Software Engineering — Lecture 13
The Essence of Software Engineering

Adapted after
|. Jacobson, H. Lawson, Pan-Wei Ng, P.E. McMahon, M. Goedicke
The Essentials of Modern Software Engineering, 2019, ACM Books



Rezumat

Essence : limbaj + nucleu

O
Work Product [l
Activity :>
Competency ﬂ
Activity Space p-m--=- N
Pattern |—_‘__|_|
Innovates 18
[ Adapts ;
I Masters
Applies 27
Assists e

Element esential al efortului de dezvoltare relevant
pentru evaluarea progresului si sanatéafii efortului.

Lucru tangibil (artefact) realizat de practicieni pe
parcursul activitatilor de inginerie software.

O activitate realizata de practicieni.

Abilitate, capabilitate, aptitudine, cunostinta, sau
calificare necesara unui anume mod de lucru.

Container pentru ceea ce trebuie facut in efortul de
dezvoltare. Poate contine zero sau mai multe
activitati.

O solutie la o problema tipica, printr-o organizare
particulara a unor elemente de limbaj.

(" D
I} 7 ?
E
2
E Stakeholder
o Representation
C J
~
=
=
& Analysis Development Testing
_/
(" D
g
v
k| ;
= Leadership Management
p /

4 )
£
u .
=] . < provide
3S Opportunity Stakeholders [ ——
«©
=
© A < I.I 5
=)
8 i s 8= J
( A g 3z N
w >
@ & ae 3
= = A
=
2 T 5
= = Requirements DRI &
[=} = System %
w % v
b Ca 8
9 g §2 s J
4 23 2 )
e g o
2@
@5 v
b
g
I
L
=]
=
=
p /
4 —— — — R — )
= 1 K 1 N 1 K 1 kS
) ' . 3 S 1 . 1 \
g 1 ; 1 / 1 ; 1 ;
S 1 ’ ] ; 1 / 1 /
- n ’ 1 ’ ) £ ) ’
@2 W Y [V Y,
5 Explore Understand Ensure Stakeholder Use the
\ Possibilities Stakeholder Needs Satisfaction System )
T — R R rm—————— [ R N
: Lol Lol N ol ol \
g i o o i 2 o 1
E= S ] 1 R S
z C e I I T e T s g
&  Understand the Shape the Implement Test the Deploy the Operate
\_ Requirements System the System System System the System P,
4 [ —— . rmm————— . [ —— - R — . rmm———— s )
L] . 1 . 1 . 1 b 1 p
5 | N Yol N ol Nl
= ] r 1 F ] 4 ] F 1 P
5 ' . ! ‘ ] / ] / ! ¢
R f At 2 At 4 e j s j
5 Prepare To Do Coordinate Support Track Stop the
\ the Work Activity the Team Progress Work )




Subiecte tratate

Essence games
Using Essence kernel

Using practices



Essence cards

Essence card - tangible thing that contains a concise description of the most
important information about an Essence element.

* act as reminders to practitioners
« additional details are available in complementary guidelines.

Motivation

Team performance depends on effective communication, common
understanding, trust = collaboration.

Cards utility
Used to play collaborative games as facilitating tools in a variety of settings
and purposes (ex. obtain a consensus about the work)
» used to introduce the kernel and practice elements
» to understand endeavor purpose, benefits and problems
* resolve conflicts in limited time



Essence games

Serious games (beyond entertainment)

Simulate lifelike events aiming to achieve specific goals
« solve a particular real-world problem
* learn something new.

» develop skills (basic mental abilities such as perception, attention, and decision
making).

Essence games :
» Cooperative, consensus-based (not competitive)
* Highly reusable aids when carrying out multiple practices.

* Players express their thoughts clearly, listen to one another, share
information and resources, learn from one another, identify solutions,
negotiate, and make common decisions.

* Stimulate a team to :

 discuss the issues related to the health and progress of their own endeavors.

» look ahead at states and checklists not yet achieved clarifying what is
important to do next.



{

() Software System

Essence games A system made up of sofware,
hardware, and data that provides
Progress Pocker e e
Architecture Selected
¢ Domonstradie —
- Usable
Track progress based on the state transitions of alphas. Resdy
Operational
Rebred
Items in a checklist provide a hint of what needs to be v
done.
()| Software System
Problem : Demonstrable
Are subject to interpretation by the team members, P ————
. . . . . . demonstrated
with different opinions on the their meaning. B Syslem siecclesd. & Derfornenoe
measured
U O Critical HW configurations
demonstrated
need for agreement O Critical interfaces demonstrated
Q Integration with environment
demonstrated
) O Architecture accepted as fit-for-
Solution : Progress Poker purpose
 facilitate discussion & 20
« achieve understanding about of the current state of a ‘
particular alpha. Fig. 8.1 Software System: Demonstrable alpha state card

The Essentials of Modern Software Engineering



\__ Requirements Fig. 8.2 Progress Poker
cards for Requirements

Essence games oo e cpporuty and alpha

satisfy the stakeholders.

P rog ress PO ker S : The Essentials of

Sounded Modern Software
Coherent_ ' Engineering

Acceptable

Addressed

« Played with one alpha at a time Futed
« Areused:

o — X
7Y Requirement [ Y Requirement! ' Reg: o~
N il : qull'ement L 3 )%

. rem |
eﬂ ~ eq\]“ i —
« alpha overview card ST i Tl Lt : %
{ N — o - od | Coheren Acceptable < Adi — Qujp,
e Toore?™S (T Bound e TR L Ty Iresseq | | e’he,, "
- 4\ ——" O Requirements 0 Acceptable solubion descri g g P e G A —
s al pha State Cards \ e fwe"'wmen\“azt 5 Requiremants’ origin 4837 | 5 Change under control | W“"%em::::d 10 be 5 Uq Staggp (:U/ﬁ)yed —
ke o v gystam PV y geal D Rationale clear O Value to be realized cleal g sma"': "Ealizgq mmsmo,,, 5 RNO %’We,s o,
1 1 H 4 ;goéwoem{ﬂi = Syste™ scces® onaté D Conflicts addressed - O Clear how opportunity af M Wor, mkin 5%@";'?9 V:I,MB
* Optimal team dimension S ot 0 S on N 5 e craraersi5 S T 9 one e
o ?‘“‘M\N\' oe?! _.‘; Rw"‘"“‘erx mand O Key usage scenarios explé oty
3 9 I a oo 3 Reu\.«em:m e O Priorities ,-i:?;\ood
= p aye rS o P'uv.\ﬂm‘s jgertfié O mmk:ws & agrees on
o Const@ < clear | o Teyﬂ
o Assumpion v
2\ . = 38 | WY ——ai &
T = = = | & . B~
&) e ; Y e
& \ ' :

Rules : 5 _
« alpha card on the table

« each player places face down the card with his opinion

« compare the results

» discuss different choices (explain and motivate, starting with extreme ones)
* new round

The game ends when a consensus has been reached on the current state
that has been achieved for a particular alpha.



