
Software Engineering – Lecture 12

The Essence of Software Engineering

Adapted after

I. Jacobson, H. Lawson, Pan-Wei Ng, P.E. McMahon, M. Goedicke

The Essentials of Modern Software Engineering, 2019, ACM Books

Topics covered

Software Engineering methods and SEMAT solution

Essence ideas and key concepts

The language of Essence

The kernel of Essence

Software Engineering Methods

Paradigm shifts regarding software development methods:

• structured methods

• component methods

• agile methods

Problems :

• new terminology, with little relation to the old ones

• transition extremely costly to the software industry in the form of training,

coaching, and change of tooling

With every major technical innovation (ex. cloud computing) requiring a new set of

practices, the method authors also “reinvent the wheel.”

Within every software engineering trend there are many competing methods.

• as early as 1990 there were about 30 competing object-oriented methods

• about 10 competing methods on scaling agile to large organizations (ex. Scaled Agile

Framework (SAFe), Disciplined Agile Delivery (DAD), Large Scale Scrum (LeSS), and Scaled Professional Scrum

(SPS).) include
• basic widely used practices (ex. Scrum), user stories / use cases, and continuous integration

• some often useful practices that are specific for each one

• no collaboration between method authors

Software Engineering Methods and SEMAT solution

• Methods are monolithic, not modular difficult to mix and match practices

from different methods.

• Once a method have adopted, you get the feeling you are in a method prison

controlled by the guru of that method.

Proposed solution

• SEMAT (Software Engineering Method and Theory) initiative (started in 2009)

Initial observations :

• It can be guesstimated that there are over 100,000 different methods to

develop software, since basically every team has developed their own way of

working even if they didn’t describe it explicitly.

• The number of methods is growing much faster than the number of reusable

practices.

Objective of the solution :

• Provide means so that every team or organization to be able to set up its own

method.

SEMAT call for action in 2009

The problem identified in this call for action :

Software engineering is gravely hampered today by immature practices.

Specific problems include:

• The prevalence of fads more typical of fashion industry than of an engineering

discipline.

• The lack of a sound, widely accepted theoretical basis.

• The huge number of methods and method variants, with differences little

understood and artificially magnified.

• The lack of credible experimental evaluation and validation.

• The split between industry practice and academic research.

SEMAT call for action in 2009

The solution proposed:

We support a process to re-found software engineering based on a solid theory,

proven principles, and best practices that:

• include a kernel of widely agreed elements, extensible for specific uses

• address both technology and people issues

• are supported by industry, academia, researchers and users

• support extension in the face of changing requirements and technology.

The result:

Underlying language and kernel of software engineering was accepted in June

2014 as a standard by the OMG and it was given the name Essence.

Topics covered

Software Engineering methods and SEMAT solution

Essence ideas and key concepts

The language of Essence

The kernel of Essence

Essence

Essence key ideas:

Methods are composition of practices.

There is a common ground (kernel) shared among all methods and practices.

Focus on the essentials is needed when providing guidelines for a method or

practice.

Providing software engineering experience is possible when teaching and

learning methods and practices.

Realization of the ideas:

Concept of composition of practices.

Common ground : language and kernel of essential elements.

Practices and methods, build on top of Essence, to form method architecture.

Cards, as means for a tangible developer experience.

Methods and practices

Methods are composition of practices

Method = guide for the software development team during the software

development process.

Practice = guides a team how to carry out one particular thing in their work (ex.

requirements management, design, implement, test, organize the team, etc.)

Method relies on a composition of practices.

Practices are separate but not independent. Sometimes they overlap or are in conflict.

Example of practice content:

• guidelines for developer activities

• guidelines for work products

Two practices may contribute to the same work product => need to specify how the

contributions must be combined in a meaningful and constructive way.

Practices may be compositions of smaller practices.

Ex. Scrum = composition of Daily Standup, Backlog-Driven Development, Retrospective.

Essence – common ground

Common ground – describe, teach, learn, use, modify, compare practices.

The practices are essentialized, meaning

they are described using Essence—the

Essence kernel and the Essence

language.

