
Software Engineering – Lecture 13

The Essence of Software Engineering

Adapted after

I. Jacobson, H. Lawson, Pan-Wei Ng, P.E. McMahon, M. Goedicke

The Essentials of Modern Software Engineering, 2019, ACM Books

Rezumat

Essence : limbaj + nucleu

Subiecte tratate

Essence games

Using Essence kernel

Using practices

Essence cards

Essence card - tangible thing that contains a concise description of the most

important information about an Essence element.

• act as reminders to practitioners

• additional details are available in complementary guidelines.

Motivation

Team performance depends on effective communication, common

understanding, trust  collaboration.

Cards utility

Used to play collaborative games as facilitating tools in a variety of settings

and purposes (ex. obtain a consensus about the work)

• used to introduce the kernel and practice elements

• to understand endeavor purpose, benefits and problems

• resolve conflicts in limited time

Essence games

Serious games (beyond entertainment)

Simulate lifelike events aiming to achieve specific goals

• solve a particular real-world problem

• learn something new.

• develop skills (basic mental abilities such as perception, attention, and decision

making).

Essence games :

• Cooperative, consensus-based (not competitive)

• Highly reusable aids when carrying out multiple practices.

• Players express their thoughts clearly, listen to one another, share

information and resources, learn from one another, identify solutions,

negotiate, and make common decisions.

• Stimulate a team to :

• discuss the issues related to the health and progress of their own endeavors.

• look ahead at states and checklists not yet achieved clarifying what is

important to do next.

Essence games

Progress Pocker

Track progress based on the state transitions of alphas.

Items in a checklist provide a hint of what needs to be

done.

Problem :

Are subject to interpretation by the team members,

with different opinions on the their meaning.



need for agreement

Solution : Progress Poker

• facilitate discussion

• achieve understanding about of the current state of a

particular alpha. Fig. 8.1 Software System: Demonstrable alpha state card

The Essentials of Modern Software Engineering

Essence games

Progress Poker

• Played with one alpha at a time

• Are used :

• alpha overview card

• alpha state cards

• Optimal team dimension

3-9 players

Rules :

• alpha card on the table

• each player places face down the card with his opinion

• compare the results

• discuss different choices (explain and motivate, starting with extreme ones)

• new round

The game ends when a consensus has been reached on the current state

that has been achieved for a particular alpha.

Fig. 8.2 Progress Poker

cards for Requirements

alpha

The Essentials of

Modern Software

Engineering

Essence games

Chasing the state

• Played with all the alphas

• Are used :

• alpha overview card

• alpha state cards

• Optimal team dimension : 3-9 players

Fig. 8.4 Initial position for Chasing the state game

The Essentials of Modern Software Engineering

Essence game

Chasing the state

Rules:

For each alpha

• establish the state

• if consensus is not easily obtained then play Progress Poker

Fig. 8.5 Stakeholders alpha

before and after discussion

The Essentials of Modern

Software Engineering

Fig. 8.6 Stakeholders alpha has

reached first state

The Essentials of Modern Software

Engineering

Essence games

Chasing the state result

Fig. 8.8 The current states for all alphas have been identified

The Essentials of Modern Software Engineering

Essence games

Objective Go

Fig. 8.9 Requirements and Stakeholders Alpha Wave

The Essentials of Modern Software Engineering

Aim - agree upon the next steps

Played after the Chasing the State game

The objective of the next stage, which can be moving some or all alphas to a

next state, is established.

Alphas usually progress in

waves, depending on each

other progress.

Essence games

Objective Go example

Figures 8.10 and 8.11

The Essentials of Modern Software Engineering

For each alpha discuss
• next state that should be achieved

• which checklist items for that state are not yet achieved

• the tasks needed to be done

Example :

Objective : Software System: Demonstrable;

Essence games

Objective Go example

Fig. 8.12 The next step is represented by cards in the middle of the table

The Essentials of Modern Software Engineering

Objective :

• Stakeholders: Involved,

• Software System: Demonstrable;

• Way of Working: Foundation Established;

• Work: Prepared.