Fig. 8.4 Initial position for Chasing the state game
The Essentials of Modern Software Engineering

Essence games
Chasing the state

Stakeholders =

Requirements = M M AT M mET e
Software == e ey
System = == | == | === |FT | |E=o T

S

—
@
=
=
i
fiji it
it
: T '
thy ifie
TN
I "
| i[ll
i 1
—
[DTEE]
¥ H
x’ xl
LA
|

Way of ==

Work ::: H;E_ H;;:“" H::;t} = :;;;~q:::“:k
' =l | =l |f == | R e

+ alpha ovefview card
« alphastate cards
* Optimal team dimension : 3-9 players



Essence game

Chasing the state

Fig. 8.6 Stakeholders alpha has

reached first state

The Essentials of Modern Software

Engineering

Rules:

Stakeholders

—

Opportunity

—

Requirements

Software =
System

Team =

Way of :_
Working

Work

For each alpha

establish the state
if consensus is not easily obtained then play Progress Poker

C)( Stakeholders

a
D( Stakeholders

0O Responsibilities defined

4 Responsibilities defined

[ Recognized } ( Recognized ]

O Stakeholder groups identified o Stakeholder groups identified

0O Key stakeholder groups Key stakeholder groups
represented represented

( 1/6

112

Fig. 8.5 Stakeholders alpha
before and after discussion
The Essentials of Modern
Software Engineering




Essence games
Chasing the state result

Stakeholders —

T —

Opportunity ==

Requirements :;

Software =5
System -
Team :%;:

Way of -—?:-:___"-:
Working =
Work =

Fig. 8.8 The current states for all alphas have been identified
The Essentials of Modern Software Engineering



Essence games
Objective Go

Aim - agree upon the next steps

Played after the Chasing the State game

The objective of the next stage, which can be moving some or all alphas to a

next state, is established.

Alphas usually progress in
waves, depending on each
other progress.

Fig. 8.9 Requirements and Stakeholders Alpha Wave
The Essentials of Modern Software Engineering

[ ) Requirements

{ Coherent ’

O Requirements shared

0O Requirements' origin clear

0O Rationale clear

0O Conflicts addressed

0O Essential characteristics clear
O Key usage scenarios explained
0O Priorities clear

O Impact understood

0O Team knows & agrees on what to
deliver

( 3/6 )

C)( Stakeholders

[ Involved }

0O Representatives assist the team

O Timely feedback and decisions
provided

0O Changes promptly communicated

‘C}' 112



Essence games
Objective Go example

For each alpha discuss
 next state that should be achieyed

 which checklist items for that s
 the tasks needed to be done

Example :

Objective : Software System: Der

4 N
| C)( Software System

( Architecture Selected ]

O Architecture selection cri

O Decisions
made

0O Buy, build, reuse decisions made

0O Key technical risks agreed to

Team agrees they are here

-

( v

C)( Software System

( Demonstrable ]

a Key architectural characteristics
demonstrated

O System exercised & performance
measured

a Critical HW configurations
demonstrated

O Critical interfaces demonstrated

O Integration with environment
demonstrated

O Architecture accepted as fit-for-
purpose

( 2/6 )

@ N ——— 112

[ate are not yet achieved

nonstrable;

k|

-
Objective is to get here next

Figures 8.10 and 8.11
The Essentials of Modern Software Engineering

'S

{

O Software System

[ Demonstrable

Key architectural characteristics
demonstrated

0O System exercised & performance
measured

0O Critical HW configurations
demonstrated

0 Critical interfaces demonstrated

O Integration with environment
demonstrated

O Architecture accepted as fit-for-
purpose

J

2/6

N\

\

=



Objective
Essence games - Stakeholders: Involved,

Objective Go example « Sgftware System: Demonstrable;
* Way of Working: Foundation Established;

« \Work: Prepared.

Stakeholders

Opportunity

Requirements

Software ==
System

Team “=-

Wﬂy of :;‘,— i
Working

Work £ '

Some of our goals for the next step

Fig. 8.12 The next step is represented by cards in the middle of the table
The Essentials of Modern Software Engineering



Essence games
Checkpoint construction

Checkpoint = set of criteria to be achieved at a specific point in time in a
development endeavor; key point in the lifecycle of a software endeavor
where an important decision must be made.

The set of criteria is defined using alpha states.

C_X

Requirements

Software system

Pre-development | Development | Post-development ]
I I » Time
—_ R S,
Bounded Addressed
e E .
I I
___________________ Fe———————— e ——————————
I I
— o
Architecture Ready
selected -
\'_I_ﬂ t'_I_J
I I
1 1
Ready for Development
development complete
checkpoint checkpoint

Fig. 8.9 Requirements and Stakeholders Alpha Wave
The Essentials of Modern Software Engineering



Essence games S

_________________________________________________________

Checkpoint construction -y

Checkpoint construction is used to synchronize teams working in
parallel.

U

Must be pecified by the stakeholders of the whole endeavor and not by
every team participating in the endeavor.

U
The game is played by the stakeholder team.

Stakeholder team = a few key stakeholder members that can represent
the views of the stakeholders.



Essence games S

_________________________________________________________

Checkpoint construction -y

Checkpoint construction is played for one checkpoint and in two rounds.

Rules:

Round 1

« Facilitator lays out the seven Alpha Overview cards on the table and describes
the checkpoint being considered.(e.g. Ready for Development)

« Each team member decides which alphas should be considered as part of the
checkpoint

« Team agrees on which alphas should be considered for the checkpoint.

Round 2
» for each selected alpha

« each team member identifies the state he believes the alpha needs to be in
to pass the checkpoint

» different choices are discussed (explain and motivate, starting with extreme ones)
The game is played until consensus is obtained.



Essence games
Checkpoint construction

Facilitator leads the group through a discussion of potential
additional checklist items to be added for the checkpoint.

U

The generic checklist items on the cards can be tailored to the
context of the specific endeavor.

By applying the Checkpoint Construction game several times, a
whole lifecycle can be defined.



Subiecte tratate

Essence games
Utilizarea nucleului Essence

Utilizare practici



Understanding the Context

Software engineering is a result of recognizing a problem or an opportunity.

Sources of problems (examples) :

related to an existing software system - understanding its original
requirements

related to the stakeholders — they do not have time to involve as needed

related to team communication — a less experienced developer may not
be guided enough by a busy experienced developer.



Example : TravelEssence

TravelEssence — fictitious company, leading travel service provider.provides online hotel
booking services for travelers. In addition, TravelEssence provides Software as a
Service (SaaS) for the operation of hotels. SaaS means that the owner of the software,
in this case TravelEssence, provides software as a service over the internet and the
clients pay a monthly fee. Hotels can sign up and use the TravelEssence service to

check-in and check-out their customers, print bills, compute taxes, etc.

The opportunity :

If TravelEssence would provide recommendations online through a software
solution, it can provide better service to customers, thereby shortening the time
customers need to make a purchase decision.

The current system provides different usage scenarios for different kinds of
customers (e.g., new travelers, frequent travelers, corporate travelers, agents, etc.). The
software system involves a mix of mobile applications and a cloud-based backend.

Smith and his team had been assigned to work on providing a new functionality for
TravelEssence, specifically a recommendation engine for travelers.



