
Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Software Engineering – Lecture 3

Software Specification

Instructor : Conf. dr. Cristina Mîndruţă

cristina.mindruta@e-uvt.ro

Site:

http://sites.google.com/site/ingswcm

Adopted books:

Software Engineering (9th Edition) by Ian Sommerville

http://staff.fmi.uvt.ro/~cristina.mindruta

Engineering software products by Ian Sommerville

The Essentials of Modern Software Engineering by Ivar Jacobson et.all

http://sites.google.com/site/ingswcm
http://staff.fmi.uvt.ro/~cristina.mindruta

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Software process activities

• Software specification

The process of establishing what services and qualities are required from the

system, and the constraints on the system’s operation and development.

• Software development (design and implementation)

The process of converting the system specification into an executable system.

• Software validation

Verification and validation (V & V) is intended to show that a system conforms

to its specification and meets the requirements of the system customer.

• Software evolution (maintenance)

The process of software evolving as its requirements change.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Software systems

Some factors that drive the design of software systems :

• Business and consumer needs that are not met by current products

• Dissatisfaction with existing business or consumer software products

• Changes in technology that make completely new types of product

possible

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

⚫ Software requirements

⚫ Software requirements document

⚫ Requirements engineering process for project-based software

⚫ Requirements engineering for software products

Topics covered

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Software specification

Def. Software specification = the process of establishing what

services and qualities are required from the system, and the

constraints on the system’s operation and development.

Specification of the software requirements.

Def. Requirement for software system =

• service that the customer requires from a system or

• quality of the system or

• constraint under which system operates or

• constraint under which system is developed.

Def. Requirement (IEEE 610.12-1990)

1. A condition or capability needed by user to solve a problem or achieve an objective.

2. A condition or capability to be met or possessed by a system or system component to

satisfy a contract, standard, specification or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2)

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Types of requirements
Two orthogonal classifications

User requirements

Statements in natural language plus

diagrams of the services the system

provides, the expected qualities of

the system, and its operational

constraints.

System requirements

A structured document setting out

detailed descriptions of the system’s

services, the expected qualities of

the system, and operational and

development constraints.

Functional requirements

Describe functionality of the system

(system services) .

Extra-functional requirements

•Quality attributes

Relate to emergent qualities of the

system.

•Constraints

• for the system to be developed.

• for the development process

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

User requirement definition:

System requirement specification:

Example: User and system functional requirements

1.The software must provide a means of representing and accesing external

files created by other tools.

11.1 The user should be provided with facilities to define the type of external

files.

11.2 Each external file type may have an associated tool which may be applied

to the file.

11.3 Each external file type may be represented as a specific icon on the user’s

display.

11.4 Facilities should be provided for the icon representing an external file type

to be defined by the user.

11.5 When an user selects an icon representing an external file, the effect of

the selection is to apply the tool associated with the type of the external file to

the file represented by the selected icon.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements main readers

User

requirements

Client managers

System end-users

Client engineers

Contractor managers

System architects

System

requirements

Client engineers

System architects

Software developers

System test engineers

System maintenance engineers

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements’ completeness and consistency

In principle, functional requirements should be both complete and

consistent.

• Complete

• They should include descriptions of all facilities

required.

• Consistent

• There should be no conflicts or contradictions in the

descriptions of the system facilities.

In practice, it is very difficult to produce a complete and consistent

requirements document.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Quality requirements

Quality requirements may affect the overall architecture of a system

rather than the individual components.

• Example: To ensure that performance requirements are met, you may

have to organize the system to minimize communications between

components.

Quality requirements may generate a number of related functional

requirements that define system services that are required.

• Example: For a quality requirement related to security, a functional

requirement may specify the exact encription algorithm to be used.

Quality requirements are often related to functional requirements, but

should always be separately documented, with explicit

documentation of their relation to functional requirements.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Types of extra-functional requirements

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Goals and requirements

Extra-functional requirements may be very difficult to state precisely,

and imprecise requirements may be difficult to verify.

• Goal

A general intention of the user (such as “ease of use”).

• Verifiable extra-functional requirement

A statement using some measure that can be objectively tested.

Goals are helpful to developers as they convey the intentions of the system

users.

