
Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 1

Software Engineering - Lecture 6

Software Design

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 2

Objectives

⚫ To present the basic activities of an object oriented design process.

⚫ To present the different models that may be used to document an

object-oriented design;

⚫ To explain the benefits of software reuse and some reuse problems.

⚫ To explain how reusable concepts can be represented as patterns.

⚫ To explain the concept of application framework as a set of reusable
objects and how frameworks can be used in application development.

⚫ To introduce software product lines, which are made of a common
architecture and configurable, reusable components.

⚫ To discuss COTS(commercial off-the-shelf) systems reuse by
configuring and composing them.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 3

Design

⚫ Design – creative activity to identify software components

and their relationships, based on customer’s requirements.

The result is the design model of the software to be

developed.

⚫ Implementation – process of realizing the design as a

program.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 4

Design

UML diagrams: - proper documentation for OO design

OBS: When developing a design, implementation issues are taken into

account.

Special approaches :

In agile methods - informal sketches of the design; leave many design

decisions to programmers.

In COTS based applications - the design process becomes concerned

with how to use the configuration features of COTS system to

deliver the requirements of the system to be developed.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 5

Object-oriented development

Object-oriented analysis, design and programming are related but distinct.

⚫ OOA (OO analysis) is concerned with developing an object model of the application

domain. (problem space).

⚫ OOD (OO design) is concerned with developing an object-oriented system model to

realize the requirements. (solution space).

⚫ OOP (OO programming) is concerned with implementing an OOD using an OO

programming language such as Java or C++.

An OO software design is represented as a set of interacting objects that manage their

own state and operations.

⚫ Design is developed following an object-oriented design process.

⚫ Various models can be used to describe an object-oriented design.

⚫ UML may be used to represent these models.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 6

Object oriented design (OOD)

Characteristics of OOD

⚫ Objects are abstractions of real-world or of system entities and manage themselves.

⚫ Objects are independent and encapsulate state and representation information.

⚫ System functionality is expressed in terms of object services.

⚫ Objects communicate by message passing.

⚫ Objects may be distributed and may execute sequentially or in parallel.

Advantages of OOD

Encapsulation (hiding information inside objects) means that changes made to an object do

not affect other objects in an unpredictable way.

⚫ Easier maintenance: objects may be understood as stand-alone entities.

⚫ Objects are potentially reusable components.

⚫ strong support for software evolution.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 7

Interacting objects

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 8

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 9

Objects and object classes

⚫ Objects are entities in a software system which represent instances of

real-world and of system entities.

⚫ Object classes are templates for objects. They may be used to create

objects.

⚫ Object classes may inherit attributes and services from other object

classes.

An object is an entity that has a state and a defined set of operations which

operate on that state. The state is represented as a set of object attributes.

The operations associated with the object provide services to other objects

(clients) which request these services when some computation is required.

Objects are created according to some object class definition. An object class

definition serves as a template for objects. It includes declarations of all the

attributes and services which should be associated with an object of that

class, and also the implementations of these services.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 10

Example: Employee object class (UML)

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 11

Object communication

Conceptually, objects communicate by message passing.

⚫ Messages content:

• The name of the service requested by the calling object;

• Copies of the information required to execute the service

• The name of a holder for the result of the service.

⚫ In practice, messages are often implemented by operation calls

• name = operation name;

• information = parameter/arguments list;

• holder = return variable

Examples:

Call a method associated with a buffer object that returns the next value in the buffer

v = circularBuffer.get () ;

Call the method associated with thermostat object that sets the temperature to be maintained

thermostat.setTemp (20) ;

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 12

Generalization and inheritance

Objects are instances (members) of classes.

⚫ Classes define attribute types and operations.

⚫ Classes may be arranged in a class hierarchy where one class (a super-class) is a

generalization of one or more other classes (sub-classes).

⚫ A sub-class inherits the attributes and operations from its super class and may add

new operations and attributes of its own.

