
Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Software Engineering – Lecture 4

System Modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Specificarea cerinţelor



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Specificarea cerinţelor



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Specificarea cerinţelor



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Specificarea cerinţelor



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

System models

⚫ System modelling is the process of developing abstract 

models of a system.

⚫ System models express system requirements in a 

more technical way.

⚫ System specifications are documented using a set of 

system models.

⚫ Important bridge between the analysis and design 

processes.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

System modelling

⚫ System modelling helps the analyst to understand the system. 

⚫ Models are used to communicate with customers.

Different models present the system from different perspectives:

• External perspective - showing the system’s context / 

environment;

• Interaction perspective - showing the interactions between a 

system and its environment or between the components of a 

system.

• Behavioral perspective - showing the behaviour of the 

system;

• Structural perspective - showing the system architecture or 

data architecture.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

System modelling

⚫ Models of the existing system  - used to

• Clarify what the existing system does 

• Basis for discussing its strengths and weaknesses 

• Lead to requirements for the new system

⚫ Models of the new system  - used to

• Explain the proposed requirements to other system stakeholders

• Discuss design proposals

• Document the system for implementation. 

⚫ In a model-driven engineering process – used to

• Generate a complete or partial system implementation from the 

system model. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Model types

⚫ A system model is an abstraction of a system.

Abstraction deliberately simplifies and leaves out details.

⚫ Model types are based on different approaches to 

abstraction:

Ex.

Data-flow model concentrates on flow of data and functional 

transformations on that data; it leaves out details of the data 

structure.

Entity-relationship-attribute model documents system data 

structure rather than its functionality.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Model types - example

Data-flow model 

concentrates on flow 

of data and functional 

transformations on 

that data, leaves out 

details of the data 

structure.

Entity-relationship-

attribute model 

documents system 

data structure rather 

than its functionality.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

UML modelling

UML – largely used graphical notation for system modelling

⚫ Activity diagrams - the activities involved in a process or in 

data processing.

⚫ Use case diagrams – the functions exposed by the system 

and their connections to the actors in its context.

⚫ Sequence diagrams - interactions between actors and the 

system and between system components.

⚫ Class diagrams - object classes in the system and their 

relationships.

⚫ State machine diagrams - system behavior triggered by 

internal and external events.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Use of graphical models

⚫ As a means of facilitating discussion about an existing or 

proposed system.

Incomplete and incorrect models are OK as their role is to support 

discussion.

⚫ As a way of documenting an existing system

Models should be an accurate representation of the system but 

need not be complete.

⚫ As a detailed system description that can be used to 

generate a system implementation

Models have to be both correct and complete.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Context models

Context models are used to illustrate the operational context of a 

system - they show what lies outside the system boundaries.

⚫ System boundaries are established to define what is inside and what 

is outside the system.

They separate the system being developed from other systems that are used 

or depend on it.

⚫ The position of the system boundary has a profound effect on the 

system requirements. 

⚫ Defining a system boundary is a political judgment

Social and organisational concerns may affect the decision on where to 

position system boundaries.

There may be pressures to develop system boundaries that increase / 

decrease the influence or workload of different parts of an organization.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: The context of  Payroll System

High-level architectural model; expressed as a block diagram. 

Relationships are not defined => need to be supplemented by other models.

Timecard 

Registration 

System

Bank System

Printer

Payroll System

High-level architectural models show the system and its relationship with 
other systems.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Process perspective

⚫ Context models simply show the other systems in the 

environment, not how the system being developed is used in 

that environment.

⚫ Process models reveal how the system being developed 

is used in broader business processes.

Notation:

⚫ UML activity diagram

⚫ BPMN  (Business Process Model and Notation)



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Process perspective

Example: Payroll system in its operational context 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Interaction models

⚫ Modelling user interaction

Helps identify user requirements. 

⚫ Modelling system-to-system interaction

Highlights the communication problems that may arise. 

⚫ Modelling component interaction

Helps understand if a proposed system structure is likely to deliver the required 

system performance and dependability.

Used UML diagrams:

⚫ Sequence diagrams - model interactions 

• between actors and the system

• between system components (external agents may also be included).



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Use case modelling

⚫ Use cases - support requirements elicitation.

⚫ Each use case represents a discrete task that generally  

involves external interaction with an actor.
OBS. Included or extending use cases may not interact directly with actors.

⚫ Actors in a use case may be people or other systems.

