
Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Software Engineering – Lecture 5

Architectural Design

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Topics covered

⚫ Software architecture

⚫ Architectural design

⚫ Architectural styles

⚫ Architectures for software products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Software design

Def. Design = the process of transforming the requirements in design.

Architectural design – developing an abstract high-level model of the

system.

⚫ An early stage of the system design process.

⚫ Represents the link between specification process and design process.

⚫ Often carried out in parallel with some specification activities.

⚫ Involves identifying major system components and their communications.

Detailed design – decomposing and refining the components of the

architecture.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Software architecture

Def. A software architecture for a system is the set of structures needed to

reason about the system, which comprise software elements, relations

among them, and external visible properties of both.

(Bass, Clements, and Kazman)

Def. Architecture is the fundamental organization of a software system

embodied in its components, their relationships to each other and to the

environment, and the principles guiding its design and evolution.

(IEEE definition of software architecture)

‘architecture’ as a noun - the structure of a system

‘architecture’ to be a verb - the process of defining these structures.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Software architecture and components

Component = element that implements a coherent set of functionality or

features.

Provides a collection of one or more services that may be used by

other components.

Designing software architecture  design the component interface (and

leave the implementation of that interface to a later stage of the development process).

Figure 4.1 Access to services provided by software components

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Advantages of explicit architecture

⚫ Stakeholder communication

Architecture may be used as a focus of discussion by

system stakeholders.

⚫ System analysis

Allows analyses of whether the system can meet its

extra-functional requirements.

⚫ Large-scale reuse

The architecture may be reusable across a range of

systems.

Product-line architectures may be developed.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architecture and quality attributes

Any software system has a software architecture (even it has not

been deliberately designed).

The simplest system is made of one element in relation to

itself.

Software architecture fulfills functional requirements an also

promotes quality attributes.

Software architecture is critical in obtaining the quality

attributes.

Architecture design is driven mainly by the requirements for

quality attributes.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Quality attributes : examples

⚫ Responsiveness - The system return results to users in a reasonable

time.

⚫ Reliability – The system features behave as expected by both

developers and users.

⚫ Availability - The system delivers its services when requested by

users.

⚫ Security - The system protect itself and users’ data from unauthorized

attacks and intrusions.

⚫ Usability - System users can access the features that they need and

use them quickly and without errors.

⚫ Maintainability - The system can be readily updated and new features

added without undue costs.

⚫ Resilience - The system can continue to deliver user services in the

event of partial failure or external attack.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural solutions for quality attributes

⚫ Security

Use a layered architecture with critical assets in the inner layers.

An attacker has to penetrate all of those layers before the system is compromised.

⚫ Layers might include system authentication layers, a separate critical feature

authentication layer, an encryption layer and so on.

⚫ Each layer is a separate component so that if one of these components is compromised

by an attacker, then the other layers remain intact.

Figure 4.5 Authentication layers

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural solutions for quality attributes

⚫ Security discussion :

⚫ Security architecture with centralized information:

• easier to design and build protection

• protected information can be accessed more efficiently.

⚫ security breached  everything is lost.

⚫ Security architecture with distributed information:

• costs more to protect it

• takes longer to access all of the information

⚫ security breached  only the information stored in one location is lost.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural solutions for quality attributes

⚫ Safety

Isolate safety-critical features in a small number of sub-systems.

⚫ Availability

Include redundant components and mechanisms for fault tolerance.

⚫ Performance

Localize critical operations and minimize communications. Implies use

of large-grain components (rather than fine-grain ones).

⚫ Maintainability

Use fine-grain, replaceable components.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural conflicts

Architectural conflict appears when two quality attributes are in

tension, meaning increasing one results in decreasing the other.

Examples.

• Using large-grain components improves performance but reduces

maintainability.

• Introducing redundant data improves availability but makes security more

difficult.

• Localising safety-related features usually means more communication,

resulting into degraded performance.



Architectural design implies a series of decisions in order to realize

the best trade-off in fulfilling quality requirements.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Maintainability and performance

⚫Example v.1:

• C1 runs slowly because it has to

reorganize the information in the

database before using it.

• The only way to make C1 faster might

be to change the database.



• C2 also has to be changed

However

• Its response time may, potentially, be

affected.

Figure 4.2 Shared database architecture

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Maintainability and performance

Example v.2:

⚫Each component has its own copy of the

parts of the database that it needs.



⚫If one component needs to change the

database organization, this does not affect

the other component.

BUT

⚫Component C3 is needed to ensure that the

data shared by C1 and C2 is kept consistent

when it is changed.