BUT

Software engineer must try to express them as verifiable extra-

functional requirements.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Goals and requirements - Examples

Usability

• A system goal

• The system should be easy to use by experienced controllers

and should be organized in such a way that user errors are

minimized.

• A (correspondent) verifiable extra-functional requirement

• Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this training, the

average number of errors made by experienced users shall not

exceed two per day.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size M Bytes
Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure
Probability of unavailability

Rate of failure occurrence
Availability

Robustness Time to restart after failure

Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Requirements measures (examples)

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements interaction

Conflicts between different extra-functional requirements are

common in complex systems.

Example: spacecraft system

• To minimize weight, the number of separate chips in the system

should be minimized.

• To minimize power consumption, lower power chips should be

used.

• However, using low power chips may mean that more chips have to

be used. Which is the most critical requirement?

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Problems with functional requirements derived from the

application domain

Understandability

• Requirements are expressed in the language of the

application domain;

• This is often not understood by software engineers

developing the system.

Implicitness

• Domain specialists understand the area so well that they

do not think of making the domain requirements explicit.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

User and system requirements

Def. User requirements - should describe functional and extra-

functional requirements in such a way that they are understandable

by system users who don’t have detailed technical knowledge.

• Are defined using natural language, tables and diagrams, as

these can be understood by all users.

Def. System requirements = specifications, more detailed than

user requirements, of system services, system qualities, and

constraints of operation and development of the system.

• Are intended to be a basis for designing the system.

• May be incorporated into the system contract.

• May be defined or illustrated using system models.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

User and system requirements

Problems with natural language

• Lack of clarity Precision is difficult without making the document difficult to read.

• Requirements confusion Functional and extra-functional requirements tend to

be mixed-up.

• Requirements amalgamation Several different requirements may be

expressed together.

Guidelines for writing user requirements

• Invent a standard format and use it for all requirements.

• Use language in a consistent way. Use “shall” for mandatory

requirements, “should” for desirable requirements.

• Use text highlighting to identify key parts of the requirement.

• Avoid the use of computer jargon.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

System requirements and design

In principle:

• requirements should state WHAT the system

should do

• design should describe HOW it does this.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Problems with NL (natural language) specification

Ambiguity

• The readers and writers of the requirement must interpret the

same words in the same way. NL(natural language) is

naturally ambiguous so this is very difficult.

Over-flexibility

• The same thing may be said in a number of different ways in

the specification.

Lack of modularisation

• NL structures are inadequate to structure system

requirements.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Alternatives to NL specification

Notation Description

Structured natural
language

Approach that depends on defining standard forms or
templates to express the requirements specification.

Design
description
languages

Approach that uses a language like a programming language
but with more abstract features to specify the requirements
by defining an operational model of the system. This
approach is not now widely used although it can be useful for
interface specifications.

Graphical
notations

A graphical language, supplemented by text annotations is
used to define the functional requirements for the system. An
early example of such a graphical language was SADT
(Structured Analysis and Design Technique). Now UML is
commonly used .

Mathematical
specifications

Notations based on mathematical concepts such as finite-
state machines or sets. These unambiguous specifications
reduce the arguments between customer and contractor
about system functionality. However, most customers don’t
understand formal specifications and are reluctant to accept
it as a system contract.

•User requirements

•System requirements

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Formative evaluation

1. Define the software specification process.

2. How can an extra-functional requirement be made verifiable ? Give

an example of a general extra-functional requirement and an

example of a verifiable version for it.

3. What is the meaning of complete and consistent functional

requirements ?

https://forms.gle/LZ9kGiQziimeDcbMA

https://forms.gle/LZ9kGiQziimeDcbMA

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

⚫ Software requirements

⚫ Software requirements document

⚫ Requirements engineering process for project-based software

⚫ Requirements engineering for software products

Topics covered

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

The software requirements document

• The official statement of what is required of the system

developers.

• Should include both a definition of user requirements and a

specification of the system requirements.

• It is NOT a design document. As far as possible, it should set of

WHAT the system should do rather than HOW it should do it.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

IEEE requirements standard

Defines a generic structure for a requirements document that must be instantiated for each
specific system.

