
Slide  1

Software Engineering

Lecture 1

Instructor : Conf. dr. Cristina Mîndruţă
cristina.mindruta@e-uvt.ro

Sites: 

http://sites.google.com/site/ingswcm

http://sites.google.com/site/ingswcm


Slide  2

As a student with no other experience than having done some programming, it is quite 

difficult to understand what more is involved in software engineering.

Typically, when creating a program in a course setting, the exercise starts from an 

idea that may have been explained in a few words: say, less than one hundred 

words.

Based on the idea, the student and his classmates developed a piece of software, 

meaning they wrote code and made sure that it worked. After the assignment they 

didn’t need to take care of it. These assignments were small and to perform them 

they really did not need much engineering discipline. 

This situation is quite unlike what you have to do in the industry, where code written 

will stay around for years, passing through many hands to improve it. Here a 

sound approach to software engineering is a must. Otherwise, it would be 

impossible to collaborate and update the software with new features and bug fixes. 

Nevertheless, the experience in school is an important and essential beginning.

I. Jacobson, H. Lawson, Pan-Wei Ng, P.E. McMahon, M. Goedicke

The Essentials of Modern Software Engineering, 2019, ACM Books



Slide  3

Topics covered

Issues in developing and supporting software products

⚫ A simple program

⚫ Size and complexity of a system

⚫ Technical and non-technical issues

⚫ Concerns in case of a large application 

⚫ Coordination efforts for process, product and people



Slide  4

“Given a collection of lines of text (strings) stored in a file, sort them in alphabetical 
order, and write them to another file”.

A simple program

What is the format of the data?

How should data be stored?

Ascending or 

descending sorting?

What do we do with 

nonalphabetic characters?

How should we handle 

empty lines and empty files?

How should error 

conditions be handled?

How quick to sort?

Are there plans to extend the 
program in the future?

What kind of interface should 

the program have?

What is de dimension 

of the input data?

On which platforms does the 
program need to run?

When does the customer needs the 
program and how much can he pay?



Slide  5

Requirements

Clarify the REQUIREMENTS.

Program requirements : statements that define and qualify what the program 

needs to do.

⚫ Functional requirements : What a program needs to do.

⚫ Quality attributes (extra-functional requirements) : The manner in which the 

functional requirements need to be achieved.

Design constraints : Statements that constrain the ways in which the software 

can be designed and implemented.

Sorting. Ascending or descending sorting?

What do we do with nonalphabetic characters?

How should we handle empty lines and empty files?

How quick to sort?

Are there plans to extend the program in the future?

What kind of interface should the program have?

What is the dimension of the input data?

On which platforms does the program need to run?



Slide  6

Requirements

Functional requirements : What a program needs to do.

Define program functionality.

Quality attributes (extra-functional requirements) : The manner in which the 
functional requirements need to be achieved.

Typical examples: performance, modifiability, usability, configurability, reliability, 
availability, security, scalability.

Design decisions and constraints : Statements that constrain the ways in which the 
software can be designed and implemented.

Choice of:

⚫ Programming language

⚫ Platforms the system runs on

⚫ Interfaces to user and to external systems

⚫ Tools to be used

⚫ etc.



Slide  7

A simple program – the thinking process

Functional requirements : What a program needs to do. Define program functionality.

Input formats: 

What is the format of the data?  ASCII, UNICODE, hybrid?

How should data be stored: what separates the lines of a file? 

Decision: ASCII; CR+LF

Sorting:

Ascending or descending sorting?

What do we do with nonalphabetic characters? Numbers before or after letters? Lowercase vs. 

uppercase. 

Decision: sorting characters in numerical order, sorting file in ascending order.

Special cases, boundaries, error conditions:

How should we handle empty lines and empty files?

How should error conditions be handled?

Decision: no special treatment for empty line; empty output file created for empty input file; 

all errors reported to the user; presumption: input file is not corrupted.



Slide  8

A simple program – the thinking process

Quality attributes (extra-functional requirements) : The manner in which the 

functional requirements need to be achieved.

Typical examples: performance, modifiability, usability, configurability, reliability, availability, 

security, scalability.

Performance:

Q: How quick to sort?

