
Software Engineering – Lecture 11

Agile software development

Adapted after ©Ian Sommerville

Software Engineering, 2010, chapter 3;

Engineering Software Products, 2019, chapter 2

Topics covered

AGILE methods

Plan-driven and agile development

Extreme programming

Scaling agile methods

Scrum

Agile methods

Rapid development and delivery is now often the most important
requirement for software systems

Businesses operate in a fast–changing environment (ex. volatile Internet
software industry, emerging mobile application environment).

Software has to evolve quickly to reflect changing business needs.

It is practically impossible to produce a set of stable software requirements.

Rapid software development

Specification, design and implementation are inter-leaved.

System is developed as a series of versions with stakeholders involved in
version evaluation.

User interfaces are often developed using an IDE and graphical toolset.

Agile methods

Agile methods:

Are based on an iterative and incremental approach of software

development;

Are intended to deliver working software quickly, and evolve this

quickly to meet changing requirements.

Aim to reduce overheads in the software process (e.g. by limiting

documentation) and to be able to respond quickly to changing

requirements without excessive rework.

Agile methods

www.agilemanifesto.org

http://www.agilemanifesto.org/

Agile methods features

• Short releases and iterations

• Incremental design

• User involvement

• Minimal documentation: Do only the necessary amount of

documentation, which is just a means to an end. The source code

is a big part of the actual documentation.

• Informal communication

• Change is assumed

Obs. Enough documentation must be available if the released software

needs to be maintained by a group different from the original developers.

Principle Description

Customer

involvement

The customer should be closely involved throughout the

development process. Their role is to provide and prioritise new

system requirements and to evaluate the iterations of the

system.

Incremental

delivery

The software is developed in increments. Test and evaluate each

increment as it is developed and feed back required changes to

the development team.

People not

process

The skills of the development team should be recognised and

exploited. The team should be left to develop their own ways of

working without prescriptive processes.

Embrace

change

Expect the system requirements to change and design the

system so that it can accommodate these changes.

Maintain

simplicity

Focus on simplicity in both the software being developed and in

the development process used. Wherever possible, actively work

to eliminate complexity from the system.

Principles of agile methods

Agile methods

Aplicability

• Developing of small or medium-sized product for sale. Virtually all

software products are now developed using an agile approach.

• Developing custom system where there is a clear commitment from

the customer to become involved in the development process and

where there are not a lot of external rules and regulations that affect

the software.

Processes and methodologies (agile or traditional) have to be adjusted

for each project.

A software engineer must know about many different methodologies to be

able to adopt specific techniques that may be useful to his particular

project.

Problems with agile methods

It can be difficult to keep the interest of customers who are involved

in the process.

Team members may be unsuited to the intense involvement that

characterizes agile methods.

Prioritizing changes can be difficult where there are multiple

stakeholders.

Maintaining simplicity requires extra work.

Contracts may be a problem as with other approaches to iterative

development.

Requirements are collected informally and incrementally, without a

coherent requirements document.

Difficulties if original development team cannot be maintained.

Topics covered

AGILE methods

Plan-driven and agile development

Extreme programming

Scaling agile methods

Scrum

Plan-driven and agile development

Plan-driven development

Separate development stages; the outputs to be produced at each stage are

planned in advance.

Not necessarily waterfall model – plan-driven, incremental development and

delivery is possible.

Iteration within activities; formal documents to communicate between stages.

Agile development

Specification, design, implementation and testing are inter-leaved; the outputs are

decided through a process of negotiation during the software development

process.

Iteration occurs across activities.

Not inevitably code-focused - may produce some design documentation.

Obs. Most software projects include practices from plan-driven and agile approaches.

The balance in a specific process depends on technical, human and organizational factors.

Incremental development and delivery

• Features are prioritized so that the most important features are

implemented first.

• Only the details of the feature being implemented in an increment are

defined.

• That feature is then implemented and delivered.

• Users or surrogate users can try it out and provide feedback to the

development team. Then the next feature of the system is defined and

implemented.

Incremental development and delivery

Figure 2.1 Incremental development

Ian Sommerville – Engineering Software Products

Using the list of features in the planned

product, select those features that can be

implemented in the next product increment.

Add detail to the feature

descriptions so that the team

have a common understanding

of each feature and there is

sufficient detail to begin

implementation.

Implement the feature and develop

automated tests for that feature

that show that its behaviour is

consistent with its description.

Integrate the developed feature with the

existing system and test it to check that it

works in conjunction with other features.