⚫ Representation: 

• UC diagram - an overview of the use cases 

• detailed (textual) form for each use case

https://whyusecases.ivarjacobson.com/?_ga=2.149213937.693533130.1615812350-1690294733.1615812350



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Sequence diagrams

⚫ Sequence diagrams - model the interactions between the 

actors and the objects within a system.
• Sequence diagram - the sequence of interactions that take place during 

a particular use case or use case instance (scenario).

⚫ The objects and actors involved are listed along the top 

of the diagram, with a dotted line drawn vertically from 

these. 

⚫ Interactions between objects are indicated by annotated 

arrows.  



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

System level 

sequence 

diagram :

ATM withdrawal



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

Sequence 

diagram for 

the use case 

Issue of 

electronic items



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Structural models

⚫ Structural models of software - the organization of a system in 

terms of the elements that make up that system and of their 

relationships. 

⚫ Structural models perspectives:

• static - show the structure of the system design

• dynamic - show the organization of the system at runtime. 

⚫ Structural models of a system are created when discussing and 

designing the system architecture.

Used UML diagrams:

⚫ Class diagram – static perspective (units of code)

⚫ Component diagram – dynamic perspective (units of execution)



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Class diagram

In OO development approaches:

⚫ Software system is structured as a collection of interacting 

objects. 

⚫ Object class = abstraction over a set of objects with common 

attributes and the services (operations) provided by each 

object in the class.

⚫ Class diagrams describe the system in terms of object classes

and their relations.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

UML notation

Class name

Attribute

Operation



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Class relation type: Association

General relation meaning that the objects instantiated from 

associated classes ale linked. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Class relation type: Generalization

⚫ Generalization - technique to manage complexity by abstracting 

common characteristics of more classes. 

⚫ Generalization is similar to the “is-a” relationship in semantic data 

models.

⚫ In object-oriented languages (ex. Java) generalization is implemented 

using the class inheritance mechanisms built into the language. 

⚫ In a generalization, the attributes and operations associated with the 

superclass are also associated with all its subclasses.

⚫ A subclass inherits all the attributes and operations from its 

superclasses. Subclasses can add more specific attributes and 

operations. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

“LibraryItem”

class 

hierarchy



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

“LibraryUser”

class 

hierarchy



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Multiple inheritance

⚫ Rather than inheriting the attributes and services from a 

single parent class, a system which supports multiple 

inheritance allows object classes to inherit from several 

super-classes.

Obs.

• This can lead to semantic conflicts where 

attributes/services with the same name in different super-

classes have different semantics.

• Multiple inheritance makes class hierarchy reorganisation 

more complex.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Multiple inheritance: Example



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Class relation type: Aggregation

⚫ An aggregation model shows how classes that are 

collections are composed of other classes.

⚫ Aggregation models are similar to the “part-of” 

relationship in semantic data models.

⚫ The object which represents the collection keeps a data 
structure of type Collection containing the references 

to the objects that form the aggregate.

⚫ The element in the collection may keep a reference to the 

object representing the collection. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

“StudyPack”

aggregation

Model



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Formative evaluation

1. In the following class diagram, which are the attributes of class 

Staff and which are the operations of class Student ?

2. In the following class diagram, which are the attributes of class 

Assignment ?

⚫https://forms.gle/x1h9Y9Kjb2SAHpU46

https://forms.gle/x1h9Y9Kjb2SAHpU46


Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Behavioral models

Model the runtime behavior of the system.

Types of behavioural modelling :

• Data-driven modelling : models show the sequence of 

actions involved in processing input data and 

generating an associated output;

• Event-driven modelling : models show how the system 

responds to events.

Obs. These models show different perspectives, so both of them are required 

to describe the system’s behaviour.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Data-driven modelling

Show how data is processed as it moves through the system.

Types of diagrams:

⚫ Data flow diagram (DFDs) 

⚫ UML activity diagram

Utility

⚫ Tracking and documenting how the data is associated with a process is 

helpful to develop an overall understanding of the system.

⚫ Data flow diagrams may also be used in showing the data exchange

between a system and other systems in its context.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example DFD: Order processing DFD

Notation:

⚫ Round rectangle – functional processing

⚫ Rectangle – data store

⚫ Labelled arrow – data flow.

Complete

order form

Validate

order

Record

order

Orders

file

Budget

file

Order 
details 
+
Blank 
order 
form

Completed 
order form Signed

order 
form

Signed
order 
form

Signed
order 
formOrder 

details Order amount +
account details 

Adjust

available

budget

Send to

supplier

Checked and 
signed order + 
order notification 

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example Activity Diagram: Order processing activity diagram

Functional processing Data store Data (object) flow

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Event-driven modelling

Model the behaviour of the system in response to external 

and internal events.