A: Less than 1 min. to sort a file of 100 lines of 100 characters each.

Decision: an algorithm with a proper response time, selected based on the analysis 

of existing sorting algorithms.

Modifiability :

Q: Are there plans to extend the program in the future?

A: Changes in sorting order may be requested in the future.

Decision: Prepare the program for future changes in sorting order.



Slide  9

A simple program – the thinking process

Design decisions and constraints : Statements that constrain the ways in which the 

software can be designed and implemented.

Platforms:

DECISSION on architecture, OS, available libraries.

Portability is more or less limited  extra cost implied by supporting a new platform 
TRADEOFF between developing for portability and the predicted need for future portability.

Schedule requirements:

Technical people inform about feasibility and cost  for different deadlines.

The client establishes the final deadline.

User interface: CLI, GUI, Web-based ?

Decision:

⚫ Avoid upload and download  not Web-based

⚫ Allow for automation and REUSE program as a module in future applications

 invokable inside a script 

 CLI



Slide  10

A simple program – the thinking process

Design decisions and constraints : Statements that constrain the ways in which the 
software can be designed and implemented.

Typical and maximum input sizes:

Small  any sorting algorithm  the simplest to implement

Large, fit in RAM  an efficient algorithm

Large, not fit in RAM  specialized algorithm for on-disk sorting

Programming language:

May be a design constraint.

May be a design decision based on type of programming needed, the performance and 
portability requirements, the technical expertise of the developers.

Algorithms:

May be given as design constraint or as functional requirements.

May be design decisions influenced by:

⚫ the language used and the library available – we may use a standard facility offered by 
the programming language

⚫ required performance – trade-off with effort required to implement and the expertise of 
the developers



Slide  11

A simple program – Testing

Testing – dynamic verification of the written code.

Levels of testing

- Unit testing

- Integration testing

- Acceptance testing

Unit testing – process followed by a programmer to test each piece or unit of 

software.

Programmer:

- Writes code

- Writes tests to check each module, function or method.

XP – programmers write tests before writing the code.



Slide  12

A simple program – Estimating effort

Estimating effort - important aspect of a software project.

Effort estimation  cost estimation, schedule estimation.

Test – 1 minute:

Estimate how much time do you need to write a program that read lines 

from one file and write the sorted lines to another file, using your 

favorite language. You must implement the sort algorithm and to offer 

a GUI with two text boxes and two buttons in which the user can 

select the input file and the output file using the File Open dialog. 

Assume you can work only on this one task, with no interruptions.

Is realistic the assumption to work with no interruptions and only to this task?



Slide  13

A simple program – Estimating effort

Divide the task into subtasks:

⚫ Create class StringSorter with three public methods: Read, Write, Sort

⚫ Implement sorting routine using an algorithm that involves finding the largest element, 

putting it at the end of array, and then sorting the rest of the array using the same 

mechanism 

 create a method IndexOfBiggest that returns the index of the biggest element in 

an array.

Homework :

Estimate an ideal time (asap) and a calendar time for each task in the following list:

• IndexOfBiggest

• Sort

• Read

• Write

• GUI

• Testing

Implement the solution and compare estimated with actual time.



Slide  14

A simple program – Estimating effort

Conclusion:

⚫ Estimation is more accurate after dividing the work into tasks

⚫ Estimation will differ more or less from the actual effort

⚫ Estimation benefits from previous experience

⚫ Estimation is less accurate at the beginning of the project.

Estimation – important issue in software project management.



Slide  15

A simple program – Implementations

Language-independent GUIDING RULES:

⚫ Be consistent in names, capitalization, programming conventions

⚫ Try to follow the established conventions of the programming language

(ex. Java: class name-uppercase, variable name-lowercase, separate words with 

uppercase; C:use lowercase and separate words with underscore)

⚫ Chose descriptive names; long for elements that have a global scope (ex. classes, 

public methods), short for local references (ex. local variables, private names).

⚫ The methods/procedures/functions used in the module you develop must be 

previously proved to work  a possible problem is in your module.

⚫ Know and use as much as possible the standard library provided by the 

language  improve development time, (re)use of debugged and optimized 

code.

⚫ REVIEW the code, if possible with other people. 