Deliver the system increment to

the customer or product manager

for checking and comments. If

enough features have been

implemented, release a version of

the system for customer use.

Formative evaluation

1. Check the correct answers:

Agile methods in software development imply :

[] Incremental delivery

[] Periodic activities to eliminate complexity from the system

[] Customer involvement during the software process

[] Modeling the whole software before writing the code

[] Establishing normative processes for team working

[] Planning in advance all software process activities

2. Explain why agile methods in software engineering ensures rapid development and

delivery of software products.
(Base your argumentation on the agile methods principles and specifics).

https://forms.gle/vdy1t251EkN6Srn4A

https://forms.gle/vdy1t251EkN6Srn4A

Topics covered

AGILE methods

Plan-driven and agile development

Extreme programming

Scaling agile methods

Scrum

Agile methods – examples (1)

Extreme programming (XP)

small and medium teams (3-20), co-located,

need for adequate technology

Crystal family of methodologies

co-located teams, max. 40

not suitable for life-critical systems

FDD (Feature Driven Development)

identification and planification of “features”,

iterative only for design and construction;

high quality, supports life-critical systems

Agile methods – examples (2)

Dynamic Systems Development Method

multiple teams of 2-6 members

small projects, large but divisible projects, bussiness applications

Adaptive Software Development

includes a learning loop

distributed teams

Open Source Software Development

distributed teams

software tools, infrastructures with large number of users

Some agile solutions

AUP (Agile Unified Process)

www.ambysoft.com/unifiedprocess/agileUP.html

Scott Ambler – Disciplined Agile Delivery : A Practitioners”s Guide to Agile

Software Delivery in Enterprise - 2012

Agile solutions at IBM:

www-01.ibm.com/software/rational/info/agilityatscale/?ca=rhp

Software tool: Jazz - Managing distributed agile teams

Fundaments:

Customizable process

Extends Scrum, XP and Agile Modeling

http://www.ambysoft.com/unifiedprocess/agileUP.html

Agile methods – suport for the software process

eXtreme Programming (XP)

Perhaps the best-known and most widely used agile method.

XP = an approach to software development based on

the development and delivery of very small

increments of functionality.

Relies on:

• constant code improvement,

• user involvement in the development team,

• pairwise programming.

eXtreme Programming (XP) takes an “extreme” approach to

iterative development.

• New versions may be built several times per day;

• Increments are delivered to customers frequently

(ex. every 2 weeks);

• All tests must be run for every build, and the build

is only accepted if tests run successfully.

Figure 2.2 Extreme programming practices

Ian Sommerville – Engineering Software

Products

The XP release cycle

Select stories

for this release

Break down

stories to tasks
Plan release

Develop/integrate/test

software

Release

software

Evaluate

system

XP practice Description

Incremental

planning

/user stories

There is no ‘grand plan’ for the system. Instead, what needs to be implemented (the

requirements) in each increment are established in discussions with a customer

representative. The requirements are written as user stories. The stories to be

included in a release are determined by the time available and their relative priority

Small

releases

The minimal useful set of functionality that provides business value is developed

first. Releases of the system are frequent and incrementally add functionality to the

previous release.

Test-driven

development

Instead of writing code then tests for that code, developers write the tests first. This

helps clarify what the code should actually do and that there is always a ‘tested’

version of the code available. An automated unit test framework is used to run the

tests after every change. New code should not ‘break’ code that has already been

implemented.

Continuous

integration

As soon as the work on a task is complete, it is integrated into the whole system

and a new version of the system is created. All unit tests from all developers are run

automatically and must be successful before the new version of the system is

accepted.

Refactoring Refactoring means improving the structure, readability, efficiency and security of a

program. All developers are expected to refactor the code as soon as potential code

improvements are found. This keeps the code simple and maintainable

Extreme programming practices

XP and agile principles

Incremental development - supported through small, frequent

system releases.

Customer involvement - means full-time customer engagement with

the team.

People not process through:

• pair programming,

• collective ownership

• a process that avoids long working hours.

Change - supported through regular system releases.

Maintaining simplicity - through constant refactoring of code.

Requirements scenarios

The customer representative is responsible for making decissions

on requirements.

In XP, user requirements are expressed as scenarios, or user

stories.

• These are written on cards and the development team break

them down into implementation tasks. These tasks are the

basis of schedule and cost estimates.

• The customer chooses the stories for inclusion in the next

release based on their priorities and on the schedule

estimates.