⚫ Show the system’s responses to stimuli (so are often used 

for modelling real-time systems).

Modelling elements:

• system states as nodes

• events as edges between these nodes. 

When an event occurs, the system moves from one state to 

another = makes a state transition.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

State machine diagram (SMD)

Describes a behavior or a behavioral feature.

⚫ Modelling elements:

• States

• Transitions connecting states

• Triggers for the transitions

• Activities performed in the execution of transitions

• Activities performed throughout the duration of each state

Obs.  May express behavior on different levels of abstraction.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

State machine diagram (SMD)

State – describes the condition of an object expressed in 

terms of:

• object attributes

• behavior the object is engaged in.

Object state = cumulative result of object behaviour, defined by the values 

of its properties (attributes and relations).

Inside a state an object may:

- execute an activity

- wait for an event

- fulfill a condition.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

State machine diagram (SMD)

Formal: a state models a period of time in which an invariant 

condition holds true.

Examples of invariant conditions:

- set of attributes values

- condition of working on an activity

- condition of waiting for an event.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

State machine diagram (SMD)

MAIN MODELLING 
ELEMENTS:

• state 
• transition
• event

initial (pseudo)state

final (pseudo)state

STATE 

TRANZITION

EVENT [condition] / effect

“entry” activity

“do” activity

“exit” activity

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: Microwave oven model

state

action

tranzition

event

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: Microwave oven state description

State Description 

Waiting The oven is waiting for input. The display shows the current time. 

Half power The oven power is set to 300 watts. The display shows ‘Half power’. 

Full power The oven power is set to 600 watts. The display shows ‘Full power’. 

Set time The cooking time is set to the user’s input value. The display shows the cooking 
time selected and is updated as the time is set. 

Disabled Oven operation is disabled for safety. Interior oven light is on. Display shows ‘Not 
ready’. 

Enabled Oven operation is enabled. Interior oven light is off. Display shows ‘Ready to 
cook’. 

Operation Oven in operation. Interior oven light is on. Display shows the timer countdown. 
On completion of cooking, the buzzer is sounded for 5 seconds. Oven light is on. 
Display shows ‘Cooking complete’ while buzzer is sounding. 

 

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: Microwave oven stimuli

 

Stimulus Description 

Half power  The user has pressed the half power button 

Full power  The user has pressed the full power button 

Timer The user has pressed one of the timer buttons 

Number The user has pressed a numeric key 

Door open The oven door switch is not closed 

Door closed The oven door switch is closed 

Start The user has pressed the start button 

Cancel The user has pressed the cancel button 

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Structuring state models

Necessary in large system models, with a big number of 

possible states.

Superstate

⚫ notion that encapsulates a number of separate states.

⚫ looks like a single state on a high-level model.

⚫ is expanded in more detail in a separate diagram. 

Ex. “Operation” superstate.

Data-driven modelling

Event-driven modelling



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

“Operation” 

superstate



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Semantic data models

⚫ Used to describe the logical structure of data

processed by the system.

Notation:

⚫ entity-relation-attribute (ERA) model - sets out the entities 

in the system, the relationships between these entities 

and the entity attributes.

⚫ simplified object classes (attributes, NO operations) and 

associations in a UML class diagram.

Complemented with details represented in data dictionary.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: LYBSYS semantic model represented with ERA diagram

entity

relation

attribute

Excerpt from the LYBSYS semantic model.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example:

LYBSYS semantic model 

represented with UML class 

diagram

entity

relation

attribute



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Data dictionaries

Data dictionaries are lists of all of the names used in the 

system models. 

⚫ Descriptions of the entities, relationships, attributes and 

services are included.

⚫ Supplement diagrams with more detailed descriptions 

stored in a repository (data dictionary).

• Advantages

• Support name management and avoid duplication;

• Store of organisational knowledge linking analysis, design 

and implementation;

• Many CASE workbenches support data dictionaries.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Example: LIBSYS data dictionary entries 

Name Description Type Date 

Article 
Details of the published article that may 
be ordered by people using LIBSYS. 

Entity 03.03.13 

authors 
The names of the authors of the article 
who may be due a share of the fee. 

Attribute 03.03.13 

Buyer 
The person or organisation that orders a 

copy of the article. 
Entity 03.03.13 

fee-

payable-to 

A 1:1 relationship between Article and 
the Copyright Agency who should be 

paid the copyright fee. 

Relation 02.03.13 

Address 

(Buyer) 

The address of the buyer. This is used 
to any paper billing information that is 

required. 