⚫ Generalization relationship in the UML coresponds, in OO programming languages,

with the relation between a superclass and its subclasses, having inheritance as

property.

• Generalization is an abstraction mechanism which may be used to classify entities.

• Inheritance is a reuse mechanism at both

• the design level

• the programming level.

The inheritance graph is a source of organizational knowledge about domains and

systems.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 13

Example: A generalization hierarchy

class ProjectManager extends Manager {...}

class DeptManager extends Manager {...}

class StrategicManager extends Manager {...}

class Manager extends Employee {...}

class Programmer extends Employee {...}

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 14

Realization and implementation

Interface = specification of a set of operations, containing their signatures and

semantics.

⚫ Interfaces specify the signatures of the operations: operation name, ordered

parameter list including parameter types, return type.

⚫ Classes may implement one or more interfaces defining the implementation of the

operations specified in these interfaces.

⚫ Realization relationship in UML coresponds to the interface implementation in OO

languages.

Hiding implementation behind interfaces and program to interfaces means

that changes made to an object do not affect other objects in an

unpredictable way.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 15

Example : Realization and implementation

class DVDPlayer implements Player {

public void play(){...}

...

}

class CDPlayer implements Player {...}

class TapePlayer implements Player {...}

interface Player {

public void play();

public void stop();

public void pause();

public void reverse();

}

Program to an interface

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 16

UML associations

⚫ Objects and object classes participate in relationships with other

objects and object classes.

⚫ In the UML, a general relationship is indicated by an association.

⚫ Associations may be annotated with information that describes the

association.

⚫ Associations indicate that an object has attributes which are

references to associated objects.

class Employee {

private Department dep;

private Manager boss;

...

}

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 17

Example: object aggregation

A particular association is aggregation, with its strong version, composition.

class Assignment {

private int percent;

private Collection<Exercise> exercises;

private Collection<Solution> solutions;

private StudyPack myStudyPack;

...

}

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 18

Concurrent objects

Server and active objects

⚫ The nature of objects as self-contained entities make them suitable

for implementation of concurrecy.

⚫ The message-passing model of object communication can be

implemented directly if objects are running on separate processors

in a distributed system.

Server object

⚫ The object is implemented as a parallel process (server) with entry points

corresponding to object operations. If no calls are made to it, the object

suspends itself and waits for further requests for service.

Active object

⚫ The object is implemented as parallel process and the internal object state

may be changed either by internal operations executing within the object itself

or by external calls. The process representing the object continually executes

these operations, so it never suspends itself.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 19

Example of active object : Transponder

Active objects may have their attributes modified by external calls to

operations but may also update them autonomously using internal

operations.

Example: A Transponder object broadcasts an aircraft’s position. The position may

be updated using a satellite positioning system. The object periodically

updates the position by triangulation from satellites.

class Transponder extends Thread {

Position currentPosition ;

Coords c1, c2 ;

Satellite sat1, sat2 ;

Navigator theNavigator ;

public Position givePosition () {return currentPosition ;}

public void run () {

while (true) {

c1 = sat1.position () ;

c2 = sat2.position () ;

currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

⚫Threads in Java are a simple construct for implementing

concurrent objects.

⚫Threads must include a method called run() and

this is started up by the Java run-time environment.

⚫Active objects typically include an infinite loop so that

they are always carrying out the computation.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 20

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 21

An object-oriented design process

⚫ Knowing the UML is not enough –a process is needed to realize OO

design.

⚫ The UML provides/defines many different types of diagrams, but really

does not provide any guidance on where in a process they should be

used.

Just learning the UML to learn object-oriented analysis and design would be like

learning the English dictionary to learn the English language.

• Structured design processes involve developing a number of different

system models.

• A lot of effort is required for development and maintenance of these

models and, for small systems, this may not be cost-effective.

• However, for large systems developed by different groups, design models

are an essential communication mechanism.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 22

System context

and models of use

Develop an understanding of the relationships between the software

being designed and its external environment.

⚫ System context (structure)

• A static model that describes other systems in the environment.