• Introduction

• Purpose of the requirements document

• Scope of the product

• Definitions, acronyms and abbreviations

• References

• Overview of the reminder document

• General description.

• Product perspective

• Product functions

• User characteristics

• General constraints

• Assumptions and dependencies

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

IEEE requirements standard

(Cont.)

• Specific requirements.

• Functional

• Extra-functional

• Interface

The most substantial part of the document

Wide variability in organizational practice – not a

standard structure

• Appendices.

• Index.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

⚫ Software requirements

⚫ Software requirements document

⚫ Requirements engineering process for project-based software

⚫ Requirements engineering for software products

Topics covered

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements engineering process

Def. Requirements engineering = the process of finding out,

analysing, documenting, validation and managing software

requirements.

Goal: Create and maintain a system requirements document.

Activities of the process

• Feasibility studies

• Requirements elicitation and analysis

• Requirements validation

• Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

The requirements engineering process

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Feasibility studies

A feasibility study decides whether or not the proposed system is
worthwhile.

• Short focused study that checks :

• If the system contributes to organizational objectives;

• If the system can be engineered using current technology and
within budget;

• If the system can be integrated with other systems that are used.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements elicitation (discovery)

Implies:
• understanding the application domain

• finding services that the system should provide

• defining qualities of the system

• determining system’s operational constraints.

Participants: technical staff, customers

Methods

- Interviews : getting an overall understanding of what users do and how they might

interact with the system.

- Surveys : about used software systems

- Ethnography : observing and analysing how people actually work.

- Scenarios and user stories : real-life examples of how a system can be used.

Sources of information:
• documentation,

• system stakeholders,

• specifications of similar systems.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements elicitation and analysis
Activities

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Groups related requirements

and organizes them into

coherent clusters.

Prioritizing requirements and

resolving requirements conflicts.

Requirements are documented and input
into the next round of the spiral.

Interacting with stakeholders to
discover their requirements.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

The whole PROCESS

(simplified)

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Expressing requirements

1. Formally spelling the requirement

ID. name - input-process-output

Example:

2. Using use case narrative

Fundamentally, a use case describes:

• The function

• Preconditions for the function to be realized

• Main flow of events in the function (scenario)

• Error conditions and the description of alternative flows

• Information about other concurrent activities

• Postconditions determined by the realization of the function

Req. ID&name Input Process Output

2.4 Student
enrolment

-List of courses

-Submit request

-Enrol student to selected
courses

-Display acceptance message

-Ask for confirmation message

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements analysis

Use case

Represents a service (function) offered by the

system in its context composed of actors.

Defines the requirements of WHAT the

system must perform. (functional requirements).

Actor

Any external entity that interacts with the system

through an interface.

System boundary

Delineates what is included in the system from

what is outside the system and interacts with it.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements analysis –

- prioritization

Based on development constraints and on requirements sources.

Constraints:

• Limited resources

• Limited time

• Limited technical capabilities

Requirements with higher priority are developed and released first.

Criteria (examples):

• Current customer demands

• Competition and current market condition

• Future and new customer needs

• Immediate sales advantage

• Critical problems in the existing product, etc.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements analysis –

- traceability

Motivation: Ability to test after development and to verify that all

requirements have been developed, tested, packed and delivered.

Precondition: requirements are uniquely identified.

Types of traceability:

Backward from –requirement is linked to the source document or to the

person which created it.

Forward from – requirement is linked to the design and implementation.

Backward to – design and implementation are linked to the requirement.

Forward from – preceding documents are linked to the requirement.

Requirement relationships matrix – requirements correlation.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements validation

Concerned with demonstrating that the requirements define the

system that the customer really wants.

Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirement checking

Verifiability. Can the requirements be checked?

Comprehensibility. Is the requirement properly understood?

Traceability. Is the origin of the requirement clearly stated?

Adaptability. Can the requirement be changed without a large impact on

other requirements?

Consistency. Are there any requirements conflicts?

Realism. Can the requirements be implemented given available budget

and technology?

Validity. Does the system provide the functions which best support the

customer’s needs?

Completeness. Are all functions required by the customer included?