The methods, composed of practices, are

also essentialized.

Fig. 3.3 Essence method architecture

The Essentials of Modern Software Engineering

Fig. 3.2 Essence and its parts

The Essentials of Modern Software Engineering

Essence – common ground

Libraries of practices coming from

many different methods can be created.

Teams can mix and match practices from

many methods to obtain a method they

want.

If an idea for a new practice appears, that

practice can be essentialized and added to

a practice library for others to select.

When creating a new method, it is no need

to “reinvent the wheel”.

Essentialized Methods are

composition of Essentialized practices

That are described using Kernel Elements

Using Essence Language

Fig. 3.4 A method is a composition of practices on top of the kernel

The Essentials of Modern Software Engineering

Essence – common ground

Ways of learning methods:

• own working experience

• reading books

• reading navigable web sites with method presentation

Essence way

• learn Essence, the common ground

• use Essence cards

Fig. 3.5 Cards make the kernel and practices tangible.

The Essentials of Modern Software Engineering

Facets of all software development endeavors

There are customers with needs to be met.

• Someone has a problem or opportunity to address.

• There are stakeholders who use and/or benefit from the solution produced,

and some of these will fund the endeavor.

There is a solution to be delivered.

• There are certain requirements to be met.

• A software system of one form or another will be developed.

There is an endeavor to be undertaken.

• The work must be initiated.

• An empowered team of competent people must be formed, with an

appropriate way of working.

Essence areas of concerns

Customer – contains everything to do with the actual use and exploitation of the

software system to be produced.

Solution - contains everything related to the specification and development of the

software system.

Endeavor - contains everything related to the development team and the way that

they approach their work.

Fig. 4.1 The things involved in all development endeavors

The Essentials of Modern Software Engineering

Topics covered

Software Engineering methods and SEMAT solution

Essence ideas and key concepts

The language of Essence

The kernel of Essence

The language of software engineering

The language constructs :

• alpha,

• alpha state,

• work product,

• activity,

• activity space,

• competency,

• pattern

The language constructs are materialized as cards.

The cards are a practical way to use the various language elements of

Essence.

The language of software engineering

A simple practice example.

• Purpose : to produce higher quality code.

• Description : Two persons (students) work in pairs to turn requirements into a software

system by writing code together. Writing code is part of implementing the system.

alpha – Essential element of the development

endeavor that is relevant to an assessment of

the progress and health of the endeavor.

work product – tangible thing

that practitioners produce

when conducting software

engineering activities.

activity - a thing that

practitioners do.

competency – an ability,

capability, attainment,

knowledge, or skill

necessary to do a certain

kind of work..

Fig. 5.1 Simple programming practice

The Essentials of Modern Software Engineering

The language of software engineering

alpha – essential element of the development endeavor that is relevant to an

assessment of the progress and health of the endeavor.

• intangible, conducting element

• have states to evaluate progress and health of the endeavor

• understood and described by the work products associated with it.

work product – tangible thing that practitioners produce when conducting

software engineering activities.

Examples : requirements specifications, design models, code.

Example: Requirements alpha

• always exist in a software development endeavor.

• sometimes requirements may just exist in the heads of people.

• may be evidenced by associating work products like requirements items, test cases,

user manuals.

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

The language of

software engineering

alpha – essential element of the development

endeavor that is relevant to an assessment of

the progress and health of the endeavor.

Bound the work to be accomplished in

progressing toward the provisioning of the

software system.

The most important things that must be attended

to, and progressed, in order to be successful

in a development endeavor.

alpha states

- describe progression through a lifecycle

- are specific to each alpha

Figures 5.2 and 5.4 Requirements and Software System alpha cards

The Essentials of Modern Software Engineering

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Requirements alpha state cards

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Fig. 5.3 Requirements alpha

state cards

The Essentials of Modern

Software Engineering

States for Requirements alpha

State Description

Conceived The need for a new system has been agreed upon.

Bounded The purpose and theme of the new system are clear.

Coherent The requirements provide a consistent description of the

essential characteristics of the new system.