Essence games

Checkpoint construction

Fig. 8.9 Requirements and Stakeholders Alpha Wave

The Essentials of Modern Software Engineering

Checkpoint = set of criteria to be achieved at a specific point in time in a

development endeavor; key point in the lifecycle of a software endeavor

where an important decision must be made.

The set of criteria is defined using alpha states.

Essence games

Checkpoint construction

Checkpoint construction is used to synchronize teams working in

parallel.



Must be pecified by the stakeholders of the whole endeavor and not by

every team participating in the endeavor.



The game is played by the stakeholder team.

Stakeholder team = a few key stakeholder members that can represent

the views of the stakeholders.

Essence games

Checkpoint construction

Checkpoint construction is played for one checkpoint and in two rounds.

Rules:

Round 1

• Facilitator lays out the seven Alpha Overview cards on the table and describes

the checkpoint being considered.(e.g. Ready for Development)

• Each team member decides which alphas should be considered as part of the

checkpoint

• Team agrees on which alphas should be considered for the checkpoint.

Round 2

• for each selected alpha

• each team member identifies the state he believes the alpha needs to be in

to pass the checkpoint

• different choices are discussed (explain and motivate, starting with extreme ones)

The game is played until consensus is obtained.

Essence games

Checkpoint construction

Facilitator leads the group through a discussion of potential

additional checklist items to be added for the checkpoint.



The generic checklist items on the cards can be tailored to the

context of the specific endeavor.

By applying the Checkpoint Construction game several times, a

whole lifecycle can be defined.

Subiecte tratate

Essence games

Utilizarea nucleului Essence

Utilizare practici

Understanding the Context

Software engineering is a result of recognizing a problem or an opportunity.

Sources of problems (examples) :

• related to an existing software system - understanding its original
requirements

• related to the stakeholders – they do not have time to involve as needed

• related to team communication – a less experienced developer may not
be guided enough by a busy experienced developer.

Example : TravelEssence

TravelEssence – fictitious company, leading travel service provider.provides online hotel
booking services for travelers. In addition, TravelEssence provides Software as a
Service (SaaS) for the operation of hotels. SaaS means that the owner of the software,
in this case TravelEssence, provides software as a service over the internet and the
clients pay a monthly fee. Hotels can sign up and use the TravelEssence service to

check-in and check-out their customers, print bills, compute taxes, etc.

The opportunity :

If TravelEssence would provide recommendations online through a software

solution, it can provide better service to customers, thereby shortening the time

customers need to make a purchase decision.

The current system provides different usage scenarios for different kinds of

customers (e.g., new travelers, frequent travelers, corporate travelers, agents, etc.). The

software system involves a mix of mobile applications and a cloud-based backend.

Smith and his team had been assigned to work on providing a new functionality for

TravelEssence, specifically a recommendation engine for travelers.

Context representation with alphas

Fig. 9.1 Understand context with Essencee.

The Essentials of Modern Software Engineering

Context representation

Perspective : Customer

Stakeholders:

Digital Transformation Group

(Digital Transformation = use of technology to radically improve a company’s performance)

• Dave – CDO (Cief Digital Officer)

• Angela – collaborates with Smith and his team

Opportunity :

• exist data about travelers who logged their experience and shared it using

social media sites

• TravelEssence can use data from repeat customers to attract new

customers.

Context representation

Perspective : Solution

Requirements:

• analysis of traveler data  identify trends and relationship  recommend new

travel options

Software System :

• a mobile, cloud-based application already exist

• to be developed – a simple plug-in to allow customers to view

recommendations

Fig. 9.2 Enhancement to the Software System to achieve

recommendations.