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements validation techniques

Requirements reviews

• Systematic manual analysis of the requirements.

• Regular reviews held while the requirements definition is being

formulated.

• Both client and contractor staff should be involved in reviews.

• Reviews may be formal (with completed documents) or informal.

• Good communications between developers, customers and users can

resolve problems at an early stage.

Prototyping

• Using an executable model of the system to check requirements.

Test-case generation

• Developing tests for requirements to check testability.

Obs. These techniques can be used in conjunction or individually.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements management

Def. Requirements management is the process of managing changing

requirements during the requirements engineering process and

system development.

Examples of causes for change in project-based software:

• The priority of requirements from different viewpoints changes during the

development process.

• System customers may specify requirements from a business perspective that

conflict with end-user requirements.

• The business and technical environment of the system changes during its

development.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements evolution

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Enduring and volatile requirements

Enduring requirements. Stable requirements derived from the core

activity of the customer organisation.

May be derived from domain models.

Example: a hospital will always have doctors, nurses, etc.

Volatile requirements. Requirements which change during

development or when the system is in use.

Example: In a hospital, the requirements derived from health-care policy.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Requirements change management

⚫ Should apply to all proposed changes to the requirements.

Main activities:

Problem analysis. Discuss requirements problem, check its validity

and propose change;

Change analysis and costing. Assess effects of change on other

requirements;

Change implementation. Modify requirements document and other

documents to reflect change. Recommandation: minimize external references

and make the document sections as modular as possible.

•Feasibility study

•Requirements elicitation and analysis

•Requirements validation

•Requirements management

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Formative evaluation

1. Check the activities implied in requirements elicitation and analysis.

https://forms.gle/jDpfz54XV1a3oiDp6

https://forms.gle/jDpfz54XV1a3oiDp6

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

⚫ Software requirements

⚫ Software requirements document

⚫ Requirements engineering process for project-based software

⚫ Requirements engineering for software products

Topics covered

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Product feasibility

Feasibility decision based on :

product vision:

• WHAT is the product to be developed?

• WHO are the target customers and users?

• WHY should customers buy this product?

Example : iLearn system

FOR teachers and educators

WHO need a way to help students use web-based learning resources and applications,

THE iLearn system is an open learning environment

THAT allows the set of resources used by classes and students to be easily configured for these
students and classes by teachers themselves.

UNLIKE Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning process
rather than the administration and management of materials, assessments and coursework.

OUR product enables teachers to create subject and age-specific environments for their students
using any web-based resources, such as videos, simulations and written materials that are
appropriate.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features (requirements) discovery

Involves identifying:

• product FEATURES* useful for target users (mostly functional requirements)

• what users like and dislike about the products that they use (related mostly to extra-

functional requirements)

Participants : technical staff (DEVELOPER)

Methods :

• informal user analysis and discussions about users work, the software they use, its

strengths and weaknesses

• scenario analysis with users to clarify scenarios and make them more realistic

• teamwork (to identify features that crosscut more scenarios)

Tools :

Scenarios and user stories, used to stimulate thinking about the product

*FEATURE = fragment of functionality of a software product, that implements a requirement.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features (requirements) discovery

Feature = fragment of functionality of a software product, that implements a

requirement (something that user or system needs).

• Examples : ‘print’ feature, ‘change background feature’, ‘new document’ feature

List of features = starting point for product design and development

Figure 3.1 From Personas to Features

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Personas
(from Spanish: individuals implied in communication)

Aim : get an understanding of potential users of the software product and envisage

difficulties that they might have in understanding and using product features.

Persona (type of user) = ‘imagined user’ for which character portrait is created.

Examples : Personas in iLearn system :

Jack, a primary school teacher
Jack, age 32, is a primary school (elementary school) teacher in Ullapool, a large coastal village in

the Scottish Highlands. He teaches children from ages 9-12. He was born in a fishing
community north of Ullapool, where his father runs a marine fuels supply business and his
mother is a community nurse. He has a degree in English from Glasgow University and
retrained as a teacher after several years working as a web content author for a large leisure
group.

Jack’s experience as a web developer means that he is confident in all aspects of digital technology.
He passionately believes that the effective use of digital technologies, blended with face to face
teaching, can enhance the learning experience for children. He is particularly interested in
using the iLearn system for project-based teaching, where students work together across
subject areas on a challenging topic.