Acceptable The requirements describe a system that is acceptable to

the stakeholders.

Addressed Enough of the requirements have been addressed to

satisfy the need for a new system in a way that is

acceptable to the stakeholders.

Fulfilled The requirements have been addressed to fully satisfy the

need for a new system.

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

State Description

Architecture

selected

Key decisions about the Software System have been

made. For instance, the most important system elements

and their interfaces are agreed upon.

Demonstrable Key use of the Software System has been demonstrated

and agreed.

Usable The Software System is usable from the point of view of

its users.

Ready The Software System has sufficient quality for deployment

to production, and the production environment is ready.

Operational The Software System is operating well in the production

environment.

Retired The Software System is retired and replaced by a new

version of the Software System, or by a separate Software

System.

States for Software System alpha

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Work Products

Work product = tangible thing that may provide evidence to verify the

achievement of an alpha state.

Examples :

• Requirements (alpha) - Requirements Specification (work product)

• Software System (alpha) – Code (work product)

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Fig. 5.5 The Code work product card

The Essentials of Modern Software Engineering

Work Products

Work product = tangible thing that may provide evidence to verify the

achievement of an alpha state.

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

• Code is an instance of Work Product and is specific to a programming

practice.

• It is not part of Essence kernel.

• Essence specifies only the type, i.e. what work products are, how to

represent them, and what can be done with them.

• Work product can have different levels of detail in different teams.

Definition of detail levels depends on factors like:

• past history of team members working together

• customer requirements,

• regulatory requirements

(e.g., regulation for software validation of medical devices),

• organizational policies.

Competency

Competency = one of the abilities needed when applying a practice.

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Example :

Development competency

Fig. 5.6 The Development competency card

The Essentials of Modern Software Engineering

Levels of achievement for

Development competency

Competency

level

Description

Assists Demonstrates a basic understanding of the

concepts and can follow instructions.

Applies Able to apply the concepts in simple contexts by

routinely applying the experience gained so far.

Masters Able to apply the concepts in most contexts and has

the experience to work without supervision.

Adapts Able to apply judgment on when and how to apply

the concepts to more complex contexts. Can enable

others to apply the concepts.

Innovates A recognized expert, able to extend the concepts to

new contexts and inspire others.

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Activity

Activity = a thing that practitioners do.

• Instance of the Activity Type

• Is defined at the level of each practice.

• A practice includes more activities which are specific to that practice,

Examples:

• holding a meeting,

• analyzing a requirement,

• writing code, testing,

• peer review.

Fig. 5.7 The Write Code activity card

The Essentials of Modern Software Engineering

Alpha

Work Product

Activity

Competency

Activity Space

Pattern

Essence language.

Elements

Element Type Syntax Description

Alpha An essential element of the development endeavor

that is relevant to an assessment of the progress

and health of the endeavor.

Work Product A tangible thing that practitioners produce when

conducting software engineering activities.

Activity A thing that practitioners do.

Competency An ability, capability, attainment, knowledge, or skill

necessary to do a certain kind of work.

Activity Space A placeholder for something to do in the

development endeavor. A placeholder may consist

of zero to many activities.

Pattern An arrangement of other elements represented in

the language.

Essence language

Relationships

Fig. 5.8 Elements of Essence language and their relationships

The Essentials of Modern Software Engineering

Essence language and essentializing practices

Steps to essentialize a practice :

• Identify the elements.

• First, build a list of elements that make up a practice.

• The output is essentially a diagram.

• Draft the relationships between the elements and the outline of each

element.

• At this point, the cards are created.

• Provide further details.

• Usually, the cards will be supplemented with additional guidelines, hints and tips,

examples, and references to other resources, such as articles and books.

Topics covered

Software Engineering methods and SEMAT solution

Essence ideas and key concepts

The language of Essence

The kernel of Essence

Essence kernel

Structured approach in organizing the elements of software

engineering.

• 3 discrete areas of concern

• customer

• solution

• endeavor

• 4 fundamental types of kernel elements

• alpha

• activity space

• competency

• pattern

Essence kernel

Areas of concern

1. Contains everything to do with the

actual use and exploitation of the software

system to be produced.