Attribute 04.03.13 

 

 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Formative evaluation

1. Map the type of UML diagram to what can be represented with it.

https://forms.gle/JWP6H5fGFpqAhYn29

https://forms.gle/JWP6H5fGFpqAhYn29


Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

User interface prototyping

⚫ Essential in requirements analysis

Aim :  to allow users to gain direct experience with the 

interface.

⚫ Without such direct user experience, it is impossible to 

judge the usability of an interface.

⚫ Prototyping may be a two-stage process:

• Early in the process, paper/whiteboard prototypes may be 

used;

• The design is then refined, and increasingly sophisticated 

automated prototypes are then developed.

List of tools at: http://c2.com/cgi/wiki?GuiPrototypingTools

http://c2.com/cgi/wiki?GuiPrototypingTools


Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

User interface prototyping

Focus on the main use cases and their interfaces.

http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

User interface prototyping

Aspects analyzed:

⚫ Visual looks and display

⚫ Interaction with the user

and screens flow



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Topics covered

• Context models

• Interaction models

• Structural models

• Behavioral models

• Data models

• UI prototype

• Model-driven engineering



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

MDE

⚫ Model-driven engineering (MDE) - approach to software 

development where models (rather than programs) are the 

principal outputs of the development process. 

⚫ Programs - generated automatically from the models. 

⚫ The fundamental notion behind model-driven engineering is 

that completely automated transformation of models to code 

should be possible.

⚫ Proponents of MDE argue that this raises the level of abstraction in 

software engineering so that engineers no longer have to be 

concerned with programming language details or the specifics of 

execution platforms. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

MDE - Discussion

⚫ Pros

• Allows systems to be considered at higher levels of 

abstraction.

• Generating code automatically means that it is cheaper to 

adapt systems to new platforms.

⚫ Cons

• Some abstractions in a model are not necessarily right for 

implementation.

• Savings from generating code may be outweighed by the 

costs of developing translators for new platforms.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

MDA

Model-driven architecture (MDA) was the precursor of more 

general model-driven engineering.

⚫ MDA is a model-focused approach to software design 

and implementation that uses a subset of UML models to 

describe a system. 

⚫ Models at different levels of abstraction are created. 

⚫ From a high-level, platform independent model it is 

possible, in principle, to generate a working program 

without manual intervention. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Model types

⚫ Computation independent model (CIM) 

• Models the important domain abstractions used in a system. CIMs 

are sometimes called domain models. 

⚫ Platform independent model (PIM) 

• Models the operation of the system without reference to its 

implementation. 

• Usually described using UML models that show the static system 

structure and how it responds to external and internal events.

⚫ Platform specific models (PSM)

• Transformations of the platform-independent model, with a separate 

PSM for each application platform. 

Obs. In principle, there may be more layers of PSM, with each layer adding 

some platform-specific detail.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

MDA transformations



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Multiple platform-specific models

PSM

PSM

PIM



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Formative evaluation

1. Why GUI prototyping is important ?

2. What is the importance of MDE (Model Driven Engineering) ? 

3. Shortly describe the types of models in MDA (Model Driven 

Architecture). Specify their relationships.

https://forms.gle/Ktjbpby1FGTR8MpSA

https://forms.gle/Ktjbpby1FGTR8MpSA


Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Key points

⚫ A model is an abstract view of a system that ignores system 

details. Complementary system models can be developed to 

show the system’s context, interactions, structure and 

behavior.

⚫ Context models show how a system that is being modeled is 

positioned in an environment with other systems and 

processes. 

⚫ Use case diagrams are used to describe the functions exposed 

by the system

⚫ Sequence diagrams are used to describe interactions between 

a system and external actors and between system objects.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Key points

⚫ Structural models show the organization and architecture of a 

system. Class diagrams are used to define the static structure 

of classes in a system and their associations. Component 

diagrams are used to describe the system structure at runtime.

⚫ Data models show the logical structure of data processed by 

the system. ERD or simplified class diagrams may be used, 

complemented with data dictionaries.



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Key points

⚫ Behavioral models are used to describe the dynamic behavior 

of an executing system. This behavior can be modeled from 

the perspective of the data processed by the system, or by 

the events that stimulate responses from a system.

⚫ Activity diagrams may be used to model the processing of 

data, where each activity represents one process step.

⚫ State diagrams are used to model a system’s behavior in 

response to internal or external events. 



Adapted after©Ian Sommerville 2010 Software Engineering, 9th edition. Chapter 5

Key points

⚫ UI prototyping is essential in requirements analysis. It may be 

a two stages process. 

⚫ Model-driven engineering is an approach to software 

development in which a system is represented as a set of 

models that can be automatically transformed to executable 

code. 