• Emma, a history teacher

• Elena, a school IT technician

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Persona description

Name

Personal circumstances (think the persona as an individual).

Photograph (optional)

Information about their

job and (if necessary)

what that job involves.

Describe educational background and level

of technical skills and experience.

(important, especially for interface design).

The motivation for being interested in using the product.

What they might want to do with it.

Figure 3.4 Persona Descriptions

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Persona benefits

Helps :

• development team members empathize with potential users of the

software.

• as a tool that allows developers to ‘step into the user’s shoes’.

• imagine how a persona, not a developer, would behave and react

• check ideas and make sure not to include features that aren’t really

needed.

• avoid making unwarranted assumptions, based on developers’ own

knowledge, and designing an over-complicated or irrelevant product.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Deriving personas

Based on an understanding of the potential product users, their jobs, their

background and their aspirations.

1. Study and survey potential users to understand what they want and how

they might use the product.

2. Abstract the essential information about the different types of product user

and use this as a basis for creating personas.

A light variant :

Proto-personas : developed on the basis of limited user information

• may be created as a collective team exercise using whatever information is available

about potential product users.

• not as accurate as personas developed from detailed user studies.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Scenarios

Scenario = narrative that describes a situation where a user, or a group of

users, use product’s features to do something that they want to do.

• Tool (utility) of facilitating communication and stimulating design creativity.

• Effective in communication - understandable and accessible to users and

to people responsible for funding and buying the system.

• Help developers to agree on a shared understanding of the system that

they are creating.

• Are NOT specifications.

• Lack detail, may be incomplete, may not represent all types of user

interactions

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Scenarios

Figure 3.5 Elements of a scenario description

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Writing scenarios

• Describe :

• A user problem

• A imagined way to solve it

• From the user’s perspective and based on identified personas or on

real users.

• Starting point : the personas created

• imagine several scenarios from each persona.

• Ideally, general and without implementation information.

(However, describing an ideea of implementation is often the easiest way to

explain how a task is done).

• Make sure to cover all the potential user roles when describing a

system.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Scenarios
Example : Fishing in Ullapool

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided

that a class project should be focused around the fishing industry in the area,

looking at the history, development and economic impact of fishing.

As part of this, students are asked to gather and share reminiscences from relatives,

use newspaper archives and collect old photographs related to fishing and fishing

communities in the area. Pupils use an iLearn wiki to gather together fishing stories

and SCRAN (a history archive site) to access newspaper archives and

photographs. However, Jack also needs a photo-sharing site as he wants students

to take and comment on each others’ photos and to upload scans of old

photographs that they may have in their families. He needs to be able to moderate

posts with photos before they are shared, because pre-teen children can’t

understand copyright and privacy issues.

Jack sends an email to a primary school teachers’ group to see if anyone can

recommend an appropriate system. Two teachers reply and both suggest that he

uses KidsTakePics, a photo-sharing site that allows teachers to check and

moderate content. As KidsTakePics is not integrated with the iLearn authentication

service, he sets up a teacher and a class account with KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the

students in his class so that, when they log in, they can immediately use the system

to upload photos from their phones and class computers.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

User stories

Scenarios : high-level stories of system use; describe an undetailed

sequence of interactions with the system.

User stories = finer-grain narratives that set out in a more detailed and

structured way a single thing that a user wants from a software system.

The standard format of a user story:

As a <role>, I <want | need> to <do something>

As a teacher, I want to tell all members of my group when new information is

available

Variant of the standard format (adds a justification for the action):

As a <role> I <want | need> to <do something> so that <reason>

As a teacher, I need to be able to report who is attending a class trip so that the

school maintains the required health and safety records.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

User stories in planning

One important use - in planning.

Ex. product backlog : set of user stories.

• User story - Clearly defined system feature or aspect of a feature

that can be implemented within a single development time unit

(ex. sprint).

Ex. As a teacher, I need to be able to report who is attending a class trip so

that the school maintains the required health and safety records.

• Epic – is more complex and should be broken down into simpler

stories.