⚫ Model of system use (interactions)

• A dynamic model that describes how the system interacts with its

environment.

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 23

Architectural design

Once interactions between the system and its environment have been understood,

this information is used for designing the system architecture.

Activities implied:

⚫ Identify major components that make up the system and their

interactions.

⚫ Organize the components using architectural styles (ex. layered,

client-server,…).

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 24

Object identification

⚫ Identifying objects (or object classes) is the most difficult part of

object oriented design.

⚫ There is no 'magic formula' for object identification. It relies on the

skill, experience and domain knowledge of system designers.

⚫ Object identification is an iterative process. You are unlikely to get it

right first time.

⚫ Domain knowledge is used to identify:

• Objects

• Attributes

• Services

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 25

Approaches to

objects identification

⚫ Use a grammatical approach based on a natural language description of the

system (used in Hood OOD method).

⚫ Base the identification on tangible things in the application domain.

⚫ Use a behavioural approach and identify objects based on what participates

in what behaviour.

⚫ Use a scenario-based analysis. The objects, attributes and methods in each

scenario are identified.

⚫ Use domain knowledge to identify more objects and operations.

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 26

Design models

Design models show the objects and object classes and relationships

between these entities.

⚫ Static models describe the static structure of the system in terms

of object classes and relationships (class models).

⚫ Dynamic models describe the dynamic interactions between

objects, and their response to events.

Examples of design models:
• System - subsystem models that show logical groupings of objects into

coherent subsystems.

• Sequence models that show the sequence of object interactions.

• State machine models that show how individual objects change their state in

response to events.

• Other models include use-case models, aggregation models, generalization

models, etc.

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 27

Object interface specification

Object interface specification = definition for the services provided

through the interface (their signatures and semantics).

⚫ Object interfaces have to be specified so that the objects and

other components can be designed in parallel.

⚫ Objects may have several interfaces which are viewpoints on the

methods provided.

⚫ A group of objects may be accessed through the same interface.

UML uses class diagrams to represent interfaces.

• Classes are stereotyped with <<interface >> and do not have attributes compartment.

An alternative approach is to use a programming language to describe interfaces.

• The advantage is given by syntax-checking facilities in the compiler.

Semantics may be defined using OCL (Object Constraint Language).

•Define the context and modes of use of the system;

•Design the system architecture;

•Identify the principal system objects;

•Develop design models;

•Specify object interfaces.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 28

Formative evaluation

1. Explain why specifying object interfaces allows objects and other

components to be designed in parallel.

2. Which are the main results obtained during an object-oriented design

process ?

https://forms.gle/P1zpKNw2YPnbN1VT8

https://forms.gle/P1zpKNw2YPnbN1VT8

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 29

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 30

Software reuse

⚫ In most engineering disciplines, systems are designed by

composing existing components that have been used in other

systems.

⚫ Software engineering has been more focused on original

development but it is now recognised that to achieve better

software, more quickly and at lower cost, we need to adopt a

design process that is based on systematic software reuse.

Obs. There has been a major switch to reuse-based development.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 31

Software reuse

Reuse is possible at a range of granularity levels, from simple

functions to complete application systems.

⚫ Application system reuse
A whole application system reused either by incorporating it without change into other systems

(COTS reuse) or by developing application families (SPL).

⚫ Component reuse
Components - collections of objects and object classes that operate together to provide related

functions and services, often found in frameworks - are reused.

⚫ Object and function reuse
Software components that implement a single well-defined object or function, available in

libraries, may be reused.

Reuse is possible at a range of abstraction levels, from concrete

entities (functions, classes, components, applications) to concepts.

⚫ Concept (model) reuse
Patterns: knowledge of successful abstractions in the design of the software

• design patterns,

• architectural patterns.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 32

Reuse benefits

Benefit Explanation

Lower
development
costs

Development costs are proportional to the size of the software being
developed. Reusing software means that fewer lines of code have to be
written.