However

⚫A multi-database architecture may run more

slowly and may cost more to implement and

change.

Figure 4.3 Multiple database architecture

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Trade off: Maintainability vs performance

Trade-off

Example: Number of components

Maintainability = difficulty and the cost

of changes after system release.

⚫Performance = response

time at service request

Architectural solution :

-Decomposition into fine-grain,

replaceable components.

Consequence :

-Inter-component communication time.

⚫Consequence :

⚫-Slow response 

⚫-Reduced performance

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Trade off: Security vs usability

Security = system ability to resist

to unauthorized attempts to use

data or services, while offering

access to legitimate users.

Usability = easy to learn and easy

to efficiently access and use the

software system.

Architectural solution

-Layered architecture with critical

assets in the inner layers.

Consequences :

Effort to remember

User dissatisfaction

Consequences :

-Information (ex. passwords) needed to

penetrate each security layer.

-Slowed interaction with the system

Trade-off

Example : Number of security layers.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Trade off: Availability vs market competitivity

Availability = measure (percentage

of the total time) of the amount of

‘uptime’ of a system.

Market competitivity = reduced

development time and cost.

Architectural solution

-Redundant components

Consequences :

-Time to implement extra-components

-Increased complexity

-Risks to introduce bugs and

vulnerabilities

Consequences :

-Sensor components : detect failure,

-Switching components : switch

operation to a redundant component

Trade-off

Example: Redundancy degree

.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Formative evaluation

1. Realize the correct mapping between the quality attribute and the

solution for improving that quality.

2. What is an architectural conflict and which is the method to solve it ?

https://forms.gle/e3WBcVMSTDpeCafH7

https://forms.gle/e3WBcVMSTDpeCafH7

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Topics covered

⚫ Software architecture

⚫ Architectural design

⚫ Architectural styles

⚫ Architectures for software products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Software architecture

Def. Architectural design is the design process for identifying

• The sub-systems making up a system

• The framework for sub-system control and communication.

⚫ The output of this design process is a description of the software

architecture.

Software system - organized set of architectural components.

Architectural design implies to define :

• component functionality (a subset of the overall system functionality)

• components distribution and intercommunication

• technologies used

• reused components

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural design decisions

Architectural design – creative process, depending on the type of

system being developed.

•BUT: A number of common decisions span all design processes and these

decisions affect extra-functional characteristics of the system.

Example:

• Is there a generic application architecture that can be used?

• How will the system be decomposed into modules?

• What approach will be used to structure the system?

• What architectural styles are appropriate?

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Influences on architectural design decisions

Figure 4.4 Issues that influence architectural decissions

Ian Sommerville – Engineering Software Products

⚫ Quality attributes of the product

Define the overall quality of the software product perceived on the market.

Some qualities are opposing, so only the most important will be optimized.

⚫ Product lifetime

A long product lifetime  regular product revisions  evolvable architecture,

able to be adapted to accommodate new features and technology.

⚫ Software reuse

Saving time and effort by reusing large components from other products or

open-source software  architectural choices constrained to fit the design

around the software being reused.

⚫ Number of users

Quickly variable number of users  serious performance degradation 

scalable (up and down) architecture.

⚫ Software compatibility

Compatibility with existing software and data  limited architectural choices.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural design : steps

1. 1. Defining the relationships (interfaces) of the system to its

context made of human users, other systems and devices.

Iterative:

2. 2. Decomposing the system in elements (sub-systems,

modules, components) that interact in order to fulfill functional

and quality requirements.

3. 3. Establishing relationships (interfaces) among elements.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Decomposition : architectural complexity

Complexity - the number and the nature of the relationships

between components in that system.

Decomposition principles

• Localize relationships

If there are relationships between components A and B, these

are easier to understand if A and B are defined in the same

module.

• Reduce shared dependencies

Where components A and B depend on some other component

or data, complexity increases because changes to the shared

component mean you have to understand how these changes

affect both A and B.

⚫ It is always preferable to use local data wherever possible and

to avoid sharing data if you can.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Component organization

Figure 4.7 Examples of component relationships

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural design

⚫ The architectural design is normally expressed as a block

diagram presenting an overview of the system structure.

⚫ More specific models showing how sub-systems share

data, are distributed, and interface with each other, are

necessary.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Modules and components

⚫ A module is an implementation unit.

Modularization is realised based on functionality, generally aiming

at functional independence (strong cohesion and low coupling).

A module defines behavior and interaction with other modules.

⚫ A component is an execution unit.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Modules and components

⚫ A module is an implementation unit.

⚫ A component is an execution unit.