Ex. As a system manager, I need a way to backup the system and restore

either individual applications, files, directories or the whole system.

Example of templates:
https://www.aha.io/roadmapping/guide/requirements-management/what-is-a-good-feature-or-user-story-template

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features

Feature properties:
Independence

• independ on how other system features are implemented

• not affected by the order of activation of other features.

Coherence

• linked to a single item of functionality.

• does only one thing

• does not have side-effects.

Relevance

• reflect the way that users normally carry out some task.

• does not provide obscure functionality that is hardly ever required.

• Defines the overall functionality of the software

• Is the output of the feature identification process

• Used for designing and implementing the product.

• Details added when implementing the feature.

• Described with a standard input-action-output template or by

a structured narrative that may include a set of user stories.

List of

features

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Knowledge required for feature design

What users want and how they might

use the software features.

Experience or research of the

existing product to identify and

replicate features that provide

fundamental functionality that is

always required.

Understanding latest

technology allows take

advantage of it in the product.

The domain or work area

that product aims to support.

Figure 3.8 Features design

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Factors in feature design

Trade-off – between elements that can

not be simultaneously maximized.

Figure 3.9 Factors in feature design

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Feature derivation

Sources

• Product vision

• Scenarios

• User stories

Method:

Highlight phrases in narrative description thinking about the features

needed to support user actions, identified by active verbs (ex. use, choose,

send, update, etc.).

Team activity - discuss features and generate ideas about :

• new, related features,

• generalizing features.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Feature derivation
Example : from product vision

FOR teachers and educators WHO need a way to help students use web-based learning

resources and applications, THE iLearn system is an open learning environment THAT

allows the set of resources used by classes and students to be easily configured for

these students and classes by teachers themselves.

UNLIKE Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning

process itself, rather than the administration and management of materials,

assessments and coursework. OUR product enables teachers to create subject and

age-specific environments for their students using any web-based resources, such as

videos, simulations and written materials that are appropriate.

1. A feature that allows users to access and use existing web-based resources;

2. A feature that allows the system to exist in multiple different instantiations;

3. A feature that allows user configuration of the system to create a specific instantiation.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Feature derivation
Example : from a scenario

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a class project

should be focused around the fishing industry in the area, looking at the history, development and

economic impact

As part of this, students are asked to gather and share reminiscences from relatives, use newspaper

archives and collect old photographs related to fishing and fishing communities in the area. Students

use an iLearn wiki to gather together fishing stories and SCRAN (a history archive) to access

newspaper archives and photographs. However, Jack also needs a photo-sharing site as he wants

pupils to take and comment on each others’ photos and to upload scans of old photographs that they

may have in their families. He needs to be able to moderate posts with photos before they are

shared, because pre-teen children can’t understand copyright and privacy issues.

Jack sends an email to a primary school teachers’ group, which he is a member of to see if anyone can

recommend an appropriate system. Two teachers reply and both suggest that he uses KidsTakePics,

a photo-sharing site that allows teachers to check and moderate content. As KidsTakePics is not

integrated with the iLearn authentication service, he sets up a teacher and a class account with

KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the students in his

class so that when they log in, they can immediately use the system to upload photos from their

phones and class computers.

1. A wiki for group writing.

2. Access to the SCRAN history archive.

3. Features to set up and access an e-mail group.

4. A feature to integrate applications with the iLearn authentication service.

Configuration feature has already been identified from product vision.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

New related features and feature generalization

Example :

Initial feature :

1. A wiki for group writing.

New related features :
Age-appropriate ways for collaborative writing

1.1 Collaborative writing, where several people can work simultaneously on the

same document.

1.2 Blogs and web pages as a way of sharing information

Example :

Initial feature :

2. Access to the SCRAN history archive.

Generalized feature :
2. Access to the any external (history) archive.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features (requirements) description : INPUT-ACTION-OUTPUT

Figure 3.3 The ‘New Group’ feature description

Ian Sommerville – Engineering Software Products

Figure 3.2 Feature description

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features (requirements) description : STRUCTURED NARATIVE

DESCRIPTION

Example

Figure 3.11 The iLearn authentication feature

Ian Sommerville – Engineering Software Products

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features (requirements) description : STRUCTURED NARATIVE

DESCRIPTION with USER STORIES

Example

For relatively long feature description.