Slide  16

A simple program – Implementations

Basic design of the example application to be implemented:

Decisions:

1.     Good practice : separate the sorting functionality from the user interface  ?

possibility to independently change either UI or sorting functionality.

2. Class: StringSorter

Methods: 

• Read strings from a file 

• Sort the collection of strings

• Write strings to a file

• Take input and output file names and combine the previous methods

Exceptions: passed to the UI classes.

3. More UI classes, one for each UI type.



Slide  17

A simple program – Implementations

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

... 

}

Unit testing of the example application:

Decission: Use of JUnit

Write a class containing all unit tests
(inherits from junit.framework.TestCase, contains 

testXXX() methods, uses assertEquals() to 

compare expected with actual values).



Slide  18

A simple program – Implementations

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

public void readFromStream(Reader r) throws IOException{

BufferedReader br=new BufferedReader(r);

lines=new ArrayList();

while(true) {

String input=br.readLine();

if(input==null)

break;

lines.add(input);

}

}

}

public class TestStringSorter extends TestCase {

private ArrayList make123() {

ArrayList lst = new ArrayList();

lst.add("one"); lst.add("two"); lst.add("three");

return lst;

}

public void testReadFromStream() throws IOException{

Reader in=new FileReader("in.txt");

StringSorter ss=new StringSorter();

ArrayList lst= make123();

ss.readFromStream(in);

assertEquals(lst,ss.lines);

}

}

Apply the test using a Test Runner to verify 

the implementation of the method.

in.txt one

two

three



Slide  19

A simple program – Implementations

The chosen algorithm : 

⚫ Find the largest element in the array

⚫ Swap it with the last element

⚫ Repeat with the rest of the array.

Supporting methods:

⚫ Swapping two elements of the array

⚫ Finding the index of the largest element in a given subarray



Slide  20

A simple program – Implementations

static void swap(List lst, int i1, int i2) {

Object tmp=lst.get(i1);

lst.set(i1, lst.get(i2));

lst.set(i2, tmp);

}

public class TestStringSorter extends TestCase {

private ArrayList make123() {...}

public void testReadFromStream() throws IOException{...}

public void testSwap() {

ArrayList lst1=make123();

ArrayList lst2=new ArrayList();

lst2.add("one"); lst2.add("three"); lst2.add("two");

StringSorter.swap(lst1,1,2);

assertEquals(lst1,lst2);

}

} 

Apply the test using a Test Runner to 

verify the implementation of the method.



Slide  21

A simple program – Implementations

static void findIdxBiggest(List lst, int from, int to) {

String biggest=(String)lst.get(from);

int idxBiggest=from;

for(int i=from+1; i<=to; ++i) {

if(biggest.compareTo((String)lst.get(i)<0) {

biggest=(String)lst.get(i);

idxBiggest=i;

}

}

return idxBiggest;

}

public class TestStringSorter extends TestCase {

private ArrayList make123() {...}

public void testReadFromStream() throws IOException{...}

public void testSwap() {...} 

public void testFindIdxBiggest() {

ArrayList lst = make123();

int i = StringSorter.findIdxBiggest(lst,0,l.size()-1);

assertEquals(i,1);

}

}

Apply the test using a Test Runner to 

verify the implementation of the method.



Slide  22

A simple program – Implementations

public class TestStringSorter extends TestCase {

private ArrayList make123() {...}

public void testReadFromStream() throws IOException{...}

public void testSwap() {...} 

public void testFindIdxBiggest() {...}

public void testSort1() {

StringSorter ss = new StringSorter();

ss.lines=make123();

ArrayList lst2=new ArrayList();

lst2.add("one"); lst2.add("three"); lst2.add("two");

ss.sort();

assertEquals(lst2,ss.lines);

}

}

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

public void readFromStream(Reader r) throws IOException{...}

public void sort() {

for(int i=lines.size()-1; i>0; --i) {

int big=findIdxBiggest(lines,0,i);

swap(lines,i,big);

}

}

}

Apply the test using a Test Runner to 

verify the implementation of the method.



Slide  23

A simple program – Implementations

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

public void readFromStream(Reader r) throws IOException{...}

void sort() {

java.util.Collections.sort(lines);

}

}

More efficiency if we know the standard library of the language: 

⚫ we do not need the static classes swap and findIdxBig

⚫ the code in class StringSorter is more simple.