The Essentials of Modern Software Engineering

Context representation

Perspective : Endeavor

Work:

• deliver a working demo in one month

Team :

• Smith (team leader),

• Tom, Joel (experienced with mobile app and microservices),

• Grace (experienced only with mobile app)

Way of Working :

• use the facilities of Essence kernel to evaluate progress and health,

• use only alphas, states, checklists  ‘vanilla’ Essence, with no extensions to

the kernel.

Development Scope and Checkpoints (milestones)

Alphas and their state’s checklists – used to gain agreement about

• preconditions for starting development

• criteria for completing development

Checkpoints to be defined

Ckeckpoint Construction game is played – 2 rounds

1. selecting the relevant alphas

2. agree on the alpha states in the definition of the checkpoint

Fig. 9.3 Checkpoints and phases for enhancement of

TravelEssence

The Essentials of Modern Software Engineering

Checkpoint Construction game result

Fig. 9.4 Defining the two checkpoints using alpha state cards

The Essentials of Modern Software Engineering

Checkpoint : Ready for development

Stakeholders : Involved

Opportunity : Value Established

Requirements : Bounded

Software System : Architecture Selected

Work : Initiated

Team : Formed

Way of Working : Foundation Established

State cards for each alpha contain checklists.

Discussion of the checklists on each state card to reach agreement on

any additional checklist items.

Agreeing on the most important things to watch

Requirements alpha is not enough for measuring day-to-day progress.

Team agreed to track progress for requirements items, defects, and issues during

development, using a spreadsheet.

Obs. The individual requirement item (Requirement item) may be defined as a

sub-alpha of Requirements alpha.

Agreeing on the most important things to watch

Chase the State game – determine the current stage of the development

Way of Working : Foundation Established

• iterative development

Requirements : Conceived

• a requirement items list is developed and agreed

 Requirements : Bounded

Fig. 9.5 Requirements: Conceived and Bounded state cards

The Essentials of Modern Software Engineering

Fig. 9.6 Requirement item list

The Essentials of Modern Software Engineering

Plan-Do-Check-Adapt Cycle

Way of Working : Foundation Established

• agile, iterative development

Fig. 10.1 Plan-Do-Check-Adapt cycle

The Essentials of Modern Software Engineering

Plan-Do-Check-Adapt Cycle

1. Determining the current stage :

• Progress Poker for Requirements and Software System alphas

• Chase the State for the rest of alphas

Fig. 10.2 The alpha states agreed

The Essentials of Modern Software Engineering

Plan-Do-Check-Adapt Cycle

2. Determining the objective of the current iteration :

• Objective Go

3. Identified needs :

• convince management of the value of our endeavor

• stakeholders involved

• demonstrate the implementation

Fig. 10.3 The results after applying the Objective Go game

The Essentials of Modern Software Engineering

Plan-Do-Check-Adapt Cycle

4. Identifying tasks to achieve the states.

Examples :

• set up a meeting with Dave and Angela (stakeholders)

• set up a test environment

• break tasks down further and agree on the pieces to complete in the

current iteration (ex. not all requirements but only the first 3)

Plan-Do-Check-Adapt Cycle

Do

Working on the identified tasks

Check

Green/red stickers near healthy/unhealthy states

Unhealthy : the checklist is not yet being met or had previously been met, but is no

longer met due to some changes

Adapt

Review way of working

Identify obstacles

Find better or more suitable ways to do things



Changes in plans and ways of working

Fig. 10.4 Task list

The Essentials of Modern Software Engineering

Planning
with Essence

Customer perspective

The curent state and the target state have been identified playing Chase the State and

Objective Go.

Identification of the tasks needed to achieve the target state.

Task : Stakeholder involvement meeting
Fig. 10.5 Stakeholders current and target states

The Essentials of Modern Software Engineering

Need to convince senior management at TravelEssence to move

forward and fund the effort.

Task: Experiment with different ideas to increase business.