Example: Story card for document downloading

Downloading and printing an article

First, you select the article that you want from a displayed list. . You
then have to tell the system how you will pay for it - this can either
be through a subscription, through a company account or by credit
card.

After this, you get a copyright form the system to fill in and,
when you have submitted this, the article you want is downloaded
onto your computer.

You then choose a printer and a copy of the article is printed. You
tell the system if printing has been successful.

If the article is a print-only article, you can not keep the PDF version
so it is automatically deleted from your computer.

Example: Task cards for document downloading

Task 1: Implement principal workflow

Task 2: Implement article catalog and selection

Task 3: Implement payment collection

Payment may be made in 3 dif ferent ways. The user
selects which way they wish to pay . If the user
has a library subscription, then they can input the
subscriber key which should be checked by the
system. Alternatively, they can input an or ganisational
account number. If this is valid, a debit of the cost
of the article is posted to this account. Finally , they
may input a 16 digit credit card number and expiry
date. This should be checked for validity and, if
valid a debit is posted to that credit card account.

Testing in XP

Test-first development and automated testing.

• Writing tests before code clarifies the requirements to be

implemented.

• Tests are Incrementally developed from scenarios.

• User is involved in test development and validation.

• Tests are written as programs rather than as data, so that they can

be executed automatically. The test includes a check that it has

executed correctly.

• All previous and new tests are automatically run when new

functionality is added. Thus is checked that the new functionality

works correct and no regression appears.

• Automated test harnesses are also used to run all component tests

each time a new release is built.

Example: Test case description

Test 4:

Input:
Astring representing the credit card number and two integers representing
the month and year when the card expires
Tests:
Check that all bytes in the string are digits
Check that the month lies between 1 and 12 and the
year is greater than or equal to the current year.
Using the first 4 digits of the credit card number,
check that the card issuer is valid by looking up the
card issuer table. Check credit card validity by submitting the card
number and expiry date information to the card
issuer
Output:
OK or error message indicating that the card is invalid

Test that the unit executes correctly the following operations:

Testing the function that verifies credit card validity

XP and change

Conventional wisdom in software engineering is to design for change. It is

worth spending time and effort anticipating changes as this reduces

costs later in the life cycle.

XP, however, maintains that this is not worthwhile as changes cannot be

reliably anticipated.

Rather, it proposes constant code improvement (refactoring) to make

changes easier when they have to be implemented.

Refactoring :

• Programming team look for possible software improvements and make

these improvements even where there is no immediate need for them.

• This improves the understandability of the software and so reduces the

need for documentation.

• Changes are easier to make because the code is well-structured and clear.

• However, some changes requires architecture refactoring and this is much

more expensive.

Pair programming

In XP, programmers work in pairs, sitting together to develop code.

This helps develop common ownership of code and spreads

knowledge across the team.

It serves as an informal review process as each line of code is looked

at by more than 1 person.

It encourages refactoring as the whole team can benefit from this.

Measurements suggest that development productivity with pair

programming is similar to that of two people working

independently.

Formative evaluation

1. Explain how XP aligns to the the principles of agile software development

methods.

2. What is the specific of acceptance testing in XP context ?

https://forms.gle/i1GyuwAgySjVyhP69

https://forms.gle/i1GyuwAgySjVyhP69

Topics covered

AGILE methods

Plan-driven and agile development

Extreme programming

Scaling agile methods

Scrum

Scaling agile methods

⚫ Agile methods have proved to be successful for small and

medium sized projects that can be developed by a small co-

located team.

⚫ It is sometimes argued that the success of these methods

comes because of improved communications which is possible

when everyone is working together.

⚫ Scaling up agile methods involves changing these to cope with

larger, longer projects where there are multiple development

teams, perhaps working in different locations.

Scaling out and scaling up

⚫ ‘Scaling up’ is concerned with using agile methods for

developing large software systems that cannot be developed by

a small team.

⚫ ‘Scaling out’ is concerned with how agile methods can be

introduced across a large organization with many years of

software development experience.

⚫ When scaling agile methods it is essential to maintain agile

fundamentals

• Flexible planning, frequent system releases, continuous

integration, test-driven development and good team

communications.

Scaling up to large systems

For large systems development, it is not possible to focus only on the

code of the system. You need to do more up-front design and

system documentation.

Cross-team communication mechanisms have to be designed and

used. This should involve regular phone and video conferences

between team members and frequent, short electronic meetings

where teams update each other on progress.

Continuous integration, where the whole system is built every time any

developer checks in a change, is practically impossible. However, it

is essential to maintain frequent system builds and regular releases

of the system.