2. Contains everything related to the

specification and development of the

software system.

3. Contains everything related to the

development team and the way that they

approach their work.

Fig. 6.1 The three areas of concern

The Essentials of Modern Software Engineering

Essence kernel

Elements

1. The essential things to work with: the alphas

2. The essential things to do: the activity spaces

3. The essential capabilities needed: the competencies

4. The essential arrangements of elements: the patterns

Essence kernel

Alphas – things to work with

Fig.6.2 The Essence alphas and their relationships

The Essentials of Modern Software Engineering

Essence kernel

Customer alphas

In the Customer area of concern, the team needs to understand the

stakeholders’ needs and the opportunity to be addressed.

Opportunity. The set of circumstances that makes it appropriate to develop or

change a software system. The opportunity articulates the reason for the

creation of the new, or changed, software system. It represents the team’s

shared understanding of the stakeholders’ needs and helps shape the

requirements for the new software system by providing justification for its

development.

Stakeholders. The people, groups, or organizations that affect or are affected

by a software system. The stakeholders provide the opportunity and are the

source of the requirements and funding for the software system. The team

members are also stakeholders. As much stakeholder involvement as

possible throughout a software engineering endeavor is important to support

the team and ensure that an acceptable software system is produced.

Essence kernel

Solution alphas

In the Solution area of concern, the team needs to establish a shared

understanding of the requirements, and then implement, build, test, deploy,

and support a software system that fulfills them.

Requirements. What the software system must do to address the opportunity

and satisfy the stakeholders. It is important to discover what is needed from

the software system, share this understanding among the stakeholders and

the team members, and use it to drive the development and testing of the new

system.

Software System. A system made up of software, hardware, and data that

provides its primary value by the execution of the software. The primary

product of any development endeavor, a software system can be part of a

larger software, hardware, business, or social system solution.

Essence kernel

Endeavor alphas

In the Endeavor area of concern, the team and its way of working have to be

formed, and the work has to be done.

Team. A group of people actively engaged in the development, maintenance,

delivery, or support of a specific software system. The team plans and

performs the work needed to create, update, and/or change or retire the

software system.

Work. Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does

to meet the goals of producing a software system matching the requirements,

and addressing the opportunity, that has been presented by the stakeholders.

The work is guided by the practices that make up the team’s way of working.

Way of Working. The tailored set of practices and tools used by a team to guide

and support their work. The team evolves their way of working alongside their

understanding of their mission and their working environment. As their work

proceeds, they continuously reflect on their way of working and adapt it as

necessary to their current context.

Essence kernel

Alpha relationships

All alphas are related to one

another and they

complement each other

by addressing their own

aspects of the

development endeavor.

Stakeholders provide

Opportunity, which then

helps to identify

Requirements and

focuses on the most

important ones. These

Requirements are then

fulfilled by implementing

a Software System.

Essence kernel

Alpha relationships

All alphas are related to

one another and they

complement each other

by addressing their own

aspects of the

development endeavor.

The Software System

implementation

addresses the

Opportunity, and it is

used and consumed by

Stakeholders.

Essence kernel

Alpha relationships

The Team produces the

Software System by doing

Work. The Work is set up to

address the Opportunity

and it implies updating and

changing the Software

System. Work is guided by

a Way of Working that is

applied by the Team while

performing its Work. The

Team is continuously

supported by Stakeholders

who provide feedback

about the Software System

to the Team.

Essence kernel

Alpha states cards

Figure 6.3 Essence kernel

alpha state cards

The Essentials of Modern

Software Engineering

Details at OMG and on the site

of the book.

Essence kernel

Activity spaces – things to do

Activity space = generic (i.e., method-independent) placeholders for specific

activities that will be added later, on top of the kernel.

• packages used to group activities that are related to one another.

• guidance for achieving the states specified in the alphas

Obs. The sequences indicate the order in which things are finished and not necessarily the

order in which they are started. Overlaps may occur.