Increased
dependability

Reused software, which has been tried and tested in working systems,
should be more dependable than new software. Its design and
implementation faults should have been found and fixed.

Reduced
process risk

The cost of existing software is already known, whereas the costs of
development are always a matter of judgment. This is an important factor
for project management because it reduces the margin of error in project
cost estimation. This is particularly true when relatively large software
components such as subsystems are reused.

Effective use of
specialists

Instead of doing the same work over and over again, application specialists
can develop reusable software that encapsulates their knowledge.

Standards
compliance

Some standards, such as user interface standards, can be implemented as
a set of standard reusable components. For example, if menus in a user
interface are implemented using reusable components, all applications
present the same menu formats to users. The use of standard user
interfaces improves dependability because users make fewer mistakes
when presented with a familiar interface.

Accelerated
development

Bringing a system to market as early as possible is often more important
than overall development costs. Reusing software can speed up system
production because both development and validation time may be reduced.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 33

Reuse problems

Problem Explanation

Increased maintenance
costs

If the source code of a reused software system or component is not
available then maintenance costs may be higher because the
reused elements of the system may become increasingly
incompatible with system changes.

Lack of tool support Some software tools do not support development with reuse. It
may be difficult or impossible to integrate these tools with a
component library system. The software process assumed by
these tools may not take reuse into account. This is particularly true
for tools that support embedded systems engineering, less so for
object-oriented development tools.

Not-invented-here
syndrome

Some software engineers prefer to rewrite components because
they believe they can improve on them. This is partly to do with
trust and partly to do with the fact that writing original software is
seen as more challenging than reusing other people’s software.

Creating, maintaining,
and using a component
library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Development
processes have to be adapted to ensure that the library is used.

Finding,
understanding, and
adapting reusable
components

Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of finding a
component in the library before they include a component search
as part of their normal development process.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 34

The reuse costs

Reusing software imply costs for:

⚫ looking for reusable software and testing it in the current
environment

⚫ if applicable, buying reusable software

⚫ adapting and configuring for the current requirements

⚫ integrating

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 35

The reuse landscape

A range of possible reuse techniques.

Design patterns Architectural patterns

Application

frameworks

Software product lines/

Configurable vertical

applications

COTS integration /

ERP systems

Component-based

software engineering

Model-driven

engineering

Service-oriented

systems

Program

librariesProgram

generators

Aspect-oriented

software development

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 36

Approach Description

Architectural
patterns

Standard software architectures that support common types
of application systems are used as the basis for application
design.

Design patterns Generic abstractions that occur across applications are
represented as design patterns showing abstract and
concrete objects and interactions.

Component-based
development

Systems are developed by integrating components
(collections of objects) that generally conform to component-
model standards.

Application
frameworks

Collections of abstract and concrete classes are adapted and
extended to create application systems.

Legacy system
wrapping

Legacy systems are ‘wrapped’ by defining a set of interfaces
and providing access to these legacy systems through these
interfaces.

Reuse approaches (1)

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 37

Reuse approaches (2)

Approach Description

Service-oriented
systems

Systems are developed by linking shared services,
which may be externally provided.

Software product
lines

An application type is generalized around a common
architecture so that it can be adapted for different
customers.

COTS product reuse Systems are developed by configuring and integrating
existing application systems.

ERP systems Large-scale systems that encapsulate generic business
functionality and rules are configured for an
organization.

Configurable vertical
applications

Generic systems are designed so that they can be
configured to the needs of specific system customers.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 38

Reuse approaches (3)

Approach Description

Program libraries Class and function libraries that implement commonly
used abstractions are available for reuse.

Model-driven
engineering

Software is represented as domain models and
implementation independent models and then code is
generated from these models.

Program generators A generator system embeds knowledge of a type of
application and is used to generate systems in that
domain from a user-supplied system model.

Aspect-oriented
software development

Shared components are woven into an application at
different places when the program is compiled.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 39

Reuse planning factors

⚫ The development schedule for the software.
Granularity of reuse depends on the time available for development.