Scaling out to large companies

Project managers who do not have experience of agile methods may

be reluctant to accept the risk of a new approach.

Large organizations often have quality procedures and standards that

all projects are expected to follow and, because of their

bureaucratic nature, these are likely to be incompatible with agile

methods.

Agile methods seem to work best when team members have a

relatively high skill level. However, within large organizations,

there are likely to be a wide range of skills and abilities.

There may be cultural resistance to agile methods, especially in those

organizations that have a long history of using conventional

systems engineering processes.

Topics covered

AGILE methods

Plan-driven and agile development

Extreme programming

Scaling agile methods

Scrum

Scrum

Software company managers need information about the costs to

develop a software product, the development time and the

release date.

Plan-driven development provides this information through long-

term development plans that identify deliverables - items the

team will deliver and when these will be delivered.

Plans always change so anything apart from short-term plans are

unreliable.

Scrum is an agile method that provides a framework for agile

project organization and planning. It does not mandate any

specific technical practices.

Scrum terminology

Product

The software product that is being developed by the Scrum team.

Product owner

A team member who is responsible for identifying product features and

attributes. They review work done and help to test the product.

Product backlog

A to-do list of items such as bugs, features and product improvements

that the Scrum team have not yet completed.

Development team

A small self-organizing team of five to eight people who are responsible

for developing the product.

Sprint

A short period, typically two to four weeks, when a product increment is

developed.

Scrum terminology

Scrum

A daily team meeting where progress is reviewed and work to be done

that day as discussed and agreed.

ScrumMaster

A team coach who guides the team in the effective use of Scrum.

Potentially shippable product increment

The output of a sprint which should be of high enough quality to be

deployed for customer use.

Velocity

An estimate of how much work a team can do in a single sprint.

Key roles in Scrum

The Product Owner is responsible for ensuring that the

development team are always focused on the product they are

building rather than diverted into technically interesting but less

relevant work.

In product development, the product manager should normally take on

the Product Owner role.

The ScrumMaster is a Scrum expert whose job is to guide the

team in the effective use of the Scrum method.

The ScrumMaster is not a conventional project manager but is a

coach for the team. He has authority within the team on how

Scrum is used.

In many companies that use Scrum, the ScrumMaster also has some

project management responsibilities.

Scrum and sprints

In Scrum, software is developed in

sprints, which are fixed-length

periods (2 - 4 weeks) in which

software features are developed and

delivered.

During a sprint, the team has daily

meetings (Scrums) to review

progress and to update the list of

work items that are incomplete.

Sprints should produce a ‘shippable

product increment’. This means that

the developed software should be

complete and ready to deploy.

.

Figure 2.3 Scrum cycles

Ian Sommerville – Engineering Software Products

Scrum benefits

Figure 2.4 The top five benefits of using Scrum

Ian Sommerville – Engineering Software Products

Key Scrum practices

Product backlog

This is a to-do list of items to be implemented that is reviewed

and updated before each sprint.

Timeboxed sprints

Fixed-time (2-4 week) periods in which items from the product

backlog are implemented,

Self-organizing teams

Self-organizing teams make their own decisions and work by

discussing issues and making decisions by consensus.

.

Product backlogs

The product backlog is a list of what needs to be done to complete the

development of the product.

The items on this list are called product backlog items (PBIs).

The product backlog may include a variety of different items such as

product features to be implemented, user requests, essential

development activities and desirable engineering improvements.

The product backlog should always be prioritized so that the items that

be implemented first are at the top of the list.

Use cases can help teams understand the bigger picture and how product

backlog items are related.

.

Examples of product backlog items

1. As a teacher, I want to be able to configure the group of tools that are

available to individual classes. (feature)

2. As a parent, I want to be able to view my childrens’ work and the

assessments made by their teachers. (feature)

3. As a teacher of young children, I want a pictorial interface for children with

limited reading ability. (user request)

4. Establish criteria for the assessment of open source software that might be

used as a basis for parts of this system. (development activity)

5. Refactor user interface code to improve understandability and performance.

(engineering improvement)

6. Implement encryption for all personal user data. (engineering improvement)

.

Product backlog item states

Ready for consideration

High-level ideas and feature descriptions that will be considered for

inclusion in the product. They are tentative so may radically change or

may not be included in the final product.

Ready for refinement

An item on which the team has agreed to be important, so it should be

implemented as part of the current development. There is a reasonably

clear definition of what is required. However, work is needed to understand

and refine the item.