Fig. 10.6 Opportunity current and target states

The Essentials of Modern Software Engineering

To convince about the solution valability

the team will set up a test environment

where they could quickly experiment

with different ideas for using the

travelers’ existing data.

Planning
with Essence

Customer perspective

Obs. It is possible to have more

than a target state for each alpha.

Requirements selected to be addressed:

Req-Item #1. System generates recommendations for a traveler

Req-Item #2. Mobile plug-in displays recommendations

Req-Item #3. System handles user’s selection to view or discard recommendations

Task: Smith to work with Angela to reach agreement on recommendation

algorithm, and which set of travelers they would use as their test data set.

Fig. 10.7 Requirements current and target states

The Essentials of Modern Software Engineering

Planning
with Essence

Solution perspective

Code, test and integrate critical parts of the system.

Task: Team members work on implementing their respective

requirement items.

Fig. 10.8 Software System current and target states

The Essentials of Modern Software Engineering

Planning
with Essence

Solution perspective

As part of Req-Item #1, the team had discussed providing recommendations for

both hotels and restaurants, but Smith decided this was too much for the

first iteration and suggested the team limit the work for now to just providing

hotel recommendations.

Task: Team breaks work down to fit in the planned iteration.

Fig. 10.9 Work current and target states

The Essentials of Modern Software Engineering

Planning
with Essence

Endeavor perspective

Team members had successfully worked together before. They each knew

their responsibilities and how they would work together, but the team had

not yet showed that it was working as one cohesive unit.

Task: Integrate work by Wednesday.

Fig. 10.10 Team current and target states

The Essentials of Modern Software Engineering

Planning
with Essence

Endeavor perspective

• establish repository version control tool and the test environment.

• prepare the test environment and supporting scripts

Task: Establish development and test environment.

Fig. 10.11 Way of Working current and target states

The Essentials of Modern Software Engineering

Planning
with Essence

Endeavor perspective

Doing and Checking
with Essence

• Work go smoothly because members were familiar with each other and

they can use communication technology if they re not collocated (ex. Angela

is in another room)

• Work finished on Friday afternoon

• The implementation has been demonstrated to Angela

• Health and progress reviewed by playing Chase the State

Customer perspective

• Stakeholders : Involved

In a meeting, after Friday demo, Angela and Dave agreed to their involvement in future

demonstrations.

• Opportunity : Value Established

Friday demo was successful and convinced about its business value. Dave accepted to

fund the effort.

Solution perspective

• Requirements : Coherent, Addressed

Open issues related to the agreed requirements have been clarified, and then addressed

in the Friday demo.

• Software System : Demonstrated

Successful demonstration of the critical parts of the system agreed for the Friday demo.

Endeavor perspective

• Work : Prepared, started

Agreed tasks have been broken, risks understood, code developed, tested and

integrared, prepared for demo.

• Team : Collaborating

Successful integration on Wednesday for the Friday demo  team was working as a

consistent unit.

• Way of Working : Foundation Established, In Use

Environment has been set up and used during the first iteration.

Doing and Checking
with Essence

Adapting Way of Working
with Essence

Using Essence kernel helped to :

• involve key stakeholders

• think about the opportunity

• break the work down to fit in the agreed way of working

• think about risks

• clarify requirements

• integrate each team member’s work with teammates’ work

• focus on the most important things first

But improvements can exist.

Discussion on the target of the just finished iteration

• What went well with our planning, doing, and checking related to the above alpha states?

• What did not go well with our planning, doing, and checking related to these alpha states?

• What can we do better with our planning, doing, and checking related to the alpha states?

Example :

Tom said, “The way to achieve the

Requirements: Addressed state

was not clear to me at the start of

the iteration. I learned that I had to

talk to Angela and get her to agree

to the requirement items to be

implemented. I didn’t understand

this just by looking at the state

checklist.”