Context representation with alphas

[j Stakeholders C] Opportunity C] Work
Angela and Dave Frequent travelery Working demo-
from Digital are potential in 4 weeks
Travsformatior repeat customers
i C] Way of working
v r'[E
: Essence
Requirements _Software system O Team
Reconunendations Mobile app plug-ir Smith;, Tom; Joel;
boused o travel and microservices and Grace
history

Fig. 9.1 Understand context with Essencee.
The Essentials of Modern Software Engineering



Context representation
Perspective : Customer

Stakeholders:

Digital Transformation Group
(Digital Transformation = use of technology to radically improve a company’s performance)

« Dave — CDO (Cief Digital Officer)
« Angela — collaborates with Smith and his team

Opportunity :
« exist data about travelers who logged their experience and shared it using
social media sites

» TravelEssence can use data from repeat customers to attract new

CUStomerS- C} Stakeholders CXOpportunity gWork

Angela and Dave Frequent travelers Working demo-

from Digital are potential in 4 weeks

Transformation repeat customersy

Group () way of working

Vanilla
Essence:
Requirements Software system C] Team

Reconunendalions Modrile irv Smith, Tom, Joel,
based on travels m and Grace

history



Context representation
Perspective : Solution

Requirements:

« analysis of traveler data = identify trends and relationship = recommend new

travel options

Software System :

 a mobile, cloud-based application already exist
» to be developed — a simple plug-in to allow customers to view

recommendations

Fig. 9.2 Enhancement to the Software System to achieve
recommendations.
The Essentials of Modern Software Engineering

Recommendation
enhancement
to mobile app

Recommendation
enhancement
to cloud service

l enhances

Existing

enhances

mobile

app

Existing
cloud service



Context representation
Perspective : Endeavor

Work:
» deliver a working demo in one month

Team :

« Smith (team leader),

« Tom, Joel (experienced with mobile app and microservices),
» Grace (experienced only with mobile app)

Way of Working :
« use the facilities of Essence kernel to evaluate progress and health,

» use only alphas, states, checklists = ‘vanilla’ Essence, with no extensions to
the kernel.



Development Scope and Checkpoints (milestones)

Alphas and their state’s checklists — used to gain agreement about
» preconditions for starting development
» criteria for completing development

Fig. 9.3 Checkpoints and phases for enhancement of
TravelEssence

The Essentials of Modern Software Engineering

Checkpoints to be defined

. : Ready for Development
Checkpoint " :
development is complete

Phase  Pre-development Development Post-development

Ckeckpoint Construction game is played — 2 rounds
1. selecting the relevant alphas

2. agree on the alpha states in the definition of the checkpoint



Checkpoint Construction game result

Fig. 9.4 Defining the two checkpoints using alpha state cards Ready for Development
The Essentials of Modern Software Engineering development is complete

Sararcisen
v s ot 4 0

Stakeholders =

—




Ready for
development

Checkpoint : Ready for development .- — —
Stakeholders : Involved -~ —— T p—
Opportunity : Value Established—"""" *,:_. |
Requirements : Bounded ----------"""""""""77TTTTTTTT —— T
Software System : Architecture Selected-----------=--==--=x--=x-oome-- »[= |
Work : Initiated--------.______________ =1
Team: Formed “~=--—o. T 1

Discussion of the checklists on each state card to reach agreement on
any additional checklist items.



Agreeing on the most important things to watch

(Y .
\__ Requirements

"

Bounded ’

O Development stakeholders
identified

O System purpose agreed

O System success clear

O Shared solution understanding
exists

O Requirements' format agreed

0O Requirements management in
place

Q Prioritization scheme clear

O Constraints identified & considered

0O Assumptions clear

( 216 )

/

Requirements alpha is not enough for measuring day-to-day progress.

Team agreed to track progress for requirements items, defects, and issues during

development, using a spreadsheet.

Obs. The individual requirement item (Requirement item) may be defined as a

sub-alpha of Requirements alpha.



Agreeing on the most important things to watch

Chase the State game — determine the current stage of the development

Way of Working : Foundation Established
iterative development

P
f

Requirements : Conceived

e arequirem

t items list is deve

= Requiremgnts : Bounded

Q Requirements

r
Conceived ]

\

0O Stakeholders agree system is to be
produced

O Users identified

O Funding stakeholders identified

O Opportunity clear

Team agrees achieved

‘\"

-
(X Flequirements

v
[ Bounded

O Development stakeholders
identified

O System purpose agreed

O System success clear

0O Shared solution understanding
exists

O Requirements' format agreed

O Requirements management in
place

O Prioritization scheme clear

0O Constraints identified & considered

O Assumptions clear

( 2/86 ]

L

@ S 112 |

v
Team agrees not achieved

Req-Item #1
System generates
reconumendations
for a traveler

Fig. 9.5 Requirements: Conceived and Bounded state cards
The Essentials of Modern Software Engineering

Req-ltem #2 Reqg-ltem #3 Reqg-ltem #4
Mobile plug-in Handle user’s Systev tracks
to-displavy selection to-view ri
r tong ov discord success rate

reconumnendations

Fig. 9.6 Requirement item list
The Essentials of Modern Software Engineering

LoV



Plan-Do-Check-Adapt Cycle

Way of Working : Foundation Established
« agile, iterative development

(. Reflect on what happened
* Look for more suitable
ways to work
« Improve quality of work
. Reduce waste

7

» Track the work
* Check that work is indeed
done

Fig. 10.1 Plan-Do-Check-Adapt cycle
The Essentials of Modern Software Engineering

* Determine the current stateN
* Determine the next state

« Determine how to achieve
the next state

» Work toward achieving
the next state

« Remove obstacles as they
ocecur




Plan-Do-Check-Adapt Cycle

1. Determining the current stage :
« Progress Poker for Requirements and Software System alphas
« Chase the State for the rest of alphas

Fig. 10.2 The alpha states agreed

The Essentials of Modern Software Engineering

p
i C)( Opportunity

[ Solution Needed ]

0 Solution identified

a keholders' needs ished

0 Problems and root causes
identified

0 Need for a solution confirmed
0O At least one solution proposed

-

(3( Requirements

[ Coherent ]

O Requirements shared

O Requirements' origin clear

O Rationale clear

O Conflicts addressed

O Essential characteristics clear

O Key usage scenarios explained
0 Priorities clear

O Impact understood

O Team knows & agrees on what to

« Reflect on what happened

+ Look for more suitable
ways to work

« Improve quality of work

« Reduce waste

« Track the work
« Check that work is indeed
done

-

-~
Q Software System

[ Architecture Selected ]

0 Architecture selection criteria
agreed

O HW platforms identified

O Technologies selected

O System boundary known

O Decisions on system organization
made

O Buy, build, reuse decisions made

O Key technical risks agreed to

« Determine the current state

« Determine the next state

« Determine how to achieve
the next state

* Work toward achieving
the next state

« Remove obstacles as they
occur

Q Team
{ Formed ]

O Enough members recruited

O Roles understood

O How to work understood

O Members introduced

O Individual responsibilities accepted
and aligned to competencies

O Members accepting work

O External collaborators identified

0O Communication mechanisms

deliver defined
0 Members commit to team
0 578 ) [@ 376 ] {"7 1/6 ) ( 575 )
)} A
@) VI SR 112 \L'/ == . ‘\{Q e e = @ et e ™ 112
3 ~ £
= =\ ' = =
() stakeholders ("X Way of Working (X work
( Represented ] ( Foundation Established ] [ Prepared ]
O Responsibilities agreed 0 Key practices & tools selected O Commitment made
U Representatives authorized O Practices needed to start work 0 Cost and effort estimated
0O Collaboration approach agreed agreed 0 Resource availability understood
0O Way of working supported & O Non-negotiable practices & tools O Risk exposure understood
respected identified 0O Acceptance criteria established
0 Gaps between available and O Sufficiently broken down to start
needed way of working understood 0 Tasks identified and pricritized
O Gaps in capability understood =} Cfedik‘e plan in place
O Integrated way of working available 0 Funding in place
0O At least one team member ready
O Integration points defined
( 2/6 5 ( 2/6 ) ( 2/6 )
@ TEN—— 112 @ CTISHDIEE 112 @ PR 112
J J J




2.