Ready for implementation

The PBI has enough detail for the team to estimate the effort involved and

to implement the item. Dependencies on other items have been identified.

.

Product backlog management

Figure 2.5 Product backlog activities

Ian Sommerville – Engineering

Software Products

Product backlog activities

Refinement

Existing PBIs are analyzed and refined to create more

detailed PBIs. This may lead to the creation of new product

backlog items.

Estimation

The team estimate the amount of work required to

implement a PBI and add this assessment to each

analyzed PBI.

.

Figure 2.5 Product backlog activities

Ian Sommerville – Engineering Software

Products

Creation

New items are added to the backlog. These may be new features suggested by

the product manager, required feature changes, engineering improvements, or

process activities such as the assessment of development tools that might be

used.

Prioritization

The product backlog items are reordered to take new information and changed

circumstances into account.

PBI estimation metrics

Effort required

Expressed in person-hours or person-days i.e. the number of hours or

days it would take one person to implement that PBI. Several people

may work on an item, which may shorten the calendar time required.

Story points

Arbitrary estimate of the effort involved in implementing a PBI, taking into

account the size of the task, its complexity, the technology that may be

required and the ‘unknown’ characteristics of the work.

They were derived originally by comparing user stories, but they can be

used for estimating any kind of PBI.

Story points are estimated relatively. The team agree on the story points

for a baseline task and other tasks are estimated by comparison with

this e.g. more/less complex, larger/smaller etc.

.

Timeboxed sprints

Products are developed in a series of

sprints, each of which delivers an

increment of the product or

supporting software.

Sprints are short duration activities (1-

4 weeks) and take place between

a defined start and end date.

Sprints are timeboxed, which

means that development stops at

the end of a sprint whether or not

the work has been completed.

During a sprint, the team work on the

items from the product backlog.

.

Figure 2.6 Benefits of using timeboxed sprints

Ian Sommerville – Engineering Software Products

Sprint activities

Sprint planning

Work items to be completed in that sprint are selected and, if

necessary, refined to create a sprint backlog. This should not last more

than a day at the beginning of the sprint.

Sprint execution

The team work to implement the sprint backlog items that have been

chosen for that sprint. If it is impossible to complete all of the sprint

backlog items, the sprint is not extended. The unfinished items are

returned to the product backlog and queued for a future sprint.

Sprint reviewing

The work done in the sprint is reviewed by the team and (possibly)

external stakeholders. The team reflect on what went well and what

went wrong during the sprint with a view to improving their work

process.

Sprint activities

Figure 2.7 Sprint activities

Ian Sommerville – Engineering Software Products

Sprint planning

Establish an agreed sprint goal

Sprint goals may be focused on software functionality, support

or performance and reliability.

Decide on the list of items from the product backlog that

should be implemented

Create a sprint backlog.

This is a more detailed version of the product backlog that

records the work to be done during the sprint.

Sprint goals examples

Figure 2.8 Sprint goals

Ian Sommerville – Engineering Software Products

Scrums

Scrum = short, daily meeting that is usually held at the beginning of the day.

During a scrum, all team members share information, describe their

progress since the previous day’s scrum, problems that have arisen and

plans for the coming day. This means that everyone on the team knows

what is going on and, if problems arise, can re-plan short-term work to

cope with them.

Scrum meetings should be short and focused. To dissuade team members

from getting involved in long discussions, they are sometimes organized

as ‘stand-up’ meetings where there are no chairs in the meeting room.

During a scrum, the sprint backlog is reviewed. Completed items are

removed from it. New items may be added to the backlog as new

information emerges. The team then decide who should work on sprint

backlog items that day.

Agile activities

Scrum does not suggest the technical agile activities that should be

used. However, two practices should always be used in a sprint.

Test automation

As far as possible, product testing should be automated. A suite

of executable tests, that can be run at any time, should be

developed.

Continuous integration

Whenever anyone makes changes to the software components

they are developing, these components should be immediately

integrated with other components to create a system. This

system should then be tested to check for unanticipated

component interaction problems.

Code completeness checklist

Reviewed

The code has been reviewed by another team member who has checked

that it meets agreed coding standards, is understandable, includes

appropriate comments, and has been refactored if necessary.

Unit tested

All unit tests have been run automatically and all tests have executed

successfully.

Integrated

The code has been integrated with the project codebase and no

integration errors have been reported.

Integration tested

All integration tests have been run automatically and all tests have

executed successfully.

Accepted

Acceptance tests have been run if appropriate and the product owner or

the development team have confirmed that the product backlog item has

been completed.