Improvement : additional guidance

with new item added to the check

list of Requirements Addressed

state

Adapting Way of Working
with Essence

Essence kernel helps adapt way of working :

• Target states become visible and the team reason about their way of

working in terms of a process they have followed

• Kernel is extensible (eg. add items to alpha state cards, define new alphas, add

checklists) allowing to make changes to improve way of working.

Software engineering is essentialized by representing the way a team

is working using the Essence language and the Essence kernel

common ground

Adapting Way of Working
with Essence

Analysis

• The list of the requirements

items is not static.

• Items were added at the end of

each iteration.

• Some items were verified in the

first iteration.

By introducing Requirement-item

sub-alphas the team can track

more accurately the progress of

each requirement item and thus of

the requirements as a whole.
Fig. 11.1 Cumulative flow diagram

The Essentials of Modern Software Engineering

States of the

Requirements Item

sub-alpha

Visual display of how the requirements items progress.

• States of the alphas do not always move forward linearly.

• Alphas are interdependent so they progress in waves.

• Alphas need to progress in balance.

• If a particular axis on the radar diagram is progressing slower, this needs to

consider which is the problem and to find solutions.

• Parallel progressions in waves are critical for the success of the endeavor.

Analysis

Table. 11.1 Kernel state evolution

The Essentials of Modern Software Engineering

Table. 11.2 Radar diagrams

The Essentials of Modern Software Engineering

Problems may appear and cause endeavor to fall back compared to a

previously reached alpha state.

Examples of possible problems :

• stakeholders may stop participating

• seasoned team members may leave

• new members, with less experience, may come

Solution :

Team should periodically use the Essence kernel alphas to

provide health check.

Dealing with anomalies

Subiecte tratate

Essence games

Utilizarea nucleului Essence

Utilizare practici

The new current development context

After the team’s successful demonstration.



Decision to expand the scope and vision of the endeavor.



People involved.

Responsible for all IT systems

operations including development

and enhancement of each IT system.

Current development context

Understanding the new context
Alpha State

achieved

Rationale for achieving the state

Stakeholders Involved Cheryl, Dave, and Angela are key stakeholders in the endeavor.

The state is achieved because they were actively involved in

helping the team achieve a successful demo.

Opportunity Value

Established

The team had a successful demo supporting the objectives of the

Digital Transformation Group.

Requirements Bounded The team had successfully gotten the key stakeholders involved

and those key stakeholders had reached a shared understanding

of the extent of the proposed solution.

Software

System

Architecture

Selected

They had made their decision to use the existing proven mobile

app, and to use an architecture approach referred to as

microservices to host their recommendation engine.

Work Initiated All the team members had agreed that the source of their funding,

and the stakeholders who would fund the work, were clear.

Way of

Working

Working

Well

Initially tacit agreed practices worked well for the team, but as we

shall see the team eventually evolved to the more explicit

practices of Scrum, User Story, Use Case and Microservice due to

changes in their endeavor as it progressed.

Development Scope and Checkpoints

Agreement on incremental development  release roadmap.

The next increment : to finish with the release to internal users.

Games to play Ș

• Chase the State

• Objective Go ?

Playing games results

Example of results after playing Chase the State and Objective Go:

Stakeholders : Involved → Recognized → Involved (New stakeholders appeared).

Opportunity : Value Established → Value Established

Requirements : Bounded → Conceived → Coherent, Addressed (new requirements,

beyond that for the demo, added for the next iteration).

Software System : Demonstrable → Usable

Work : Started → Initiated → Prepared (for the new increment; have been defined scope,

plan and schedule for the initial release).

Team : Collaborating → Performing (areas for which they could improve both their

practices and tools; possible new members)

Way of Working : In Use → Principles Established → Foundations Established, In

Use (miscommunications in the process of conducting certain activities have been

detected  agreed that they would need more explicit practices to make sure everyone

understood and agreed to how the team conducted these activities).

Agree upon practices to apply

Essence kernel contains the universal alphas

Practice – has specific alphas,

There must be correctly identified :

• practice-specific alphas

• practice-specific alpha states

• correspondent checklists

Agree upon practices to apply

Select explicitly a practice to apply.