3.

Plan-Do-Check-Adapt Cycle

ways to work

« Reduce waste

« Track the work

done

« Reflect on what happened
+ Look for more suitable

« Improve quality of work

« Check that work is indeed

Determining the objective of the current iteration

Obijective Go

ldentified needs

convince management of t

stakeholders involved

demonstrate the implementation

:

.

(:)( Opportunity

! Requirements

[ Value Established \ \

Addressed J ‘

Demonstrable

0 Opportunity value quantified

DO Solution impact understood

O System value understood

O Success criteria clear

O Outcomes clear and quantified

acceptable

O Enough addressed to be

O Requirements and system match
O Value realized clear
O System worth making operational

O Key architectural characteristics
demonstrated

0 System exercised & performance
measured

0 Critical HW configurations
demonstrated

0 Critical interfaces demonstrated

O Integration with environment

(

—~,

(D( Software System

« Determine the current state

« Determine the next state

« Determine how to achieve
the next state

* Work toward achieving
the next state
« Remove obstacles as they
occur

Q Team

[ Collaborating J

O Works as one unit

O Communication open and honest
O Focused on mission

O Members know each other

demonstrated
O Architecture accepted as fit-for-
purpose
5/6 | ( 2/6 ( 3/8 )
112 IO 1z | (Q.I —se N 112
value of Our endeavor )\ ) /
/ {
D( Stakeholders C)( Way of Working Q Work
Involved | [ In Use ] [ Started ]

O Representatives assist the team

0O Timely feedback and decisions
provided

O Changes promptly communicated

)] . i 112

Fig. 10.3 The results after applying the Objective Go game

The Essentials of Modern Software Engineering

|
|
0 Practices & tools In use |
O Regularly inspected ‘
O Adapted to context |
0 Supported by team

0 Feedback mechanisms in place ‘
0 Practices & tools support |
collaboration

0 Development started

O Progress monitored

0 Definition of done in place
0 Tasks being progressed

| © —n 12 ‘ &




Plan-Do-Check-Adapt Cycle

4. Identifying tasks to achieve the states.

Examples :
set up a meeting with Dave and Angela (stakeholders)

set up a test environment

« Check that work is indeed e next

« Reflect on what happened
+ Look for more suitable

ways to work

« Improve quality of work
« Reduce waste

« Track the work * Work toward achieving
state

stat
done « Remove obstacles as they

break tasks down further and agree on the pieces to complete in the
current iteration (ex. not all requirements but only the first 3)

Reg-ltem #1

Systenv generates
recommendations
for a traveley

Reg-ltem #2

Mobile plug-in
to-display
recommendations

Reg-ltem #3

Handle wser’'s
selection to-view
or discowd,
reconmunendations

) Reqg-ltem #4

System tracks
recommendation
success rate




« Reflect on what happened

+ Look for more suitable
ways to work

« Improve quality of work

« Reduce waste

Plan-Do-Check-Adapt Cycle

« Track the work * Work toward achieving
state

« Check that work is indeed e next stat.
done « Remove obstacles as they

Do

Working on the identified tasks s
5;1% égs.gn-lt-?aslt Icl)?tModern Software Engineering | ;g’f code

Check

Green/red stickers near healthy/unhealthy states

Unhealthy : the checklist is not yet being met or had previously been met, but is no
longer met due to some changes

Adapt

Review way of working

|dentify obstacles

Find better or more suitable ways to do things

U

Changes in plans and ways of working



Planning
with Essence
Customer perspective

The curent state and the target state have been identified playing Chase the State and
Objective Go.

|dentification of the tasks needed to achieve the target state.

™ P ™

65 \

(:)( Stakeholders { C)( Stakeholders

[ Recognized ] [ Involved J

O Stakeholder groups identified O Representatives assist the team

O Key stakeholder groups O Timely feedback and decisions

represented — provided

O Responsibilities defined 0O Changes promptly communicated

( 176 ) ( 3/6 )

‘C} 112 ‘ Q N 2 |
3 ,

Y Y
Current state Target state

Fig. 10.5 Stakeholders current and target states

Task : Stakeholder involvement meeting The Essentials of Modern Software Engineering



Planning

with Essence

Custo

mer perspective

Need to convince senior management at TravelEssence to move

forward and fund the effort.

To convince about the solution valability
the team will set up a test environment
where they could quickly experiment
with different ideas for using the
travelers’ existing data.

Task: Experiment with different ideas to increase business.

(:)( Opportunity

( Solution Needed }

O Solution identified

O Stakeholders' needs established

O Problems and root causes
identified

O Need for a solution confirmed

O At least one solution proposed

B

Current state

(:)( Opportunity

|

Value Established

J

O Opportunity value quantified
O Solution impact understood

O System value understood
O Success criteria clear

O Outcomes clear and quantified

X

|

Target state

Fig. 10.6 Opportunity current and target states

The Essentials of Modern Software Engineering



Obs. It is possible to have more

than a target state for each alpha.

Planning
with Essence
Solution perspective

: Requirements

Conceived \

O Stakeholders agree system is to be
produced

0 Users identified

0 Funding stakeholders identified

O Opportunity clear

Current state

Requirements selected to be addressed:

Reg-ltem #1. System generates recommendations for a traveler

Reg-ltem #2. Mobile plug-in displays recommendations
Reqg-ltem #3. System handles user’s selection to view or discard recommendations

Fig. 10.7 Requirements current and target states
The Essentials of Modern Software Engineering

() Requirements

() Requirements

Coherent ‘ Addressed 1

O Enough addressed to be
acceptable

O Requirements and system match

0 Value realized clear

O System worth making operational

O Requirements shared

O Requirements' origin clear

0 Rationale clear

O Conflicts addressed

0 Essential characteristics clear

O Key usage scenarios explained

0 Priorities clear

O Impact understood

0O Team knows & agrees on what to
deliver

376 ) ( 5/6 )

@ B ST a 112 Q) DT 112 |

%
Target states

Task: Smith to work with Angela to reach agreement on recommendation
algorithm, and which set of travelers they would use as their test data set.



Planning
with Essence
Solution perspective

Code, test and integrate critical parts of the system.