Slide  24

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

public void readFromStream(Reader r) throws IOException{...}

public void sort() {...}

public void writeToStream(Writer w) throws IOException {

PrintWriter pw=new PrintWriter(w);

Iterator i=lines.iterator(i);

while(i.hasNext()) {

pw.println((String)(i.next()));

}

}

A simple program – Implementations

public class TestStringSorter extends TestCase {

private ArrayList make123() {...}

public void testReadFromStream() throws IOException{...}

public void testSort1() {...}

public void testWriteToStream() throws IOException {

StringSorter ss1 = new StringSorter();

ss1.lines=make123();

Writer out=new FileWriter(“test.out”);

ss1.WriteToStream(out);

out.close();

Reader in=new FileReader(“test.out”);

StringSorter ss2=new StringSorter();

ss2.readFromStream(in);

assertEquals(ss1.lines,ss2.lines);

}

}

Apply the test using a Test Runner to 

verify the implementation of the method.



Slide  25

import java.io.*;

import java.util.*;

public class StringSorter {

ArrayList lines;

public void readFromStream(Reader r) throws IOException{...}

public void sort() {...}

public void writeToStream(Writer w) throws IOException {...}

public void sort(String inputFileName, String outputFileName) throws IOException{

Reader in=new FileReader(inputFileName);

Writer out=new FileWriter(outputFileName);

readFromStream(in);

sort();

writeToStream(out);

in.close();

out.close();

}

}

A simple program – Implementations

public class TestStringSorter extends TestCase {

private ArrayList make123() {...}

public void testReadFromStream() throws IOException{...}

public void testSort1() {...}

public void testWriteToStream() throws IOException {...}

public void testSort2() throws IOException {

StringSorter ss1=new StringSorter();

ss1.sort(“in.txt”,”test2.out”);

ArrayList lst= new ArrayList();

lst.add("one"); lst.add("three"); lst.add("two");

Reader in=new FileReader(“test2.out”);

StringSorter s2=new StringSorter();

ss2.readFromStream(in);

assertEquals(lst,ss2.lines);

}

}
Apply the test using a Test Runner to 

verify the implementation of the method.



Slide  26

A simple program – User Interfaces

Until now : unit-tested (not extensive) implementation of StringSorter.

User Interface – a program that will alow to acces the functionality of 
StringSorter.

Variants :

⚫ CLI  (command line interface)

⚫ GUI  (graphic user interface)



Slide  27

A simple program – User Interfaces

import java.io.IOException;

public class StringSorterCommandLine {

public static void main(String args[]) throws IOException {

if(args.length!=2) {

System.out.println(“Use: cmd inputfile outputfile”);

}else{

StringSorter ss=new StringSorter();

ss.sort(args[0],args[1]);

}

}

}

The command line to use the StringSorter looks like:

java StringSorterCommandLine a.txt a_sorted.txt

When is useful such an interface?

What are the advantges of writing such an interface ?



Slide  28

A simple program – User Interfaces

import java.io.IOException;

public class StringSorterGUI1 {

public static void main(String args[]) throws IOException {

try{

StringSorter ss=new StringSorter();

String inputFileName=JOptionPane.showInputDialog(“Please enter input file name”);

String outputFileName=JOptionPane.showInputDialog(“Please enter output file name”);

ss.sort(inputFileName,outputFileName);

}finally{

System.exit(1);

}

}

}

Do you like this GUI ?

Propose a more friendly one !



Slide  29

Summary; conclusions

⚫ Single program

⚫ Developed by a one person

⚫ Few users

⚫ Issues:

• Functional requirements and quality attributes

• Design constraints and decissions

• Testing

• Effort estimation

• Implementation details

⚫ Activities:

• Requirements understanding

• Estimate effort and possibly plan the development

• Design the solution

• Implement the solution

• Test for correctness and with the user

A (simple) PROCESS.

Minimal DOCUMENTATION.

What if ?

Complex system with multiple components.



Slide  30

Terminology

Problem - to be solved by a software system.

Problem space – the business domain where the problem is defined.
Specified by user requirements.