⚫ The expected software lifetime.
Focus on maintenability for a long-lifetime systems avoid external suppliers.

⚫ The background, skills and experience of the development team.
Reuse technologies are complex need time to understand and use them effectively.

Focus on area where team members have skills.

⚫ The criticality of the software and its non-functional requirements.
Access to source code is needed in critical software. Also performance requirements

impose efficient code (which can not be produced by program generators).

⚫ The application domain.
Generic products exist for some application domains (ex. manufacturing, medical,

accounting).

⚫ The execution platform for the software.
Component models or generic products must be used on the platform(s) they are

developped for (ex. ActiveX components on Microsoft platform).

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 40

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Seminal book :

Design Patterns: Elements of

Reusable Object-Oriented

Software

by Erich Gamma, Richard Helm,

Ralph Johnson and John

Vlissides

often referred to as the Gang of

Four, or GoF .

http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/w/index.php?title=Richard_Helm&action=edit&redlink=1
http://en.wikipedia.org/wiki/Ralph_Johnson_%28computer_scientist%29
http://en.wikipedia.org/wiki/John_Vlissides

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 41

Design patterns

⚫ Design patterns and architectural patterns (styles) are examples of

concept reuse.

⚫ A design pattern is a way of reusing abstract knowledge about a

problem and its solution.

⚫ A pattern is a description of the problem and the essence of its

solution.

⚫ It should be sufficiently abstract to be reused in different settings.

⚫ Patterns often rely on object characteristics such as inheritance and

polymorphism.
Elements of the pattern:

⚫ Name : A meaningful pattern identifier.

⚫ Problem description.

⚫ Solution description.

• Not a concrete design, but a template for a design solution

that can be instantiated in different ways.

⚫ Consequences : The results and trade-offs of applying the pattern.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 42

Observer pattern

Excerpt from the

design patterns

catalogue.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 43

Observer pattern

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 44

Examples : Multiple displays

Figure 8.7 List view and tree view

Ian Sommerville – Engineering Software Products

Pie graph and bar graph

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 45

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 46

Application frameworks

⚫ Application framework is a software structure made up of:

• a collection of abstract and concrete classes

• the interfaces between them.

⚫ Any framework has a default behaviour that can not be changed

⚫ An application is implemented by:

• adding components to fill in parts of the design

• extending the abstract classes in the framework.

• adding handlers for events that are recognised by the framework.

⚫ Frameworks are moderately large entities that can be reused.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 47

Web application frameworks (WAF)

⚫ Support construction of dynamic web sites as a front-end for web

applications.

⚫ WAF – available for all of the commonly used web programming

languages (Java, Python, Ruby, etc.)

⚫ Interaction model is based on the Model-View-Controller composed

pattern.

MVC - System infrastructure framework for GUI–based applications.

⚫ Allows for :

• multiple presentations of an object

• separate interactions with these presentations.

⚫ MVC framework involves the instantiation of a number of design

patterns: Observer, Strategy, Composite.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 48

Model-view-controller

User Gestures

View Selection

Change Notification

State Change

State Query

Events

Method invocations

Model

-Encapsulates application state.

-Responds to state queries

-Exposes application functionality

-Notifies views about changes

Controller

-Defines application behaviour

-Maps user actions to model updates

-Selects view for response

-One for each functionality

View

-Renders the models

-Requests updates from models

-Sends user gestures to controller

-Allows controller to select view

⚫Decouples views and model allows multiple presentations of an object.

⚫Establishes a subscribe / notify protocol between them keeps the

presentations synchronized with the model.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 49

Web application architecture using the MVC pattern

Ch6 Architectural design.ppt

Ian Sommerville – Software Engineering, ed.10

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 50

WAF features

⚫ Security
WAF may include classes to help implement user authentication (login) and access.

⚫ Dynamic web pages
Classes are provided to help in defining web page templates and to populate these

dynamically from the system database or other data sources.

⚫ Database support
The framework may provide classes to provide an abstract interface to different

databases.

