to be delivered to the customer.

⚫ Focus - testing the interactions between components. 

⚫ Check - components compatiblity, components interaction and 

correctness of data transfer (the right data at the right time across the 

interfaces). 

⚫ Test - the emergent behaviour and qualities of the system. 

•Unit testing

•Feature testing

•System testing

•Release testing



Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence 1 Test sequence 2 Test sequence 3

MINIMAL 

CONFIGURATION

IMPORTANT! : To simplify error localization,systems should be incrementally integrated.

•Unit testing

•Feature testing

•System testing

•Release testing



Regression testing

Software regression : software bug or quality altering, as a 
consequence of a software change.

⚫ Software regression testing - rerunning an existing set of tests.



⚫ When problems appear check for their source in:

• added increment of functionality.

• the previous increment.

Automated testing frameworks (ex. JUnit) allows automatically rerun of the 
tests. 

All tests are rerun every time a change is made to the program. 

Tests must run ‘successfully’ before the change is committed.

•Unit testing

•Feature testing

•System testing

•Release testing



System testing

System testing also implies testing the emergent behaviour and 

qualities of the system. 

• Testing to discover if there are unexpected and unwanted 

interactions between the features in a system.

• Testing to discover if the system features work together effectively 

to support what users really want to do with the system.

• Testing the system to make sure it operates in the expected way in 

the different environments where it will be used. 

• Testing the responsiveness, throughput, security and other quality 

attributes of the system. 

•Unit testing

•Feature testing

•System testing

•Release testing



Scenario-based testing

⚫To systematically test a system : 

• start with a set of scenarios that describe possible uses of the system 

• work through these scenarios each time a new version of the system is 

created.

⚫Using the scenario, identify a set of end-to-end pathways that 

users might follow when using the system.

⚫End-to-end pathway = sequence of actions from starting to use the 

system for the task, through to completion of the task.

•Unit testing

•Feature testing

•System testing

•Release testing



Scenario-based testing
Example : Choosing a holiday destination

⚫Andrew and Maria have a two year old son and a four month old daughter. They live in 

Scotland and they want to have a holiday in the sunshine. However, they are concerned 

about the hassle of flying with young children. They decide to try a family holiday planner 

product to help them choose a destination that is easy to get to and that fits in with their 

childrens’ routines.

⚫Maria navigates to the holiday planner website and selects the ‘find a destination’ page. 

This presents a screen with a number of options. She can choose a specific destination 

or can choose a departure airport and find all destinations that have direct flights from 

that airport. She can also input the time band that she’d prefer for flights, holiday dates 

and a maximum cost per person.

⚫Edinburgh is their closest departure airport. She chooses ‘find direct flights’. The system 

then presents a list of countries that have direct flights from Edinburgh and the days 

when these flights operate. She selects France, Italy, Portugal and Spain and requests 

further information about these flights. She then sets a filter to display flights that leave on 

a Saturday or Sunday after 7.30am and arrive before 6pm.

⚫She also sets the maximum acceptable cost for a flight. The list of flights is pruned 

according to the filter and is redisplayed. Maria then clicks on the flight she wants. This 

opens a tab in her browser showing a booking form for this flight on the airline’s website.

•Unit testing

•Feature testing

•System testing

•Release testing



Scenario-based testing
Example : End-to-end pathways

⚫1. User inputs departure airport and chooses to see only direct flights. 

User quits.

⚫2. User inputs departure airport and chooses to see all flights. User quits.

⚫3. User chooses destination country and chooses to see all flights. User 

quits.

⚫4. User inputs departure airport and chooses to see direct flights. User 

sets filter specifying departure times and prices. User quits.

⚫5. User inputs departure airport and chooses to see direct flights. User 

sets filter specifying departure times and prices. User selects a displayed 

flight and clicks through to airline website. User returns to holiday planner 

after booking flight.

•Unit testing

•Feature testing

•System testing

•Release testing



Automation of system testing

⚫System testing involves testing the system as a surrogate user.

⚫Actions involved :

• select items from menus, 

• make screen selections, 

• input information from the keyboard, etc.