Domain model – entities and relationships in the business domain that define the 
problem to be solved.

Result of the requirements analysis.

Solution space – the software domain in which the solution will be implemented.

Result of design decisions and constraints.

Design – representation of the entities and relationships in the solution space that 
define the solution software system before it is coded (implemented).
Result of the design process. 

Solution – a software system that solves the problem.

Result of the software development process.



Slide  31

Topics covered

Issues in development and suport software products

⚫ A simple program

⚫ Size and complexity of a system

⚫ Technical and non-technical issues

⚫ Concerns in case of a large application 

⚫ Coordination efforts for process, product and people



Slide  32

Size and complexity

Size : number of

⚫ major functions

⚫ features within each functional area

⚫ interfaces to external systems

⚫ simultaneous users

⚫ types of data and data structures

Complexity :

⚫ linkage (ex. sharing data, transfer of control, both)

⚫ relationships (ex. hierarchical, sequential, loop, recursive, etc.)



Slide  33

Topics covered

Issues in development and suport software products

⚫ A simple program

⚫ Size and complexity of a system

⚫ Technical and non-technical issues

⚫ Concerns in case of a large application 

⚫ Coordination efforts for process, product and people



Slide  34

Technical issues

Handling the SIZE and COMPLEXITY: 

⚫ Problem decomposition

⚫ Solution modularization

⚫ Separation of concerns

⚫ Incremental iterations



Slide  35

Technical issues

Technology and tools

• Technical choices:

• Programming language:...

• Development tools : IDEs, …

• Infrastructure : DBMS, network, middleware,...

• Management tools : code version control, …

Diversity in background and experience of the team members 

agreement for the choices, training plans, etc.



Slide  36

Technical issues

Process and methodology

Software development process (software development lifecycle –

SDLC) = The set of activities, the sequence and flow of these 

activities, the inputs to and the outputs from the activities, and the 

preconditions and postconditions for each of the activities 

involved in the production of software.

⚫ Contains the activities required for developing and maintaining 

software.

⚫ Used in guiding and in coordinating and managing complex projects 

involving many people.

Methodology – a particular procedure or a set of procedures. 



Slide  37

Technical issues

Process and methodology

Comon activities in software development process.

Requirements gathering and 

specification

Design

Code / unit test

User support and problem fix

Integrate and test

Is there a methodology for 

gathering requirements? What if 

more persons are implied ?

What constitutes user support ?

What kind of problems must be fixed?

How do these activities relate to 

each other? (sequences, overlap, 

starting conditions,...) 



Slide  38

Technical issues

Process and methodology – a possible process approach:

Requirements

Design

Integration

Requirements Requirements…

Code

Design DesignArchitecture

Code Code Code

…

…

Test FixTest Fix Test Fix…

Incremental development  (problem and solution divided into increments)

and continuous integration.



Slide  39

nonTechnical issues

Effort estimation and schedule

Issues:

⚫ Difficult before understanding the requirements.

⚫ Needs knowledge about individual productivities of the team members.

⚫ Difficulty in direct relation with the size and complexity of the problem.

⚫ More accurate as the project goes on.

⚫ More accurate if experience with similar projects exist.

Assignments and communications

Assignment of people to tasks based on skills and availability

Objective : assign the most effective and properly skilled people to the right tasks.

Communications

• The number of direct communication paths grows as C
2
n with the number of people 

involved in software development.

• Probability of error in communication grows with the number of people implied

 need for communication structures and protocols and for standard meaning of 
messages. 



Slide  40

Topics covered

Issues in development and suport software products

⚫ A simple program

⚫ Size and complexity of a system

⚫ Technical and non-technical issues

⚫ Concerns in case of a large application 

⚫ Coordination efforts for process, product and people

A more complex problem:  Hypothetical Payroll System

Payroll : (1) the sum of all financial records of salaries for an employee, wages, bonuses and 

deductions. (2) amount payed to employees for services they provided during a period of time.



Slide  41

Hypothetical Payroll System

Requirements

Functional requirements: (examples)

⚫ Add, modify, delete names and associated personal information of all 

employees

⚫ Add, modify, delete all the benefits associated with all employees

What the “associated information” is?

Whom shall I ask? User, client, project manager?