⚫ Session management
Classes to create and manage sessions (a number of interactions with the system by a user)

are usually part of WAF.

⚫ User interaction
Most web frameworks now provide AJAX support (Holdener, 2008), which allows efficient

interactive web pages to be created.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 51

Extending frameworks

⚫ Frameworks are generic and must be extended to create a

more specific application or sub-system. They provide a

skeleton architecture and behaviour for the system.

⚫ Extending the framework involves

• Adding concrete classes that inherit from abstract classes in the

framework and implement the abstract methods and interfaces;

• Adding methods that are called in response to events that are

recognised by the framework.

• Adding new components, in predifined locations of the

framework, to fill in parts of the design.

Problem with frameworks is their complexity, which means that it takes a

long time to use them effectively.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 52

Application specific classes

Inversion of control (IoC) in frameworks

Callback – method called in response to events recognized by the framework.

Application responds

to the event

in a specific way.

GUI Event

loop

Platform Event

loop

Database Event

loop

callback

callback

callback

call

call call

Event hander

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 53

Formative evaluation

1. Consider an application to be developed using an application

framework. What will be reused by the application and what the

application needs to add ?

https://forms.gle/Gh4Z2mGfyQKu6CET8

https://forms.gle/Gh4Z2mGfyQKu6CET8

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 54

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 55

Software product lines

Def.1 Software product line = a set of applications with a common architecture

and shared components, with each application specialized to fulfill different

requirements in a specific domain.

Def.2 Software product line = a set of software-intensive systems that share a

common, managed set of features satisfying the specific needs of a particular

market segment or mission and that are developed from a common set of core

assets in a prescribed way.

Software product lines (or application families) are applications with generic

functionality that can be adapted and configured for use in a specific

context.

⚫ Adaptation may involve:

• Component and system configuration;

• Adding new components to the system;

• Selecting from a library of existing components;

• Modifying components to meet new requirements.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 56

Specialized application components

• Specialized, domain-specific components some or all of

which may be replaced when a new instance of a product

line is created.

Configurable components

• Modifyed and configured to specialize

them to a new application.

Component categories for a software product line

Core components
•Provide infrastructure support.

•Usually not modified when

developing a new instance of

the product line.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 57

Application frameworks (AF) and product lines (SPL)

Application frameworks Software product lines

Rely on object-oriented features

such as polymorphism to

implement extensions.

Need not be object-oriented (ex.

embedded software for a mobile

phone).

Focus on providing technical

support rather than domain-

specific support.

Embed domain and platform

information

Different types of applications. (often) Control applications for

equipment.

Different applications, developed

by different companies.

Made up of a family of

applications, usually owned by

the same organization.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 58

Example:
a generic resource management system

Information system structure

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 59

Example:
A product line for vehicle dispatching

The product line for vehicle dispatching :

specialised resource management system where the

aim is to allocate resources (vehicles) to handle incidents.

⚫ Specialization includes:

• At the UI level, there are components for operator display and

communications;

• At the I/O management level, there are components that handle

authentication, reporting and route planning;

• At the resource management level, there are components for

vehicle location and dispatch, managing vehicle status and incident

logging;

• The database includes equipment, vehicle and map databases.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 60

Example:
A vehicle dispatching system family architecture

Generic

architecture

Specialization of the

generic architecture

User interface Comms system interface

Operator

auth.

Report

generator

Map& route

planner

Query

manager

Vehicle

status

manager

Incident

logger

Equipment

manager

Vehicle

dispatcher

Vehicle

locator

Equipment

database

Transactions management

Vehicle database

Incident log

Map DB

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 61

Product instance development
(ex. for police, fire or ambulance service)

Elicit
stakeholder
requirements

Chose

closest-fit

family

member Deliver new

family member

Renegotiate

requirements

Adapt existing

system

Use an existing family

member as a prototype.

Find the family member

that best meets the

requirements.

Adapt requirements to minimise

the changes needed.

Develop new modules

and make changes to

the family member.