5 ™ f =\
() software System () Software System
[ Architecture Selected ] [ Demonstrable J
0O Architecture selection criteria O Key architectural characteristics
agreed demonstrated
0O HW platforms identified O System exercised & performance
0 Technologies selected D — measured
(m] System boundary known 0 Critical HW configurations
O Decisions on system organization demonstrated
made O Critical interfaces demonstrated
O Buy, build, reuse decisions made O Integration with environment
O Key technical risks agreed to demonstrated
O Architecture accepted as fit-for-
purpose
| 1/6 ) ( 2/6 )
’\C}j Cumesind byt Pracies Svitenc/® 1.1.2 @ Gty U P dbett® 112
A\» 35 \ 3 )
“ J N 5
s Y
Current state Target state

Fig. 10.8 Software System current and target states
The Essentials of Modern Software Engineering

Task: Team members work on implementing their respective
reguirement items.



Planning
with Essence

Endeavor perspective

& D\

‘ () work
[ Initiated ]

O Required result clear

0O Constraints clear

O Funding stakeholders known
O Initiator identified

O Accepting stakeholders known
0O Source of funding clear

O Priority clear

O pasitvinis s Asiasnat® 112
J

As part of Req-ltem #1, the team had discussed providing recommendations for
both hotels and restaurants, but Smith decided this was too much for the
first iteration and suggested the team limit the work for now to just providing

hotel recommendations.

Ve

]

O Work

-
C)( Work

( Prepared

l Started

O Commitment made

0 Cost and effort estimated

0O Resource availability understood
O Risk exposure understood

0 Acceptance criteria established
O Safficiently broken down to start
0 Tasks identified and prioritized
O Credible plan in plece

0 Funding in place

O At least one team member ready
O Integration points defined

( 2/8

112

0O Development started

0O Progress monitored

O Definition of done in place
0O Tasks being progressed

112

Fig. 10.9 Work current and target states

The Essentials of Modern Software Engineering

Task: Team breaks work down to fit in the planned iteration.




Planning
with Essence
Endeavor perspective

Team members had successfully worked together before. They each knew
their responsibilities and how they would work together, but the team had

not yet showed that it was working as one cohesive unit.

Task: Integrate work by Wednesday.

-
CX Team

[ Formed ]

O Enough members recruited

O Roles understood

O How to work understood

0O Members introduced

O Individual responsibilities accepted

and aligned to competencies
O Members accepting work
0O External collaborators identified
O Communication mechanisms
defined

0O Members commit to team
( 2/5 )

.\'Q.'J' T 112

-
C)( Team

[ Collaborating ]

O Works as one unit

O Communication open and honest
O Focused on mission

O Members know each other

Fig. 10.10 Team current and target states
The Essentials of Modern Software Engineering



Planning
with Essence
Endeavor perspective

establish repository version control tool and the test environment.
prepare the test environment and supporting scripts

c c

~
Q Way of Working ‘

[ Principles Established ]

0 Team actively support principles

0O Stakeholders agree with principles
O Tool needs agreed

0O Approach recommended

0O Operational context understood

O Practice & tool constraints known

ﬁ

CX Way of Working

0

P

™

[ Foundation Established ]

C)( Way of Working
]

(

In Use

O Key practices & tools selected

O Practices needed to start work
agreed

0 Non-negotiable practices & tools
identified

0O Gaps between available and

O Practices & tools in use

O Regularly inspected

O Adapted to context

O Supported by team

0O Feedback mechanisms in place
O Practices & tools support

needed way of working understood collaboration
0O Gaps in capability understood
0 Integrated way of working available
( 1/6 ) ( 2/6 ) ( 3/6 )
{O\ e — 112 © . 112 @ 112
/ & N t

Task: Establish development and test environm

Fig. 10.11 Way of Working current and target states
The Essentials of Modern Software Engineering

ent.



Doing and Checking

with Essence

« Work go smoothly because members were familiar with each other and

they can use communication technology if they re not collocated (ex. Angela
IS in another room)

« Work finished on Friday afternoon
« The implementation has been demonstrated to Angela
« Health and progress reviewed by playing Chase the State

Customer perspective

 Stakeholders : Involved

In a meeting, after Friday demo, Angela and Dave agreed to their involvement in future
demonstrations.

* Opportunity : Value Established

Friday demo was successful and convinced about its business value. Dave accepted to
fund the effort.



Doing and Checking
with Essence

Solution perspective

* Requirements : Coherent, Addressed

Open issues related to the agreed requirements have been clarified, and then addressed
in the Friday demo.

« Software System : Demonstrated
Successful demonstration of the critical parts of the system agreed for the Friday demo.

Endeavor perspective

 Work : Prepared, started

Agreed tasks have been broken, risks understood, code developed, tested and
integrared, prepared for demo.

« Team : Collaborating

Successful integration on Wednesday for the Friday demo = team was working as a
consistent unit.

« Way of Working : Foundation Established, In Use
Environment has been set up and used during the first iteration.



Adapting Way of Working
with Essence

Using Essence kernel helped to :

* Involve key stakeholders

» think about the opportunity

« Dbreak the work down to fit in the agreed way of working

« think about risks

 clarify requirements

* integrate each team member’s work with teammates’ work
« focus on the most important things first

But improvements can exist.



Adapting Way of Working
with Essence

Discussion on the target of the just finished iteration

«  What went well with our planning, doing, and checking related to the above alpha states?
« What did not go well with our planning, doing, and checking related to these alpha states?
 What can we do better with our planning, doing, and checking related to the alpha states?

Example :

Tom said, “The way to achieve the :
Requirements: Addressed state () Requirements
was not clear to me at the start of —
the iteration. | learned that | had to | Addressed

talk to Angela and get her to agree

to the requirement items to be
implemented. | didn’t understand
this just by looking at the state
checklist.”

Improvement : additional guidance
with new item added to the chec
list of Requirements Addressed
state

O Enough addressed to be acceptable
O Requirements and system match

O Value realized clear

0O System worth making operational

—greed requirement items

that fa!Tmﬂnn scope are- <
addressed and accepted by _
\t’akc holders

Text added
by Smith

O

111




Adapting Way of Working
with Essence

Essence kernel helps adapt way of working :

» Target states become visible and the team reason about their way of
working in terms of a process they have followed

« Kernel is extensible (eg. add items to alpha state cards, define new alphas, add
checklists) allowing to make changes to improve way of working.

Software engineering is essentialized by representing the way a team
Is working using the Essence language and the Essence kernel
common ground



Analysis

Visual display of how the requirements items progress. States of the

* The list of the requirements
items is not static.

* |tems were added at the end of
each iteration.

« Some items were verified in the
first iteration.

By introducing Requirement-item
sub-alphas the team can track
more accurately the progress of
each requirement item and thus of
the requirements as a whole.

Requirements Item
sub-alpha
12
10
B Identified
Described
Implemented
Verified
0 T T T |
Start of End of End of End of End of
iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

Fig. 11.1 Cumulative flow diagram
The Essentials of Modern Software Engineering



Start of End of End of End of End of
Iteration 1 Iteration 1 Iteration2 Iteration 3 Iteration 4 Target

Stakeholders 1 3 4 !