Description with more user stories

As a system manager, I want to create and configure an iLearn environment by adding and

removing services to/from that environment so that I can create environments for

specific purposes.

As a system manager, I want to set up sub-environments that include a subset of services

that are included in another environment.

As a system manager, I want to assign administrators to created environments.

As a system manager, I want to limit the rights of environment administrators so that they

cannot accidentally or deliberately disrupt the operation of key services.

As a teacher, I want to be able to add services that are not integrated with the iLearn

authentication system.

Constraints

The use of some tools may be limited for license reasons so there may be a need to

access license management tools during configuration.

Comments

Based on Elena’s and Jack’s scenarios

feature

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

<qualifier(s)> <verb> <qualifier(s)> <noun> <condition(s)>

Ex: Automatically cancel accommodation reservation if the guest is a no-show.

Its representation as user story :

As a front desk clerk, I want the system to automatically cancel an accommodation

reservation if the guest is a no-show so that the rooms are immediately made

available for future reservations and walk-in guests.

OBS. Nouns must be defined in the glossary

Accommodation: A temporary place to stay. May be provided by a room, suite, chalet or dormitory.

Guest: A person who occupies accommodation at a hotel.

Reservation: The arrangement by which accommodation is secured in advance of a stay.

Verb-noun style

https://www.linkedin.com/pulse/describing-software-features-phil-robinson

<action> the <result> by|for|of|to <object>

Ex.: Create the container for documents or groups.
FDD (Feature Driven Development) style

Ian Sommerville – Engineering Software Products

Features (requirements) description : NARATIVE DESCRIPTION

STRUCTURING and USER STORIES

Structuring examples

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Features demonstration

Objective :

• Demonstrate (new) identified features

• Discover problems, omissions, inconsistencies in the list of features

Method :

• Create a prototype system or extend an existing prototype.

• Focus on novel and critical feature of the system

Result :

• Updated feature list

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Creative innovation

A feature set is identified from scenarios and user stories.

Scenarios and user stories based on the research on users

result in an understanding of how the software might be used.

The development team may obtain future improvement by

creatively think about alternative or additional features that

help users to work more efficiently or to do things differently.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Formative evaluation

1. Why is important to create Personas ?

2. Which are the sources of information for deriving the product

features?

3. Consider this simple feature description : “Grade quiz”. Extend it

with a possible example of qualifications and condition (verb-noun

style). Then describe it with a user story (represented in standard

format), where the user is “teacher”.

https://forms.gle/wePLGxnozFHMfHaA7

https://forms.gle/wePLGxnozFHMfHaA7

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Key points

Software requirements specify services and qualities that the

customer requires from a system, and constraints under which

system operates and is developed.

There are two basic orthogonal classifications for software

requirements : functional / extra-functional and user / system.

Requirements engineering process is an iterative process including

requirements elicitation, analysis and specification, validation, and

management.

Requirements engineering process has the main objective to create

and maintain a document containing all requirements

specifications.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Key points

A software product feature is a fragment of functionality that implements a

requirement.

The first stage of product development is to identify the list of product

features in which each feature is identified and gets a brief description

of its functionality.

Personas are ‘imagined users’ for which is created a character portrait of

a type of user that is supposed to use the product.

A persona description should ‘paint a picture’ of a typical product user. It

should describe their educational background, technology experience

and why they might want to use the product.

A scenario is a narrative that describes a situation where a user is

accessing product features to do something that they want to do.

Adapted after ©Ian Sommerville Engineering oftware Products (2019) and Software Engineering, 9th ed. (2010). Chapter 4

Key points

Scenarios should always be written from the user’s perspective and

should be based on identified personas or on real users.

User stories are finer-grain narratives that set out, in a structured way,

something that a user wants from a software system.

User stories may be used as a way of extending and adding detail to a

scenario or as part of the description of system features.

The key influences in feature identification and design are user research,

domain knowledge, product knowledge, and technology knowledge.

Features can be identified from scenarios and stories by highlighting user

actions in these narratives and thinking about the features that are

needed to support these actions.