Components are instantiated at runtime based on the definitions in

modules.

Components have the behavior defined in the modules they are

instantiated from, and interact through connectors.

Defining the dynamic structure of the system (components and

connectors) generally aims at fulfilling the requirements for

quality attributes.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural perspectives

⚫ Static perspective - shows implementation units of the system

(modules), defines their interfaces and shows the relationships

among them.

⚫ Dynamic perspective (process) – shows the runtime structure

of a system composed of execution units (components) and

relationships among them (connectors).

⚫ Deployment perspective – shows how the implementation

units are deployed on the infrastructure elements (hardware and

software platforms).

The architectural project is documented from more perspectives using

appropriate viewtypes.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Topics covered

⚫ Software architecture

⚫ Architectural design

⚫ Architectural styles

⚫ Architectures for software products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Architectural styles

⚫ Architectural style - generic architectural model, specific to an

architectural perspective.

⚫ Utiliy – starting point in defining architectures for particular

systems.

Obs. Most large systems are heterogenous and do not follow a single

architectural style.

Examples:

• Static perspective : layered

• Dynamic perspective : pipe-and-filter, repository, client-server, event-

based

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Abstract machine style
(layered)

Organizes the implementation

units of the system on more

abstraction levels.

⚫ Layers – libraries or collections of related services.

⚫ Each layer offers a set of services accesible through an interface (ex. API).

⚫ Interaction takes place only between adjacent layers, a high-level layer

accessing the services offered by the low-level layer.

⚫ Supports incremental development of the sub-systems on different

layers. Changes behind interfaces are invisible to other layers and when

the interface of a layer is changed, only the adjacent layer is affected.

Example: Version management
system

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Pipe-and-filter style

Organizes the system as a series of components (filters) connected by pipes.

Components are processes that realize functional transformations on data in

the input flow and send the result in the output flow.

A component does not need to wait for all the data from the predecesor

process; it starts as soon a data are available in its input flow.

Examples :

⚫ Combining Unix commands

cat/etc/passwd | grep “joe” | sort > junk

⚫ Applications for processing audio and video streams

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Example : Processing invoices payment

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Repository style

Structures the system in independent components that communicate only

through data stored in a central repository;

Repozitory style is used in most of the cases when large data amounts

must be shared.

Examples:

Databases – passive repository Artificial intelligence – active repository

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

A repository architecture for an IDE

Project repository

Code
generators

Java
editor

Python
editor

Report
generator

Design
analyser

Design
translator

UML
editors

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Client – server style

Organizes the system in client components that request services

and server components that provide services.

Distributed system model (shows how data and processing is

distributed across a range of components):

⚫ Set of stand-alone servers which provide specific services such

as printing, data management, etc.

⚫ Set of clients which call on these services.

⚫ Network which allows clients to access services.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Example: Film and picture library

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Extended client-server style

Classic client –server : 2 tiers

Extended client – server : 3, 4, ..., n tiers

Structures the system in client and server components on more tiers.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Event based styles

Organize the application in components that generate events and/or

react to events generated by other components.

Examples:

⚫ GUI libraries – interactive systems

⚫ Distributed systems – av. decoupling and reorganising

Implicit events

Explicit events

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Formative evaluation

1. Which are the main architectural perspectives and what shows each

of it ?

2. Realize the mapping between the architectural style and how is

organized the system that conforms to the style.

https://forms.gle/evD5Qboz9M4tXJE29

https://forms.gle/evD5Qboz9M4tXJE29

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Topics covered

⚫ Software architecture

⚫ Architectural design

⚫ Architectural styles

⚫ Architectures for software products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Generic application architectures

Application systems are designed to meet an organizational need.

⚫ As businesses have much in common, their application

systems also tend to have a common architecture that

reflects the application requirements.

⚫ A generic architecture is configured and adapted to create a

system that meets specific requirements.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Use of application architectures

⚫ As a starting point for architectural design.

⚫ As a design checklist.

⚫ As a way of organizing the work of the development team.

⚫ As a means of assessing components for reuse.

⚫ As a vocabulary for talking about application types.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Design guidelines and software architectures

Figure 4.8 Architectural design guidelines

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Layered architecture : example

Separation of concerns on layers :

• user interaction

• user interface management

• information retrieval, etc.

Independent units in layer, not

overlapping in functionality.

• lower layers - provide general

functionality used on higher levels.

Ideally, units at level X should only

interact with the APIs of the units in

level X-1.

Figure 4.6 An architectural model of a document retrieval system

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Cross-cutting concerns

Cross-cutting concerns = systemic concerns

affect the whole system.