Opportunity 2 B B B 3 5]
. Requirements 1 2 5 5 6 6

Analysis

System 1 2 2 4 4 4

Work 1 3 4 4 5 5

Team 2 3 4 4 4 4

Way of

Working 1 3 3 4 5 5

Note: The numbers in the table indicate the achieved state.

Table. 11.1 Kernel state evolution
The Essentials of Modern Software Engineering

« States of the alphas do not always move forward linearly.
* Alphas are interdependent so they progress in waves.
« Alphas need to progress in balance.

 |If a particular axis on the radar diagram is progressing slower, this needs to
consider which is the problem and to find solutions.

« Parallel progressions in waves are critical for the success of the endeavor.

Start of iteration 1 End of iteration 3

Stakeholders Stakeholders

Way of

y Opportunity Way of
working

y Opportunity
working

A T— - .
Team < 7~ Requirements Team Y Requirements

Table. 11.2 Radar diagrams

The Essentials of Modern Software Engineering
Work Software system Work Software system



Dealing with anomalies

Problems may appear and cause endeavor to fall back compared to a
previously reached alpha state.

Examples of possible problems :

« stakeholders may stop participating

« seasoned team members may leave

* new members, with less experience, may come

Solution :

Team should periodically use the Essence kernel alphas to
provide health check.



Subiecte tratate

Essence games
Utilizarea nucleului Essence

Utilizare practici



The new current development context

After the team’s successful demonstration.

U
Decision to expand the scope and vision of the endeavor.
U Responsible for all IT systems

operations including development
and enhancement of each IT system.

O w
U Cheryl

Dave
Chief Digital Officer

People involved.

© U Tom ©

U Smith O

Angela \ / Joel

Grace

O

Tan

from
Development Team Operations



Current development context

Alpha State Rationale for achieving the state
achieved

Stakeholders  Involved Cheryl, Dave, and Angela are key stakeholders in the endeavor.
The state is achieved because they were actively involved in
helping the team achieve a successful demo.

Opportunity Value The team had a successful demo supporting the objectives of the
Established Digital Transformation Group.

Requirements Bounded The team had successfully gotten the key stakeholders involved
and those key stakeholders had reached a shared understanding
of the extent of the proposed solution.

Software Architecture They had made their decision to use the existing proven mobile

System Selected app, and to use an architecture approach referred to as
microservices to host their recommendation engine.

Work Initiated All the team members had agreed that the source of their funding,
and the stakeholders who would fund the work, were clear.

Way of Working Initially tacit agreed practices worked well for the team, but as we

Working Well shall see the team eventually evolved to the more explicit

practices of Scrum, User Story, Use Case and Microservice due to
changes in their endeavor as it progressed.



Development Scope and Checkpoints

Agreement on incremental development = release roadmap.

Now
N A, F .
/\ s‘f N\ fflﬂ\x f'! Y / \~ .
A A AR AR A
. ) Time
Internal Internal Fan club Singapore Various
demo users regions

The next increment : to finish with the release to internal users.
Games to play S
* Chase the State

* Objective Go ?



Playing games results

Example of results after playing Chase the State and Objective Go:
Stakeholders : involved - Recognized — Involved (New stakeholders appeared).
Opportunity : Value Established — Value Established

Requirements : Bounded —» Conceived — Coherent, Addressed (new requirements,
beyond that for the demo, added for the next iteration).

Software System : Demonstrable — Usable

Work : started — Initiated — Prepared (for the new increment; have been defined scope,
plan and schedule for the initial release).

Team : Collaborating — Performing (areas for which they could improve both their
practices and tools; possible new members)

Way of Working : in use — Principles Established — Foundations Established, In

Use (miscommunications in the process of conducting certain activities have been
detected = agreed that they would need more explicit practices to make sure everyone
understood and agreed to how the team conducted these activities).



Agree upon practices to apply

Essence kernel contains the universal alphas
Practice — has specific alphas,

There must be correctly identified :

* practice-specific alphas

« practice-specific alpha states

« correspondent checklists



Agree upon practices to apply

Select explicitly a practice to apply.

We assume that :
« alibrary of practices exists
« the team is able to select the appropriate practices

« some practices have been tested and accepted by the organization as
working well.

The team will use a mixture of collaboration, engineering, and technical
practices.

Example :
Serum User Use Micro-
Practices selected by the team to be used in Stories | | Cases | | services

addition to the Essence kernel.

Kernel



User Use Micro-

Scrum gt ; .
Stories pascs services

Agree upon practices to apply

« Scrum is about team collaborations.

Scrum is a practice for iterative development, each iterationbeing a sprint. The sprint is an
alpha, something we need to watch. Scrum guides teams to complete work items in a
backlog. These work items, known as Product Backlog Items (PBIs) using Scrum
terminology, can also be treated as alphas.

« User stories and use cases are requirements engineering practices

User Stories is a practice about succinctly expressing requirement items, focusing on values.
Specific user stories can also be viewed as sub-alphas, similar to treating Requirement Items
as sub-alphas of Requirements.

Use Cases is a practice that helps teams identify and organize requirements in the form of
use cases and use case slices. A use case slice is a part of a use case that is broken down to
an appropriately sized piece of work for the development team to tackle. Specific use cases
can be viewed as sub-alphas of Requirements and specific use case slices can be viewed as
sub-alphas of a specific use case.

» Microservices is a highly technical practice

Microservices is a practice that helps teams break down a complex software system into a set
of cooperating small independent modules, each with its own purpose and each with its own
well-defined interface to other modules. Specific microservices can be viewed as sub-alphas
of the Software System kernel alpha and monitored as alphas.



The (sub)-alphas specific to the selected practices

Scrum A practice for the iterative development Sprint
of software systems working off a Product Backlog Item
backlog.
User Stories A way to capture functionality that will User Story
be of value to a user of a software
system.
Use Cases All of the ways of using a system to Use Case
achieve a particular goal for a particular Use Case Slice
user.

Microservices A software architecture style that uses  Microservice
small independent processes to
communicate.



Scrum practice

Scrum big picture mapped to the Essence Language

—

Product
Owner

=

Product
Backlog

Scrum
Master

)

Sprint
Planning

8

Sprint
Backlog

o L

Daily Sprint
Scrum Scrum Review
o Q ._:
Sprint Sprint
Retrospective
Q Increment

Product
Backlog Item



Scrum practice

(5]

Product
Owner

(]

Product
Backlog

=1
[

Sprint
Planning

[ ]

Sprint
Backlog

2y DD
Master

Daily Sprint
Serum Scrum Review

sprint Sprint
Retrospective

g Increment

Product
Backlog Item

Scrum Lite practice expressed in the Essence language.