We assume that :

• a library of practices exists

• the team is able to select the appropriate practices

• some practices have been tested and accepted by the organization as

working well.

The team will use a mixture of collaboration, engineering, and technical

practices.

Example :

Practices selected by the team to be used in

addition to the Essence kernel.

Agree upon practices to apply

• Scrum is about team collaborations.

Scrum is a practice for iterative development, each iterationbeing a sprint. The sprint is an

alpha, something we need to watch. Scrum guides teams to complete work items in a

backlog. These work items, known as Product Backlog Items (PBIs) using Scrum

terminology, can also be treated as alphas.

• User stories and use cases are requirements engineering practices

User Stories is a practice about succinctly expressing requirement items, focusing on values.

Specific user stories can also be viewed as sub-alphas, similar to treating Requirement Items

as sub-alphas of Requirements.

Use Cases is a practice that helps teams identify and organize requirements in the form of

use cases and use case slices. A use case slice is a part of a use case that is broken down to

an appropriately sized piece of work for the development team to tackle. Specific use cases

can be viewed as sub-alphas of Requirements and specific use case slices can be viewed as

sub-alphas of a specific use case.

• Microservices is a highly technical practice

Microservices is a practice that helps teams break down a complex software system into a set

of cooperating small independent modules, each with its own purpose and each with its own

well-defined interface to other modules. Specific microservices can be viewed as sub-alphas

of the Software System kernel alpha and monitored as alphas.

The (sub)-alphas specific to the selected practices

Practice Description Alphas

Scrum A practice for the iterative development

of software systems working off a

backlog.

Sprint

Product Backlog Item

User Stories A way to capture functionality that will

be of value to a user of a software

system.

User Story

Use Cases All of the ways of using a system to

achieve a particular goal for a particular

user.

Use Case

Use Case Slice

Microservices A software architecture style that uses

small independent processes to

communicate.

Microservice

Scrum practice

Scrum big picture mapped to the Essence Language

Scrum practice

Scrum Lite practice expressed in the Essence language.

Scrum-specific alphas

and work products

Scrum-specific alphas and alpha states

To Do. It has been agreed that the PBI

needs to be completed within the next

sprint. The scope and completion criteria of

the PBI are clear.

Ready. The team works together with the

product owner to agree on how they

should go about completing the PBI.

Doing. At this state, the team is working on

the item and bringing it to completion.

Done. The Product Backlog Item has been

completed.

Scrum-specific role patterns

Scrum-specific activity cards

Activity spaces addressed by Scrum Lite

Endeavor activity spaces, partially covered by Scrum Lite.

Solution activity spaces, not addressed by Scrum Lite.

Use Case Lite

practice

Scrum Lite practice

expressed in the

Essence language.

Use Case Lite specific-alphas

Use Case alpha

states

Use Case Slice alpha

states

Use Case Lite – work products

Use Case Lite

activity cards

Activity spaces addressed by Use Case Lite

Solution activity spaces and Use Case Lite.

Conclusion on practices

As a software professional, you will come in contact with many

other practices.

We believe that in due time, popular practices will be essentialized.

As a student or professional who has a good understanding of

Essence, you will learn these practices quickly.

Bibliography

For licence project:

https://www.ivarjacobson.com/publications/brochure/alpha-state-card-games

A case study:

https://dx.doi.org/10.1016/j.scico.2014.11.009

General

https://practicelibrary.ivarjacobson.com/start

http://software-engineering-essentialized.com/web/guest

https://puzzler.sim4seed.org/

http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

https://practicelibrary.ivarjacobson.com/start
https://practicelibrary.ivarjacobson.com/start
https://practicelibrary.ivarjacobson.com/start
http://software-engineering-essentialized.com/web/guest
https://puzzler.sim4seed.org/
http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