• Affect :

• all layers in the system

• the way in which people use the system.

• Are completely different from the functional

concerns represented by layers.

• Generate inevitably interactions between the layers

that must take them into account.

• Difficult to modify the system, after it has been

designed, to improve a cross-cutting concern (ex.

security).

•

Figure 4.9 Cross-cutting concerns

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Cross-cutting concerns: security

Figure 4.9 Cross-cutting concerns

Ian Sommerville – Engineering Software Products

⚫

Attackers can try to use of vulnerabilities in different technologies used in

different layers (ex. SQL database, Firefox browser).

⚫ 

⚫ Protection from attacks at each layer : at lower layers in the system, from successful

attacks that have occurred at higher-level layers.

⚫ Single security level = critical system vulnerability if it stops working properly or

is compromised in an attack.

⚫ Distributed security across the layers  more resilient system to attacks and

software failure.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Layered functionality in a web-based application

Web browser system interface (HTML, CSS, JavaScript).

Mobile interface implemented as app.

Figure 4.10 A generic layered architecture for a

web-based application

Ian Sommerville – Engineering Software Products

Provides services for database management,

transaction management, recovery.

UI management layer: user

authentication, web page

generation.

Functionality of the application.

May be expanded into more

than one layer.

Provides services used by

the application layer.

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

iLearn architectural design principles

⚫iLearn system goal : adaptable, universal system that could be easily

updated as new learning tools became available.

⚫Design principles

⚫Replaceability

It should be possible for users to replace applications in the system with alternatives and

to add new applications. Consequently, the list of applications included should not be

hard-wired into the system.

⚫Extensibility

It should be possible for users or system administrators to create their own versions of

the system, which may extend or limit the ’standard’ system.

⚫Age-appropriate

Alternative user interfaces should be supported so that age-appropriate interfaces for

students at different levels can be created.

⚫Programmability

It should be easy for users to create their own applications by linking existing

applications in the system.

⚫Minimum work

Users who do not wish to change the system should not have to do extra work so that

other users can make changes.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Designing iLearn as a service-oriented system

⚫ Principles led an architectural design decision that the iLearn system should be

service-oriented.

⚫ Every component in the system is a service. Any service is potentially

replaceable and new services can be created by combining existing services.

Different services delivering comparable functionality can be provided for

students of different ages.

⚫ Service integration

• Full integration Services are aware of and can communicate with other

services through their APIs.

• Partial integration Services may share service components and

databases but are not aware of and cannot communicate directly with

other application services.

• Independent These services do not use any shared system services or

databases and they are unaware of any other services in the system.

They can be replaced by any other comparable service.

•

Figure 4.11 A layered architectural model of the iLearn system

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Designing iLearn as a service-oriented system

Figure 4.11 A layered architectural

model of the iLearn system

Ian Sommerville – Engineering

Software Products

⚫ From static perspective,

the units of implementation

are organized in a layered

architecture.

⚫ Implementation units in

layers are instantiated at

runtime as components

providing services.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Distribution architecture

The distribution architecture

of a software system defines:

• servers in the system

• allocation of components

to servers.

Figure 4.12 Client-server architecture

ral model Ian Sommerville – Engineering Software Products

⚫Client-server architectures are suited to applications where clients access a

shared database and business logic operations on that data.

⚫The user interface is implemented on the user’s own computer or mobile

device.

•Functionality is distributed between the client and one or more server

computers.

•

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Client-server communication

⚫ Client-server web communication normally uses the HTTP protocol.

• The client sends a message to the server that includes an instruction such as GET or

POST along with the identifier of a resource (usually a URL) on which that instruction

should operate. The message may also include additional information, such as

information collected from a form.

⚫ Ways of representing structured text data transferred through HTTP protocol
• XML is a markup language with tags used to identify each data item.

• JSON is a simpler representation based on the representation of objects in the

Javascript language.

•

Figure 4.14 Multi-tier client-server

architecturral model

Ian Sommerville – Engineering

Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Service-oriented architecture

⚫Service - oriented architecture

⚫Services - stateless components  can

be replicated and can migrate from one

computer to another.

⚫Many servers may be involved in

providing services.

⚫ Easy to scale as demand increases

⚫ Resilient to failure.

Figure 4.15 service-oriented architecturral model

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Issues in architectural choice

⚫ Data type and data updates

• Structured data shared by different system features  a single shared

database that provides locking and transaction management.

• Data distributed across services  necessity to keep data consistency adds

overhead to the system.

⚫ Change frequency

• Anticipated regularly changes or replaces  isolate components as separate

services.