(X

Scrum
Team

I_I

Product
Owner

I_I

Scrum
Master

Worlk

(X

Requirements

(X

Software sys

Coordinate Activity
(from kernel)

Track Progress

(from kernel)

tem

Support the Team

(from kernel)

(from kernel) (from kernel) (from kernel)
Product
oL
2 Backlog 2 23
= = 8 €
E — E 29
z prioritized 7 A s
2 into> 2 g
Y Y kv
¥ delivered ¥
described by> through> /
| X )-l >
Sprint Sprint Product Increment
Backlog Backlog Item
J T —— i ——— = o = o — =
1 \ 1 A | \
1 \ 1 A ] \
A" \ A"
: Y L Y
I Yo Yoo !
- - ! I - 'J I - ,
: Spru_ll Daily S Spr_ml J - Sprint )
: Planning Scrum ] : Review ! :Rclrospcclwc{r
T L I o oo o o o o w



P
CI Product Backlog

An ordered list of everything that
might be needed in the product.
The single source of requirements
for any changes to be made to
the product.

\ Items Ordered |

Describes: (1 Requirements

O ..... b 1 P WekeA™ 03.2015
J

¢

X

Scrum-specific alphas
and work products

P
D( Product Backlog
Item

A change to be made to the
product in a future release (for
example a feature, function,

To Do

( J
( Ready )|
( )
( J

Doing

Done

Relates to: (_{ Requirements

Camtot 14 Pt ket 03.2015

requirement, enhancement, or fix).

P

@

Sprint

(X

Product
Backlog Item

---------------------------*

P
CI Sprint Backlog

The set of Product Backlog Items
selected for the Sprint to meet the
Sprint goals. The Sprint Backlog
makes visible all of the work the
Scrum team identifies as
necessary to meet the Sprint
goal.

\ Goals Specified /

\ Capacity Described /

\  Work Forecast Described /

Describes: (X Sprint

N

O R —— 03.2015
&3

/

Increment

[

The sum of all Product Backlog
Items completed during a Sprint
and value of the Increments of all
previous Sprints.

Completed Product Backlog Items
Listed

Describes: () Software System

O Ganersng by Ui Prasics Wertencnt™

03.2015

\




Scrum-specific alphas and alpha states

-
() Sprint

A time-box of one month or less
during which a "Done," usable,
and potentially shippable Product
Increment is created. A new
Sprint starts immediately after the
conclusion of the previous Sprint.

(

( Planned

Scheduled

J
)

( Reviewed )

Relates to: (X Work

O

03.2

3

@

Sprint

(X

Product
Backlog Item

2N f i
| D< Product Backlog
| Item
A change to be made to the
=== | product in a future release (for
example a feature, function,
requirement, enhancement, or fix).

To Do

Ready

Doing

[ ]
[ )
[ )
[ ]

Done

Relates to: (_{ Requirements

[ — 03.2015

X

To Do. It has been agreed that the PBI
needs to be completed within the next

: | | legi ieria of
the PBI are clear.
Ready. The team works together with the
product owner to agree on how they
should go about completing the PBI.
Doing. At this state, the team is working on
the item and bringing it to completion.
Done. The Product Backlog Item has been
completed.

C)( Sprint

-
D( Sprint

-
(D( Sprint

Scheduled

[ [

Planned Reviewed

[

O Next iteration scheduled
0O Backlog Items prioritized

O Sufficient backlog items ready for
planning

O lteration goals agreed
O Backlog items to be completed agreed
O Key risks identified

0O Sufficient backlog items ready for
development

0O Completed backlog items reviewed
O Uncompleted backlog items handled
O Improvement actions planned

)

3/3

)

03.2015

032015
>

03.2015




.

| Product Owner

The Product Owner is the sole

person responsible for managing

the Product Backlog.

Accountable for ensuring:

» The Product Backlog items are
clearly expressed

* The Product Backlog is
ordered, transparent, and visible
to the Scrum team.

» The Scrum team understands
the Product Backlog items

* The value generated by the
Scrum team is optimized

O U S— 03.2015

»

'—. sjml_l

Product Master
Owner

scrum

Sprint Sprint
[ Planning
Product [ Q
Backlog Sprint Product

Backlog Backlog Item

Scrum-specific role patterns

| Scrum Master

The Scrum Master is responsible

for ensuring that Scrum is

understood and enacted. He/she

is a servant leader for the Scrum

team.

Amongst other things, he/she

helps:

« Facilitate Scrum activities

+ Remove impediments

* Ensure tean members
understand Scrum

+ Promote agility

O PR —— 03.2015

4

) L

Daily Sprint
Scrum Review

>

Sprint
Retrospective

A

Increment

N

“ | Scrum Team

The Scrum team consists of a
Product Owner, a Scrum Master,
and other members, usually
developers and testers.
Scrum teams deliver products
iteratively and incrementally,
maximizing opportunities for
feedback.

Scrum teams are:

» Self-organizing

» Cross-functional

O P ——— 03.2015




Decide what can be delivered in Ve
the Sprint's Increment and how
the work needed to deliver the
agreement will be achieved.

(") Sprint: Scheduled

Leadership Management

[ XWork: Started
Ly Sprint: Planned

L("] sprint Backlog: Work Forecast

3 Sprint Planning

Scrum-specific activity cards

A time-boxed review of the
feedback and discuss what
should be done next.

| Product Backlog: at any level

() Sprint: Planned

Described Development Management
\O i 03.2015 [ Increment: Product Backlog Items Listed
g 1=
() Sprint: Reviewed
O NSRS 03.2015
.
I_| Scrum - > : >
Master I_l Daily Sprint
Product ) Scrum Scrum Review
Owner Team Q
Sprint Sprint Sprint
[ Planning Retrospective
Product [ Q
Backlog Sprint Product
Backlog Backlog Item

:> Sprint Review

outcomes of the Sprint to gather

(.
D Daily Scrum

The team meets every day, same
time and place, to assess
progress, synchronize activity, and
raise and action impediments.
The meeting is time-boxed,
typically to 15 minutes.

Leadership Management

(" XWork: Under Control

®

03.2015

S

Increment

D Sprint
Retrospective

The whole team meets regularly
to reflect on its way of working.
Improvements are identified and
prioritized, and actions agreed. At
the next retrospective the results
are evaluated.

Leadership Management

03.2015

Gunsramme by it Pracace o™




Activity spaces addressed by Scrum Lite

Endeavor
:' -------- -1.\ Ir -------- -\\ HE— b Ir -------- 'i\ Ir -------- -\‘
B oy By D I O \
I Sprint ‘. 1 DailySerum Y | Sprint I Sprint Yol “
| Planning Y . Y | Retrospective ' |  Review ‘1 Y
I » 1 » 1 ) 1 i )
: J B g ;o ;o /
] /1 sprint ;o] ] /! N
1 ," I Planning ," 1 1 ,’ 1 f
L A P P S P S A N S
Prepare To Do Coordinate Support Track Stop the
the Work Activity the Team Progress Work
L >y
Endeavor activity spaces, partially covered by Scrum Lite.
' - 2
Solution
U - - o e - - - = - = = e - - == - =
I v AN v v v \
I A N I I v \
I » 1 > y 1 I y 1 »
I /1 VA /1 I 7 1 /
I s 1 s 1 /1 /1 /1 /
[ ] -+ [ -+ o o e e e -+ b o o e e e -+ [ e ] - [ e -+
Understand the  Shape the Implement Test the Deploy the Operate the
L Requirements System the System System System System
A

Solution activity spaces, not addressed by Scrum Lite.