Sprint reviews

At the end of each sprint, there is a review meeting, which involves the

whole team:

• reviews whether or not the sprint has met its goal.

• sets out any new problems and issues that have emerged during

the sprint.

• is a way for a team to reflect on how they can improve the way

they work.

The product owner (as ultimate authority to decide whether or not the goal of the print

has been achieved) should confirm that the implementation of the

selected product backlog items is complete.

The sprint review should include a process review, in which the team

reflects on its own way of working and how Scrum has been used.

• The aim is to identify ways to improve and to discuss how to use Scrum

more productively.

Self-organizing teams

Figure 2.9 Self-organizing teams

Ian Sommerville – Engineering Software Products

Team size and composition

The ideal Scrum team size is between 5 and 8 people.

• Teams have to tackle diverse tasks and so usually require people with

different skills, such as networking, user experience, database design

and so on.

• They usually involve people with different levels of experience.

• A team of 5-8 people is large enough to be diverse yet small enough to

communicate informally and effectively and to agree on the priorities of

the team.

The advantage of a self-organizing team is that it can be a cohesive

team that can adapt to change.

• Because the team rather than individuals take responsibility for the work,

they can cope with people leaving and joining the team.

• Good team communication means that team members inevitably learn

something about each other’s areas

Team coordination

Ideally :

• Teams would be co-located (in the same room) and could communicate

informally.

• Daily scrums mean that the team members know what is been done

and what others are doing.

Assumptions that are not always correct:

• Scrum assumes that the team will be made up of full-time workers who

share a workspace. In reality, team members may be part-time and may

work in different places. For a student project team, the team members may

take different classes at different times.

• Scrum assumes that all team members can attend a morning meeting to

coordinate the work for the day. However, some team members may work

flexible hours (e.g. because of childcare responsibilities) or may work on

several projects at the same time.

External interactions

In Scrum, the idea is that developers should focus on development

and only the ScrumMaster and Product Owner should be involved

in external interactions.

The intention is that the team should be able to work on software

development without external interference or distractions.

Figure 2.10 Managing external interactions

Ian Sommerville – Engineering Software Products

Project management

Figure 2.11 Project management responsibilities

Ian Sommerville – Engineering Software Products

In many companies, the ScrumMaster has to

take on project management responsibilities.

He knows the work going on and is in the best

position to provide accurate information and

project plans and progress.

Formative evaluation

1. In what relation is 'product backlog' with 'spring backlog' ?

2. Why is it important that each sprint should normally produce a ‘potentially shippable’

product increment? When might the team relax this rule and produce something that is not

‘ready to ship’?

3. Scrum has been designed for use by a team of 5-8 people working together to develop a

software product. What problems might arise if you try to use Scrum for student team

projects where a group work together to develop a program. What parts of Scrum could be

used in this situation?

https://forms.gle/ESDYTtC2z8dfa9zWA

https://forms.gle/ESDYTtC2z8dfa9zWA

Key points

The best way to develop software products is to use agile software

engineering methods that are geared to rapid product development and

delivery.

Agile methods are based around iterative development and the minimization

of overheads during the development process.

Extreme programming (XP) is an influential agile method that introduced

agile development practices such as user stories, test-first development

and continuous integration. These are now mainstream software

development activities.

Agile methods are incremental development methods that focus on rapid

development, frequent releases of the software, reducing process

overheads and producing high-quality code. They involve the customer

directly in the development process.

Key points

https://twitter.com/michelnadeau7/status/527798932269973504

Agile methods may be scaled up to large systems and scaled out to large

companies. Scalling agile methods up to large systems is difficult. Large

systems need models and documentation to be realized in advance.

The decision on whether to use an agile or a plan-driven approach to

development should depend on the type of software being developed, the

capabilities of the development team and the culture of the company

developing the system.

Scrum is an agile method that focuses on agile planning and management.

Unlike XP, it does not define the engineering practices to be used. The

development team may use any technical practices that they believe are

appropriate for the product being developed.

In Scrum, work to be done is maintained in a product backlog – a list of

work items to be completed. Each increment of the software implements

some of the work items from the product backlog.

Sprints are fixed-time activities (usually 2–4 weeks) where a product

increment is developed. Increments should be ‘potentially shippable’

i.e. they should not need further work before they are delivered.

A self-organizing team is a development team that organizes the work to

be done by discussion and agreement amongst team members.

Scrum practices such as the product backlog, sprints and self-organizing

teams can be used in any agile development process, even if other

aspects of Scrum are not used.

Key points