⚫ The system execution platform

Execution platform Application type Software architecture

Cloud accessed over the

Internet

service-oriented (scalable)

Local servers business system multi-tier

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Technology choices

⚫ Database
Should you use a relational SQL database or an unstructured NOSQL database?

⚫ Platform
Should you deliver your product on a mobile app and/or a web platform?

⚫ Server
Should you use dedicated in-house servers or design your system to run on a

public cloud? If a public cloud, should you use Amazon, Google, Microsoft, or some

other option?

⚫ Open source
Are there suitable open-source components that you could incorporate into your

products?

⚫ Development tools
Do your development tools embed architectural assumptions about the software

being developed that limit your architectural choices?

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Database

Kinds of database commonly used:

• Relational databases - data organized into structured tables

• NoSQL databases - data has a flexible, user-defined organization.

Relational databases (ex. MySQL) - suitable for situations where you

need transaction management and the data structures are predictable

and fairly simple.

NoSQL databases (ex. MongoDB) - more flexible and potentially more

efficient than relational databases for data analysis.

• NoSQL databases - data organized hierarchically rather than as flat

tables  more efficient concurrent processing of ‘big data’.

•

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Delivery platform

⚫ Delivery platform options:

• web-based,

• mobile product,

• both

⚫ Mobile issues:

• Intermittent connectivity  provide a limited service without network connectivity.

• Processor power  minimize computationally-intensive operations.

• Power management  minimize the power used by your application.

• On-screen keyboard  minimize input using the screen keyboard

⚫ Good practice - separate browser-based and mobile versions of the product

front-end.

⚫ Obs. It is possible to need a completely different decomposition architecture in these

different versions to ensure that performance and other characteristics are maintained.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Server

⚫ Key decision : to run on customer servers or on the cloud.

⚫ Recommendation :
⚫ Consumer products that are not simply mobile apps – developed for the

cloud.

⚫ Business products: difficult decision.

• cloud security concerns  run on in-house servers.

• not predictable pattern of system usage  run on cloud OR need to

design the system to cope with large changes in demand

⚫ Important choice - which cloud provider to use.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Open source

⚫ Open source software - software that is freely available and modifiable.

⚫

• Advantage : Allow to reuse  reduced development costs and time to market.

• Disadvantages : added constraints and no control over its evolution.

⚫ The decision on the use of open-source software also depends on the availability,

maturity and continuing support of open source components.

⚫ Open source license issues may impose constraints on how you use the software.

⚫ Your choice of open source software should depend on the type of product that you are

developing, your target market and the expertise of your development team.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Development tools

⚫ Categories of development technologies:

⚫ mobile development toolkit

⚫ web application framework

• Developer needs to conform to built-in assumptions about system

architectures.

⚫ Development technology may have an indirect influence on the system

architecture.

• Obs. Developers usually favour architectural choices that use familiar technologies

that they understand. For example, if your team have a lot of experience of

relational databases, they may argue for this instead of a NoSQL database.

•

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Formative evaluation

1. What is the meaning of cross-cutting concerns in layered architectures?

2. Suppose a mobile platform is selected for delivering a software

application. Specify the main problems specific to this type of platform

and their solutions.

https://forms.gle/pLjfwkQmu7mv6j5Q8

https://forms.gle/pLjfwkQmu7mv6j5Q8

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Key points

⚫Software architecture is the fundamental organization of a system

embodied in its components, their relationships to each other, and to the

environment, and the principles guiding its design and evolution.

⚫Architecture design is driven mainly by the requirements for quality

attributes. Architectural design implies a series of decisions in order to

realize the best trade-off in fulfilling quality requirements which may be in

conflict.

1.Architectural design involves defining system interfaces with its context,

decomposing the system in elements that interact in order to fulfill

functional and quality requirements, and establishing relationships

(interfaces) among these elements.

⚫Ways to minimize complexity are separation of concerns, avoiding

functional duplication and focusing on component interfaces.

⚫

Adapted after ©Ian Sommerville Engineering Software Products(2019) Chapter 4 13:55

Key points

⚫Software architecture is represented from multiple perspectives: static,

dynamic and deployment perspective.

⚫Examples of architectural styles are, from dynamic perspective,

repository style and client-server style, and abstract machine style from

static perspective.

⚫Web-based systems often have a common layered structure including

user interface layers, application-specific layers and a database layer.

⚫The distribution architecture defines the organization of the servers and

the allocation of components to these servers.

⚫Multi-tier client-server and service-oriented architectures are the most

commonly used architectures for web-based systems.

⚫Making decisions on technologies such as database and cloud

technologies are an important part of the architectural design process.

⚫