Figure 6.4 Essence activity spaces

The Essentials of Modern Software

Engineering

Essence kernel

Customer activity spaces

Activities necessary to understand the opportunity, and to support and involve

the stakeholders.

Explore Possibilities. Explore the possibilities presented by the creation of a

new or improved software system. This includes the analysis of the

opportunity and the identification of the stakeholders.

Understand Stakeholder Needs. Engage with the stakeholders to understand

their needs and ensure that the right results are produced. This includes

identifying and working with the stakeholder representatives to progress the

opportunity.

Ensure Stakeholder Satisfaction. Share the results of the development work

with the stakeholders to gain their acceptance of the system produced and

verify that the opportunity has been addressed.

Use the System. Observe the use of the system in a live environment and how

it benefits the stakeholders.

Essence kernel

Solution activity spaces

Activities necessary to develop an appropriate solution to exploit the opportunity

and satisfy the stakeholders.

Understand the Requirements. Establish a shared understanding of what the

system to be produced must do.

Shape the System. Form and structure, i.e., shape the system so that it is easy

to develop, change, and maintain, and can cope with current and expected

future demands. This includes the architecting and overall design of the

system to be produced.

Implement the System. Build a system by implementing, testing, and integrating

one or more system elements. This includes bug fixing and unit testing.

Test the System. Verify that the system produced meets the stakeholders’

requirements.

Deploy the System. Take the tested system and make it available for use

outside the development team.

Operate the System. Support the use of the software system in the live

environment.

Essence kernel

Endeavor activity spaces

Activities necessary to form a team and to progress the work in line with the

agreed way of working.

Prepare to Do the Work. Set up the team and its working environment.

Understand and commit to completing the work.

Coordinate Activity. Coordinate and direct the team’s work. This includes all

ongoing planning and re-planning of the work, and re-shaping of the

team.

Support the Team. Help the team members to help themselves, collaborate,

and improve their way of working.

Track Progress. Measure and assess the progress made by the team.

Stop the Work. Shut down the development endeavor and handover of the

team’s responsibilities.

Essence kernel

Activity spaces – things to do

Example : Implement the System

Figure 6.5 Implement the System

activity space card

The Essentials of Modern Software

Engineering

Essence kernel

Competencies

Competencies - defined in the kernel as generic

containers for specific skills.

Individual teams identify the specific skills

needed for their particular software

endeavor.

• Competency may be:

• relevant to the specific tasks

• other competencies to understand what

the teammates are working on.

Figure 6.6 The kernel competencies

The Essentials of Modern Software

Engineering

Competency levels

The Essentials of Modern

Software Engineering

Essence kernel

Customer competency

A clear understanding of the business and technical aspects of the

domain of the problem and ability to accurately communicate the

views of the stakeholders.

Stakeholder Representation. The ability to gather, communicate,

and balance the needs of other stakeholders, and accurately

represent their views.

Essence kernel

Solution competency

The ability to capture and analyze the requirements and build and operate a

software system that fulfills them.

Analysis. The ability to understand opportunities and their related

stakeholder needs, and to transform them into an agreed upon and

consistent set of requirements.

Development. The ability to design, program, and code effective and

efficient software systems following the standards and norms agreed

upon by the team.

Testing. The ability to test a system, and verify that it is usable and that it

meets the requirements.

Essence kernel

Endeavor competency

Abilities to organize itself and manage its workload.

Leadership. The competency enables a person to inspire and

motivate a group of people to achieve a successful conclusion

to their work and to meet their objectives.

Management. The ability to coordinate, plan, and track the work

done by a team.

Essence kernel

Patterns

Pattern = generic solutions to a typical problem.

Optional elements (not required in a practice definition) that may be associated

with any other language element.

Role pattern : a set of specific responsibilities plus the competencies required to

fulfill them and a minimum level for each competency.

Examples :

Figures 6.7 and 6.8 Student Pairs

and Coder (role) patterns

The Essentials of Modern Software

Engineering

Checkpoint = a set of criteria to be achieved at a specific point in time in a

development endeavor; key point in the lifecycle of a software endeavor

where an important decision must be made.