Should I document the answers?

What are “all benefits”?

What is the implication of having a benefit on an employee’s payrol?

Is there a list of all possible benefits? Will it be modified in the future?



Slide  42

Hypothetical Payroll System

Requirements

Functional requirements: (examples)

⚫ Add, modify, delete all the tax and other deductions associated with all 

employees

⚫ Add, modify, delete all the gross income associated with all employees

⚫ Add, modify, delete all the algorithms related to computing the net pay for 

each employee



Slide  43

Hypothetical Payroll System

Requirements

Functional requirements: (examples)

⚫ Generate a paper check or an electronic direct bank deposit for each 

employee

Which is the payroll cycle?

Which is the deadline for inputs to the cycle (ex. salary increase)

In order to properly handle the functional requirements 

you need to understand the application domain-specific 

knowledge related to the problem.



Slide  44

Hypothetical Payroll System

Requirements

Quality attributes (nonFunctional requirements): (examples)

⚫ Performance

Which is the volume of payroll transactions?

Which is the speed of processing each payroll transaction?

In order to properly handle some quality attributes you 

need to have knowledge of technical system.



Slide  45

Hypothetical Payroll System

Requirements

Quality attributes (nonFunctional requirements): (examples)

⚫ Usability

In order to properly handle other quality attributes you need 

to have interface information.

What is the experience of the user with GUI?

What are the user profiles? 

How to undo and reprocess a paycheck based on a bad record?



Slide  46

Hypothetical Payroll System

Design

Should “add, update, delete” functional requirements be 

grouped into a single component called “payroll administrative 

functions”?

YES ! 

Group related functions into components



Slide  47

Hypothetical Payroll System

Design

Should I group processing functions (calculations of all deductions 

and of net pay amount) into a single component called “payroll 

processing”?

YES ! 

Group related functions into components



Slide  48

Hypothetical Payroll System

Design

Shall I place all interface functions with external 

systems into a component called “payroll interfaces”.

YES ! 

Group related functions into components



Slide  49

Hypothetical Payroll System

Design

I must be prepared to handle errors and exceptions. 

Shall I agreggate handlers into an exception-processing 

component?

YES ! 

Group related functions into components



Slide  50

Hypothetical Payroll System

Design

Advantages of grouping related functions into components:

⚫ Provides some design cohesiveness within the component

⚫ Matches the business flow and the payroll processing environment

⚫ Provides a potential assignment of work by components

⚫ Allows easier packaging of software by components.



Slide  51

Hypothetical Payroll System

Design

Designers must deal with both cohesion and coupling characteristics of a 

software design

looking for 

high cohesion of each component 

and

low coupling between components.



Slide  52

Hypothetical Payroll System

Design

User interface prototype :  

• layout and style

• content

• navigation relationships

Obs. In this example is not a prime design concern because the application is 

heavily batch-oriented and less interactive.

Database design : 

• tables

• keys

Obs. In this example is an important design concern because the application is 

data intensive.



Slide  53

Hypothetical Payroll System

Design

Applied techniques:

⚫ Functional decomposition

⚫ Synthesis

⚫ Defining intercomponent interactions

⚫ Defining intracomponent interactions

Difference from designing a single programing module:

⚫ Greater discipline

⚫ Aditional guiding principles

⚫ More team members



Slide  54

Hypothetical Payroll System

Code and Unit Testing

For each functional unit in a given component build one or more programming units

(modules)

In case of more programming units establish standards for:

⚫ naming conventions for unique identification of the module

⚫ comments

⚫ error messages 

At module level:

Test each programming unit (module) :

⚫ Set the conditions of the module

⚫ Choose the appropriate input data

⚫ Run the module and observe its behaviour through checking the output

Fix the discovered error

Re-test the module



Slide  55

Hypothetical Payroll System

Integration and functionality testing

Functional unit level:

Integrate (compile and link together) all tested modules into the corresponding 

functional unit.

Apply functional test cases1 on the functional unit.

Fix errors in the specific modules.

Re-test the functional unit.

After functional testing have been passed, lock the modules in the functional 

unit for further changes. 