Use Case Lite C)(
praCtice Requirements

(from kernel)

Scrum Lite practice described by

expressed in the Use-Case

captured as> Model
Essence Ianguage. v
CX described by C
T
Use Case Use-Case
Narrative

scope managed and
addressed as 3 set of slices >

CX described h}?:LC

Use-Case Slice Use-Case Slice
Test Cases

VT TTTTTTTTT T ™\ P ™\
I — N
1 \1 1 >
: i
1 Find actors Slice the Preparea  / I Testa
land Use Cases Use Cases Use-Case Slice | Use-Case Slice ,
T T T T TrrTTTTTTTYTTTTrTrTTTT = T L LT o

Understand the Requirements Test the System

(from kernel) (from kernel)



J

Use Case Lite specific-alphas

.
‘ (:)( Requirements
What the software system r_nust
ey e e | R
—==— (X UseCase |
( Coherent ] “ / \
( ) : s
e All the ways of using a system to O Use-Case Slice
( Fulfed ) achieve a particular goal for a
0 — particular user. One or more stories selected from
a use case to form a work item
( Goal Established ] that is of clear value to the
customer.
| Story Structure Understood |
( Simplest Story Fulfilled | [ Sbed )
Pr d
(" Sufficient Stories Fulfiled [ P )
- ( Analyzed )
( All Stories Fulfilled ]
( Implemented |
Relates to: (' Requirements [ Verified ]
O RSO —— 520 Relates to: [ ( Use Case
. J
O st by Lo it 52.0




Use Case alpha

States

-
C)( Use Case

( Goal Established J

-
Q Use Case

Described’

O Primary actors named

0 Goal and value clearly described
0O Stakeholders agree upon the goal
O In or out of scope?

0 Use-case narrative is 'Briefly

[ Story Structure Understood ]

O Basic flow determined

O Nature of other flows determined

0O Start and end are clear

0O Most common stories identified

0O Most important slices are 'Prepared'

(O"
|
|
{
(O"

%0

-
(D( Use Case

[ Simplest Story Fulfilled ]

O Applicable use-case slice is "Verified'

3/5 )|

P 520

/Or_

(3( Use Case

[ Sufficient Stories Fulfilled }

0 Basic flow implemented and tested

QO Enough alternative flows
implemented

0O Enough error handling implemented

O Enough use-case slices are 'Verified'

4/5 )

C)( Use Case

[ All Stories Fulfilled

J

0 All stories implemented and tested

0 All use-case slices are 'Verified'

5/5

(
O S S e 520
N

/Oh

520




Use Case Slice alpha

States

/

C)( Use-Case Slice

[ Scoped

0O Stories have been identified
O Requirements covered are clear
0 Relative priority is known

0 Implementation work has been
estimated

| 1/5

O o

'

520

-
C)( Use-Case Slice

[ Prepared ]

0O In-scope requirements are agreed

0O Test cases are sufficient for
verification

O Tests are well-defined

\

D @

D( Use-Case Slice

( Analyzed )

O Enough information to successfully
implement

O Implementation impact is agreed

O Impact is acceptable

0O Use-case realizations are
'Implementation Elements Identified"

F—
w
-
o

)

D( Use-Case Slice

{ Implemented ]

0O Code fulfils the slice
O Implementation elements are verified

e

415 |

O S 20

[
‘ () Use-Case Slice

[ Verified )

O Tests have executed successfully
0O Software system passes sufficient
test cases

O Test cases added to regression suite

P

5/5 )

O - 20

™




Use Case Lite — work products

[

A model that captures and

visualizes all of the useful ways to
use a system.

Use-Case Model

\ Value Established /

________________________________

________________________________

Describes: | Requirements

O Garerasa 1wy ey 5.2.0

~

£5 2

Use-Case

C Narrative

Tells the story of how the system
and its actors work together to
achieve a particular goal.

Briefly Described /
\ Bulleted Outline /
f—
\-.....fulyDescibed ____/
Describes: (! Use Case and
1 Use-Case Slice
0
LS P,

Use-Case Slice

C Test Case

Defines test inputs and expected
results to help evaluate whether a
Use-Case Slice works correctly.

\ Test Scenarios Chosen /
\_._..._Variables identified
I TestVariablesSet
| Scripted or Automated |

Describes: | Use-Case Slice

O e 02y 1 P ™ 520




/
Find Actors and
Use Cases

Agree on the goals and value of
the system by identifying ways of
using and testing it.

[__XRequirements: Conceived (contributes to) -
Bounded (contributes to) - Coherent
(contributes to)

-(" | Use-Case Model: Value Established or
beyond
[ I Use Case: Goal Established

L?_E Use-Case Narrative: Briefty Described or

beyond

O

52.0

Comas vt U4 s Wommomen ™

Slice the Use-
Cases

Break use case up into a number
of intelligently selected smaller
parts for development.

Development Analysis Tesling

(") Requirements: Coherent
':T Use-Case Model: Structured
[ {Use Case: Story Structure Understood
L (use-Case Slice: Scoped

Gt v L2 a3 Weonsenc P

O

Use Case Lite
activity cards

52.

Prepare a Use-

D Case Slice

Enhance the narrative and test cases
to clearly define what it means to
successfully implement the slice.
{Understand the Requirements

Analysis Testing Development

h

[ fUse Case: Story Structure Understood ~ /~
(| Test Case: Scenario Chosen

t:l Use-Case Narrative: Essential Outline
(I Use-Case Slice: Prepared

O

Gamanasn by 11| Prorace Wortmane ¥

O

Test a Use-Case
Slice

Verify the slice is done and ready
for inclusion in a release.

Analysis Testing

(I Requirements: Addressed or beyond
[ IUse Case: Simplest Story Fulfilled or

beyond

(| Test Case: Variables Set

L{ " {Use-Case Slice: Verified

ot oy 15 Prmins ™




Activity spaces addressed by Use Case Lite

Solution
] ] \ \ \
D Doy Vb Doy .
I Find Actors \ I Find Actors 1 \ 1 Test a \ I \ I
Iand Use Cases‘.' Iand Use G;ases".l : "1 : Use-Case "1 I "] I
: o o L St ) L
[ v v v v v
[ —> o (' (O T v
| Preparea [ | [ | I 1 [ i1
=Use-Case Slice, : ,* : ,* : ,’ : / :
S o o ! !
I I I 1 I
: | ! ! ] ]
. I I I I i
1 Slice the | I I 1 I 1 I I I I
I I [ I 1 ! 1 1 I I [
j Use Cases | I I I I I I I I I
| o | —— o | —— o | of | of | S of
Understand the Shape the Implement Test the Deploy the Operate the
Requirements System the System System System System

L8

Solution activity spaces and Use Case Lite.



Conclusion on practices

As a software professional, you will come in contact with many
other practices.

We believe that in due time, popular practices will be essentialized.

As a student or professional who has a good understanding of
Essence, you will learn these practices quickly.



Bibliography

For licence project:

A case study:

General


https://practicelibrary.ivarjacobson.com/start
https://practicelibrary.ivarjacobson.com/start
https://practicelibrary.ivarjacobson.com/start
http://software-engineering-essentialized.com/web/guest
https://puzzler.sim4seed.org/
http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