Checkpoint pattern - expressed in Essence by a set of alpha states that must

have been achieved in order to pass the checkpoint (milestone).

Essence kernel

Patterns

Fig. 6.9 A checkpoint pattern example

The Essentials of Modern Software

Engineering

Essence kernel

Patterns

Checkpoint pattern card -

expressed in Essence by a

set of alpha states that must

have been achieved in order

to pass the checkpoint.

Fig. 6.10 A checkpoint pattern card

The Essentials of Modern Software

Engineering

Bibliography

http://semat.org

http://semat.org/tool-support

https://essence.ivarjacobson.com/

https://practicelibrary.ivarjacobson.com/start

http://software-engineering-essentialized.com/web/guest

https://puzzler.sim4seed.org/

http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

http://semat.org/
http://semat.org/tool-support
https://practicelibrary.ivarjacobson.com/start
http://software-engineering-essentialized.com/web/guest
https://puzzler.sim4seed.org/
http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

Licence projects

Alpha State Cards are a simple, easy way to track status

of a software project and help plan next steps.

Alpha State Cards are another tool in your kit, and can be

helpful with:

• Understanding the current state of your

development project

• Troubleshooting problem areas within a project

• Setting objectives for future iterations

• Facilitating retrospectives

• Identifying areas for improvement

We typically use them on a wall or whiteboard to visually

display where we are and what we want to focus

on next.

https://essence.ivarjacobson.com/

https://practicelibrary.ivarjacobson.com/start

Topics covered

Software Engineering methods and SEMAT solution

Essence ideas and key concepts

The language of Essence

The kernel of Essence

Serious games

Essence cards

card provides a concise description of the most important information

about its element.

act as reminders to practitioners

Additional details are available in complementary guidelines.

Team performance depends on effective communication, common

understanding, trust collaboration

Cards used to play collaborative games as facilitating tools in a variety

of settings and purposes (ex. obtain a consensus about the work)

used to introduce the kernel and practice elements

to understand endeavor purpose, benefits and problems

resolve conflicts in limited time

Serious games

Serious games (beyond entertainment)

Simulate lifelike events aiming to achieve specific goals

• solve a particular real-world problem

• learn something new.

• develop skills (basic mental abilities such as perception, attention, and decision

making).

Essence games

• cooperative, consensus-based (not competitive)

• highly reusable aids when carrying out multiple practices.

• players express their thoughts clearly, listen to one another, share information and

resources, learn from one another, identify solutions, negotiate, and make

common decisions.

• stimulate a team to

• discuss the issues related to the health and progress of their own endeavors.

• look ahead at states and checklists not yet achieved clarifying what is

important to do next

Serious games

Progress Pocker

Track progress based on the state transitions of alphas.

Items in a checklist

• provide a hint of what needs to be done.

• are subject to interpretation by the team members,

with different opinions on the meaning

need for agreement

Solution : Progress Poker

• facilitate discussion

• achieve understanding

about of the current state of a particular alpha

Fig. 8.1 Software System: Demonstrable alpha state card

The Essentials of Modern Software Engineering

Serious games

Progress Poker

• one alpha at a time

• Alpha overview card

• Alpha state cards

• 3-9 players

Rules

• alpha card on the table

• each player places face down the card with his opinion

• compare the results

• discuss different choices (explain and motivate, starting with extreme ones)

• new round

Ends when a consensus has been reached on the current state

that has been achieved for a particular alpha.

Fig. 8.2 Progress Poker

cards for Requirements

alpha

The Essentials of

Modern Software

Engineering

Serious games

Chasing the state

• all the alphas

• Alpha overview card

• Alpha state cards

• 3-9 players

Fig. 8.4 Initial position for Chasing the state game

The Essentials of Modern Software Engineering

Rules

For each alpha

• establish the state

• if consensus is not easily obtained then play Poker

Serious games

Chasing the state

Fig. 8.5 Stakeholders alpha

before and after discussion

The Essentials of Modern

Software Engineering

Fig. 8.6 Stakeholders alpha has reached first state

The Essentials of Modern Software Engineering

Serious games

Chasing the state result

Fig. 8.8 The current states for all alphas have been identified

The Essentials of Modern Software Engineering

Serious games

Objective Go

Fig. 8.9 Requirements and Stakeholders Alpha Wave

The Essentials of Modern Software Engineering

Aim - agree upon the next steps

Played after the Chasing the State game

Objective : some or all alphas moved to the next state

Alphas usually progress in waves,

depending on each other progress.