Use a configuration management mechanism. It may be automated using 

configuration management tools (ex. CVS, Subversion,…)

1Test cases (scenarios) are designed based on the use cases (scenarios) which are derived from 

the functional requirements of the system.



Slide  56

Hypothetical Payroll System

Release

Integrate all the components and test to assure that the complete system

works as a whole and in the user business environment.

Detect system interface problems.

Detect component interaction problems.

Fix discovered problems. 

Re-test each modified module, related functional unit and the system as a 

whole

When no more problem is found protect this version of the system (release) 

from further changes.



Slide  57

Hypothetical Payroll System

Release

Educate the users in the usage of the system:

⚫ Prepare the training material

⚫ Train the users

Prepare user support personnel – trained in:

⚫ Payroll system

⚫ User environments

⚫ Tools needed to support customers

RELEASE the payroll system.



Slide  58

Hypothetical Payroll System

Support and Maintenance

Simple application : is not a major concern.

Complex application : 

may be a very complex set of tasks.

Consider at least two sets of support personnel:

⚫ A group to answer and handle system usage and simple problem work-arounds

Skills: communication, payroll system usage knowledge

⚫ A group to fix difficult problems and implement future enhances

Skills: design, coding 



Obs. Support organization is comparable in size and complexity to the original 

development team.



Slide  59

Topics covered

Issues in development and suport software products

⚫ A simple program

⚫ Size and complexity of a system

⚫ Technical and non-technical issues

⚫ Concerns in case of a large application 

⚫ Coordination efforts for process, product and people



Slide  60

Coordination Efforts

Process:

1990s - Improved (extended, complicated) by:

⚫ More reviews, inspections, testing, meetings 

⚫ Expensive quality assurance and measurement efforts

to prevent, detect and correct problems, improve the quality of software and 

increase the productivity of software developers.

2000s – simplified to face new market challenges of speed and cost. 

No single process fits all cases!!!



Slide  61

Coordination Efforts

Product:

Software product content coordination:

⚫ Executable code

⚫ Documentation: requirements specification, design, functional test scenarios, 

user manual

⚫ User education (optional)

⚫ Product support (optional)

Coordination of changes because:

⚫ The initial high functional cohesiveness and low coupling errodate after 

changes are applied

⚫ Complexity increases  testing effort increases

How to design for changes ?

How to coordinate changes ?



Slide  62

Coordination Efforts

People:

Human resource is crucial in the development and support of software!!!

Software industry is still “labor intensive” (! High qualified intelectual labor !)

How to coordinate people’s activities?

How to manage people ?



Slide  63

What …? Why…? How…?

Who…? When…?

SOFTWARE ENGINEERING

Q&A

“A typical software development endeavor involves more than one person working 

on a complex problem over a period of time to meet some objectives.

As a new student, understanding what software engineering is about is not easy,

because there is no way we can bring its realities and complexities into the 

student’s world. 

Nevertheless, it is a student’s responsibility to embark on this journey of learning 

and discovery into the world of software engineering.”

I. Jacobson, H. Lawson, Pan-Wei Ng, P.E. McMahon, M. Goedicke

The Essentials of Modern Software Engineering, 2019, ACM Books



Slide  64

Computing - any goal-oriented activity requiring, benefiting 

from, or creating computers.

Computing disciplines:

⚫ Computer Engineering

⚫ Computer Science

⚫ Information Systems

⚫ Information Technology

⚫ Software Engineering

Computing

Computing Curricula 2005 – The Overview Report, A 

cooperative project of ACM, AIS, IEEE-CS



Slide  65

Computing Curricula 2005 – The Overview Report

A cooperative project of ACM, AIS, IEEE-CS



Slide  66

Computing Curricula 2005 – The Overview Report

A cooperative project of ACM, AIS, IEEE-CS



Slide  67

Computing Curricula 2005 – The Overview Report

A cooperative project of ACM, AIS, IEEE-CS



Slide  68

Computing Curricula 2005 – The Overview Report

A cooperative project of ACM, AIS, IEEE-CS



Slide  69

Computing Curricula 2005 – The Overview Report

A cooperative project of ACM, AIS, IEEE-CS



Slide  70

Computing

Computing Curricula 2005 – The Overview Report, A 

cooperative project of ACM, AIS, IEEE-CS