Document key features,

useful in further

development of new

members.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 62

Software product configuration

⚫ Design time configuration

• A common product line core is adapted and changed according to

the requirements of particular customers.

• Involves changing and extending the source code flexibility.

⚫ Deployment time configuration

• A generic system is configured by embedding knowledge of the

customer’s requirements and business processes.

• A configuration tool is used to record the configuration in a

configuration database or in a set of configuration files.

• The code is not changed.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 63

Design time configuration

⚫ Generic products usually emerge after experience with specific

products.

⚫ Design-time configuration may start with an existing product

instance or with a generic system.

⚫ Software product lines that are configured at design time are

instantiations and specializations of generic application

architectures.

⚫ Architectures must be structured in such a way:

• to separate different sub-systems

• to allow them to be modified.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 64

Deployment time configuration

⚫ Component selection - select the

modules in a system that provide the

required functionality.

⚫ Workflow and rule definition - define

workflows (how information is

processed, stage-by-stage) and

validation rules that should apply to

information entered by users or

generated by the system.

⚫ Parameter definition - specify the

values of specific system

parameters that reflect the instance

of the application to be created.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 65

Topics covered

⚫ Objects and object classes

⚫ An object-oriented design process

⚫ Design with reuse

The reuse landscape

Design patterns

Application frameworks

Software product lines

COTS product reuse

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 66

Application system reuse

Involves the reuse of entire application systems

either by

• configuring a system for an environment
or by

• integrating two or more systems to

create a new application.

COTS - Commercial Off-The-Shelf systems.

⚫ COTS systems are usually complete application
systems that offer an API (Application
Programming Interface).

⚫ COTS systems have generic features and can be
adapted for different customers by deployment
time configuration (without changing the source code).

⚫ Usually contain built-in configuration mechanisms.

Examples of COTS

products

⚫ Database managers

⚫ Image processors

⚫ Graphics and charting

components

⚫ Internet communication

components

⚫ Security and encryption

components

⚫ Spreadsheet tools

⚫ Text processing tools

⚫ GUI controls

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 67

Benefits of COTS reuse

⚫ More rapid deployment of a reliable system may be possible.

⚫ Visible provided functionality makes it easier to judge whether or

not they are likely to be suitable.

⚫ Some development risks are avoided by using existing software.

However, this approach has its own risks.

⚫ Businesses can focus on their core activity without having to

devote a lot of resources to IT systems development.

⚫ As operating platforms evolve, technology updates may be

simplified as these are the responsibility of the COTS product

vendor rather than the customer.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 68

Problems of COTS reuse

⚫ Requirements usually have to be adapted to reflect the functionality

and mode of operation of the COTS product.

⚫ The COTS product may be based on assumptions that are

practically impossible to change.

⚫ Choosing the right COTS system for an enterprise can be a difficult

process, especially as many COTS products are not well

documented.

⚫ There may be a lack of local expertise to support systems

development.

⚫ The COTS product vendor controls system support and evolution.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 69

COTS-solution and COTS-integrated

systems

COTS-solution systems COTS-integrated systems

Single product that provides the
functionality required by a customer

Several heterogeneous system products
are integrated to provide customized
functionality

Based around a generic solution and
standardized processes

Flexible solutions may be developed for
customer processes

Development focus is on system
configuration

Development focus is on system
integration

System vendor is responsible for
maintenance

System owner is responsible for
maintenance

System vendor provides the platform for
the system

System owner provides the platform for
the system

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 70

COTS-solution systems

⚫ COTS-solution systems are generic application systems that may be

designed to support a particular business type, business activity or,

sometimes, a complete business enterprise.

⚫ Domain-specific COTS-solution systems, such as systems to support

a business function (e.g. document management) provide functionality

that is likely to be required by a range of potential users.

⚫ Example:

Enterprise Resource Planning (ERP) system = generic (large scale,

integrated) system that supports common business processes (such as ordering

and invoicing, manufacturing, etc).