⚫Objective

• find interactions between features that cause problems, 

• find sequences of actions that lead to system crashes, etc.

Manual system testing is boring and error-prone. 

In some cases, the timing of actions is important 

and is practically impossible to repeat consistently.

Specific testing tools can record a series of actions 

and automatically replay these when a system is retested.

Figure 9.7 Interaction recording and playback

Ian Sommerville – Engineering Software 

Products

•Unit testing

•Feature testing

•System testing

•Release testing



Release testing

⚫Release testing is a type of system testing where a system that’s intended for 

release to customers is tested.

⚫Fundamental differences between release testing and system testing:

• Release testing tests the system in its real operational environment rather than in a 

test environment. Problems commonly arise with real user data, which is sometimes 

more complex and less reliable than test data.

• The aim of release testing is to decide if the system is good enough to release, not to 

detect bugs in the system. Therefore, some tests that ‘fail’ may be ignored if these 

have minimal consequences for most users.

⚫Preparing a system for release involves :

• packaging that system for deployment (e.g. in a container if it is a cloud service)

• installing software and libraries that are used by the product

• defining configuration parameters (e.g. the name of a root directory, the database size limit 

per user, etc.).

•Unit testing

•Feature testing

•System testing

•Release testing



Formative evaluation

1. What do we need to consider when we design the software 

product, so that we can automatically and efficiently test its 

features ?

https://forms.gle/vjtYQAvpK8yC7eLM9

https://forms.gle/vjtYQAvpK8yC7eLM9


Topics covered

⚫ Verification and validation

⚫ Testing

⚫ Functional testing

⚫ Test-driven development

⚫ Quality testing



• Test-driven development (TDD) - approach to program development in which 

testing and code development are inter-leaved.

• Tests are written before code and ‘passing’ the tests is the critical driver of 

development. 

• The code is developed incrementally, along with a test for that increment. The 

next increment starts after the code of the current increment has passed its 

test. 

• TDD was introduced as part of agile methods such as Extreme Programming. 

However, it can also be used in plan-driven development processes. 

• Test-driven development works best for the development of individual program 

units and it is more difficult to apply to system testing.

• Even the strongest advocates of TDD accept that it is challenging to use this 

approach when developing and testing systems with graphical user interfaces.

Test-driven development



Identify new unit (part) of functionality

Break down the functionality required into smaller units. Choose one of these units 

for implementation.

Write unit tests

Write one or more automated tests for the unit chosen for implementation. The unit 

should pass these tests if it is properly implemented.

Write a code stub that will fail test

Write incomplete code that will be called to implement the unit. This will fail.

Run all existing automated tests

All previous tests should pass. The test for the incomplete code should fail.

Implement code that should cause the failing test to pass

Write code to implement the unit, which should cause it to operate correctly.

Rerun all automated tests

If any tests fail, the code is probably incorrect. Change it until all tests pass.

Refactor code

Look for ways of improving the code without changing its functionality. 

TDD process activities



⚫…

Test-driven process



⚫ Code coverage 

• Every written code segment has at least one associated test so 

all code written has at least one test.

⚫ Regression testing 

• A regression test suite is developed incrementally as a program 

is developed. 

⚫ Simplified debugging 

• When a test fails, it should be obvious where the problem lies. 

The newly written code needs to be checked and modified. 

⚫ System documentation 

• The tests themselves are a form of documentation that describe 

what the code should be doing. 

Benefits of TDD



TDD discourages radical program refactoring.

Developer tend to focus on the tests rather than the problem to be 

solved.

Too much time dedicated to implementation details rather than to the 

programming problem.

It is practically impossible to anticipate all of the data problems that might 

arise and write tests for these in advance.

Some problems with TDD



Topics covered

⚫ Verification and validation

⚫ Testing

⚫ Functional testing

⚫ Test-driven development

⚫ Quality testing



Performance testing

• Part of release testing may involve testing the emergent properties of 

a system, such as performance and reliability.

• Performance tests usually involve designing a series of tests where 

the load is steadily increased until the system performance becomes 

unacceptable.