Serious games

Objective Go example

Figures 8.10 and 8.11

The Essentials of Modern Software Engineering

For each alpha discuss
• next state that should be achieved

• which checklist items for that state are not yet achieved

• the tasks needed to be done

Example :

Objective : Software System: Demonstrable;

Serious games

Objective Go example

Fig. 8.12 The next step is represented by cards in the middle of the table

The Essentials of Modern Software Engineering

Objective :

• Stakeholders: Involved,

• Software System: Demonstrable;

• Way of Working: Foundation Established;

• Work: Prepared.

Serious games

Checkpoint construction

Fig. 8.9 Requirements and Stakeholders Alpha Wave

The Essentials of Modern Software Engineering

Checkpoint = key point in the lifecycle of a software endeavor where an

important decision must be made.

defined as a set of criteria to be achieved at a specific point in time in a

development endeavor;

defined using alpha states

Serious games

Checkpoint construction

used to synchronize teams working in parallel specified by the stakeholders of

the whole endeavor and not by every team participating in the endeavor

game is played by the stakeholder team

stakeholder team = a few key stakeholder members that can represent the views of

the stakeholders.

played for one checkpoint and in two rounds.

Rules

1. facilitator lays out the seven Alpha Overview cards on the table and describes the

checkpoint being considered.(e.g. Ready for Development)

• each team member decides which alphas should be considered as part of the checkpoint

• team agrees on which alphas should be considered for the checkpoint.

2. for each selected alpha

• each team member identifies the state he believes the alpha needs to be in to pass

the checkpoint

• discuss different choices (explain and motivate, starting with extreme ones)

• until consensus is obtained

Serious games

Checkpoint construction

Facilitator leads the group through a discussion of potential

additional checklist items to be added for the checkpoint.

The generic checklist items on the cards can be tailored to the

context of the specific endeavor.

By applying the Checkpoint Construction game several times, a

whole lifecycle can be defined.

Bibliography

https://practicelibrary.ivarjacobson.com/start

http://software-engineering-essentialized.com/web/guest

https://puzzler.sim4seed.org/

http://www.software-engineering-essentialized.com/practices-with-deck-

of-cards

https://practicelibrary.ivarjacobson.com/start
http://software-engineering-essentialized.com/web/guest
https://puzzler.sim4seed.org/
http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

Bibliography

https://practicelibrary.ivarjacobson.com/start

http://software-engineering-essentialized.com/web/guest

https://puzzler.sim4seed.org/

http://www.software-engineering-essentialized.com/practices-with-deck-

of-cards

https://practicelibrary.ivarjacobson.com/start
http://software-engineering-essentialized.com/web/guest
https://puzzler.sim4seed.org/
http://www.software-engineering-essentialized.com/practices-with-deck-of-cards

Scrum is an agile method that focuses on agile planning and management.

Unlike XP, it does not define the engineering practices to be used. The

development team may use any technical practices that they believe are

appropriate for the product being developed.

In Scrum, work to be done is maintained in a product backlog – a list of

work items to be completed. Each increment of the software implements

some of the work items from the product backlog.

Sprints are fixed-time activities (usually 2–4 weeks) where a product

increment is developed. Increments should be ‘potentially shippable’

i.e. they should not need further work before they are delivered.

A self-organizing team is a development team that organizes the work to

be done by discussion and agreement amongst team members.

Scrum practices such as the product backlog, sprints and self-organizing

teams can be used in any agile development process, even if other

aspects of Scrum are not used.

Key points

https://www.youtube.com/watch?v=BEp-L8ChSkQ

https://www.youtube.com/watch?v=BEp-L8ChSkQ