• very widely used in large companies

• Examples of ERP systems : SAP ERP (SAP SA) or BEA (Oracle).

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 71

ERP architecture

The generic core: infrastructure framework plus modules to be

composed.

⚫ A number of modules to support different business functions.

⚫ A defined set of business processes, associated with each module,

which relate to activities in that module.

⚫ A common database that maintains information about all related

business functions.

⚫ A set of business rules that apply to all data in the database.

The generic core is adapted by configuration, specifying:

• included modules

• incorporated knowledge of business processes and rules.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 72

ERP configuration

⚫ Selecting the required functionality for the system (modules).

⚫ Establishing a data model that defines how the organization’s

data will be structured in the system database.

⚫ Defining business rules that apply to that data.

⚫ Defining the expected interactions with external systems.

⚫ Designing the input forms and the output reports generated by

the system.

⚫ Designing new business processes that conform to the

underlying process model supported by the system.

⚫ Setting parameters that define how the system is deployed on

its underlying platform.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 73

COTS-integrated systems

Client

Web browser E-mail system

Server

E-commerce

system
Ordering and

invoicing system

E-mail system

Adaptor

Adaptor

Existing

system

COTSCOTS

COTS

COTS

Format for orders,

deliveries, payment, etc.

Convert notification

into e-mail messages.

⚫ COTS-integrated systems

are applications that include

two or more COTS products

and/or legacy application

systems.

⚫ Applicable when there is no

single COTS system that

meets all application needs

or when a new COTS

product will be integrated

with systems already in use

and/or with subsystems to

be developed.

Example: E-procurement system

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 74

Service-oriented COTS interfaces

⚫ COTS integration can be simplified if a service-oriented approach is used.

⚫ A service-oriented approach means allowing access to the application

system’s functionality through a standard service interface, with a service for

each discrete unit of functionality.

⚫ Some applications may offer a service interface.

⚫ For other applications this service interface has to be implemented by the

system integrator.

Service wrapper

• hides the application and

provides externally visible services.

• allows access to the application

system’s functionality through a

standard service interface, with a

service for each discrete unit of

functionality.

Application

System

Services Services

Service wrapper

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 75

COTS system integration problems

⚫ Lack of control over functionality and performance

• COTS systems may be less effective than they appear.

⚫ Problems with COTS system inter-operability

• Different COTS systems may make different assumptions, that
means integration is difficult.

⚫ No control over system evolution

• COTS vendors, not system users, control evolution.

⚫ Support from COTS vendors

• COTS vendors may not offer support over the lifetime of the
product.

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 76

Formative evaluation

1. One benefit of reusing COTS systems is avoding some development

risks by using existing software. What risks are nevertheless

introduced by this approach ?

https://forms.gle/fhzSVBrFDDuc3Ch47

https://forms.gle/fhzSVBrFDDuc3Ch47

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 77

⚫ OOD is an approach to design so that design components have their own

private state and operations.

⚫ Objects provide services to other objects.

⚫ Objects may be implemented sequentially or concurrently.

⚫ UML provides different notations for defining different object models.

⚫ A range of different models may be produced during an object-oriented

design process. These include static and dynamic system models.

⚫ The basic activities in the OO design process are:

• Define the context and modes of use of the system;

• Design the system architecture;

• Identify the principal system objects;

• Develop design models;

• Specify object interfaces.

⚫ Object-oriented design potentially simplifies system evolution.

Key points

Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 16 Slide 78

⚫ Advantages of reuse are lower costs, faster software development

and lower risks.

⚫ Design patterns are high-level abstractions that document successful

design solutions.

⚫ Application frameworks are collections of concrete and abstract

classes that are designed for reuse through specialisation.

⚫ Software product lines are related applications developed around a

common core of shared functionality.

⚫ COTS product reuse - reuse of large, off-the-shelf systems.

⚫ Problems with COTS reuse include lack of control over functionality,

performance, evolution and problems with inter-operation.

⚫ ERP systems are created by configuring a generic system with

information about a customer’s business.

Key points