Stress testing

⚫ Exercises the system beyond its maximum design load. 

⚫ Stressing the system often causes defects to come to light.

⚫ Stressing the system will test failure behaviour. Systems should not 

fail catastrophically. Stress testing checks for unacceptable loss of 

service or data.

⚫ Stress testing is particularly relevant to distributed systems that can 

exhibit severe degradation as a network becomes overloaded.



Security testing

Security testing aims to find vulnerabilities that may be exploited by an 

attacker and to provide convincing evidence that the system is 

sufficiently secure. 

The tests should demonstrate that the system can resist attacks like:

• malware injection 

• users’ data and identity corruption 

• users’ data and identity steal.

Comprehensive security testing requires specialist knowledge of software 

vulnerabilities and approaches to testing that can find these 

vulnerabilities. 



Risk-based security testing

A risk-based approach to security testing involves 

• identifying common risks 

• developing tests to demonstrate that the system protects itself from 

these risks. 

It may be possible to construct automated tests for some of these checks, 

but others inevitably involve manual checking of the system’s 

behaviour and its files.

Automated tools, that scan the system to check for known vulnerabilities 

(e.g. detect unused HTTP ports being left open), exist. 



Examples of security risks

• Unauthorized attacker gains access to a system using authorized 

credentials

• Authorized individual accesses resources that are forbidden to them

• Authentication system fails to detect unauthorized attacker

• Attacker gains access to database using SQL poisoning attack

• Improper management of HTTP session

• HTTP session cookies revealed to attacker

• Confidential data are unencrypted

• Encryption keys are leaked to potential attackers



Risk analysis and testing

1. Analyze identified risks to assess how they might arise. 

Example 

Risk : Unauthorized attacker gains access to a system using authorized 

credentials

Causes :

• The user has set weak passwords that can be guessed by an attacker.

• The system’s password file has been stolen and passwords 

discovered by attacker.

• The user has not set up two-factor authentication.

• An attacker has discovered credentials of a legitimate user through 

social engineering techniques.

2. Develop tests to check some of these possibilities. 

Example: A test to check that the code that allows users to set their 

passwords always checks the strength of passwords. 



Formative evaluation

1. Explain the process of TDD.

2. What is the difference between load testing and stress 

testing ?

3. Suppose it has been identified the risk that confidential data 

remain unencrypted. Analyze this risk to identify possible 

causes. Give examples of tests to check that this risk is 

avoided.

https://forms.gle/rbGXA5EkKyTy6tiP9

https://forms.gle/rbGXA5EkKyTy6tiP9


Key points (1)

V&V must be applied at each stage in the software process. Verification is 

concerned with the discovery of defects in a system and validation with 

the assessment of whether or not the system is useful and useable in an 

operational situation.

Software inspections (static V&V) implies analysis of the static system 

representation to discover problems. Software testing (dynamic V&V) 

implies executing a program using artificial data and observing its 

behaviour. 

Both software functionality and software qualities must be tested.

Testing stages are : unit testing, feature testing, system testing, release 

testing and user testing.

Unit testing involves testing program units such as functions or class 

methods that have a single responsibility. Feature testing focuses on 

testing individual system features. System testing tests the system as a 

whole to check for unwanted interactions between features and between 

the system and its environment.



Key points (2)

Identifying equivalence partitions, in which all inputs have the same 

characteristics, and choosing test inputs at the boundaries of these 

partitions, is an effective way of finding bugs in a program.

User stories may be used as a basis for deriving feature tests.

Test automation is based on the idea that tests should be executable. 

Wherever possible, write automated tests. The tests are embedded in a 

program that can be run every time a change is made to a system.

Test-driven development is an approach to development where executable 

tests are written before the code. Code is then developed to pass the 

tests.

Performance tests involve steadily increased load until the system 

performance becomes unacceptable, while stress testing exercises the 

system beyond its maximum design load to test failure behaviour. 

Security testing may be risk driven where a list of security risks is used to 

identify tests that may identify system vulnerabilities.


