
Software engineering – Lecture 10

The Software Process

Adapted after ©Ian Sommerville

Software Engineering, 2010, chapter 2

The Software Process

Def. The software process = structured set of activities required to

develop a software system.

Main activities:

• specification;

• design and implementation;

• verification and validation;

• evolution.

Def. Software process model = abstract representation of a software

process.

Aim: guidance for systematically coordinating and controlling the tasks that

must be performed in order to achieve the end product and the project

objectives.

Presents a description of a process from some particular perspective.

Problem

description
Coding Compiling Unit testing

Release

Debugging

Evolution of software process models

“Code and fix”: simple model

Added tasks in evoluated models:

⚫ Design

⚫ Integration

⚫ Process coordination

Different models applicable according to the project characteristics.

Plan-driven and agile processes

⚫ Plan-driven processes : all of the process activities are planned in

advance and progress is measured against this plan.

Used in large, long-lifetime systems (such as aircraft control systems) where

teams may be geographically dispersed and work on the software for

several years.

• This approach is based on controlled and rigorous software

development processes that include detailed project planning,

requirements specification and analysis and system modelling.

• However, plan-driven development involves significant overheads and

documentation and it does not support the rapid development and

delivery of software.

⚫ Agile processes : planning is incremental and it is easier to

change the process to reflect changing customer requirements.

Plan-driven and agile processes

⚫ Plan-driven processes : all of the process activities are planned in

advance and progress is measured against this plan.

⚫ Agile processes : planning is incremental and it is easier to

change the process to reflect changing customer requirements.

These methods focus on the software rather than its documentation,

develop software in a series of increments and aim to reduce process

bureaucracy as much as possible.

In practice, most practical processes include elements of both plan-

driven and agile approaches.

There are no right or wrong software processes but appropriate and

not appropriate processes for a given set of requirements.

Topics covered

⚫ Generic models for the software process

⚫ Coping with change

⚫ RUP (Rational Unified Process)

⚫ Risk management

Generic software process models

⚫ Waterfall model

• Separate and distinct phases of specification and development.

• Plan-driven model.

⚫ Incremental development

• Specification, development and validation are interleaved.

• May be plan-driven or agile.

⚫ Reuse-oriented development

• The system is assembled from existing components or services.

• May be plan-driven or agile.

Obs.Not mutually exclusive and often used together.

•Waterfall model

•Incremental development

•Reuse-oriented development

Waterfall model

Requirements

specification

System and

software design

Implementation

and unit testing

Integration and

system testing

Operation and

maintenance

•Waterfall model

•Incremental development

•Reuse-oriented development

The most famous well defined process, defined to be

used for large and complex software systems:
• It is the most logical and easy to understand.

• It is very prescriptive and rigid.

• It doesn’t lead to great results, especially for

projects on new, first of a kind systems.

Waterfall model problems

Main characteristic: Inflexible partitioning of the project into
distinct stages: one phase has to be complete before
moving onto the next phase.


The difficulty of responding to changing customer requirements

after the process is underway.


Waterfall model appropriate when:

⚫ the requirements are well-understood

⚫ changes will be fairly limited during the design process.

Waterfall model is mostly used for large systems engineering projects,
where a system is developed at several sites.

•Waterfall model

•Incremental development

•Reuse-oriented development

Incremental development

Incremental development = developing an initial implementation,

exposing this to user comment, and evolving it through several

versions until an adequate system has been developed.

Plan-driven approach

⚫ System increments are identified in advance.

Agile appropach

⚫ The early increments are identified.

⚫ The development of later increments depends on progress and

customer priorities.

•Waterfall model

•Incremental development

•Reuse-oriented development

Incremental development

Concurrent (interleaved) activities

Validation Final
version

Development
Intermediate
versions

Specification
Initial
version

Outline
description

•Waterfall model

•Incremental development

•Reuse-oriented development

Incremental development

•Waterfall model

•Incremental development

•Reuse-oriented development

Plan-driven approach

Agile approach

Incremental development

•Waterfall model

•Incremental development

•Reuse-oriented development

Incremental model

- system divided into components

Incremental model

- system with multiple releases

Incremental development - benefits

⚫ The cost of accommodating changing customer requirements

is reduced.

• The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

⚫ It is easier to get customer feedback on the development work

that has been done.

• Customers can comment on demonstrations of the software and

see how much has been implemented.

⚫ More rapid delivery and deployment of useful software to the

customer is possible.

• Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

•Waterfall model

•Incremental development

•Reuse-oriented development

Incremental development

Problems

⚫ The process is not visible.

⚫ System structure tends to degrade as new increments are

added.

Applicability

• For small or medium-size interactive systems;

• For parts of large systems (e.g. the user interface);

• For short-lifetime systems. (?)

•Waterfall model

•Incremental development

•Reuse-oriented development

Reuse-oriented software engineering

Based on systematic reuse; systems are integrated from existing

reusable software.

Main types of reusable software:

⚫ Components (collections of objects that are developed as a package)

to be integrated with a component framework such as .NET or J2EE.

⚫ Stand-alone software systems (COTS) that are configured for use in a

particular environment.

⚫ Web services that are developed according to service standards and

which are available for remote invocation.

•Waterfall model

•Incremental development

•Reuse-oriented development

Reuse-oriented development

•Waterfall model

•Incremental development

•Reuse-oriented development

This approach is becoming increasingly used, as component

standards and web services have emerged.

Requirements

specification

Reusable options

analysis

Requirements

modification

System design

with reuse

Development

and integration

System

validation

Formative evaluation

1. Realize the correct mapping between the generic software

process model and its essential characteristic.

2. Which of the generic software process models may be agile

processes ?

https://forms.gle/R31orXppBFPgdmLF6

https://forms.gle/R31orXppBFPgdmLF6

Topics covered

⚫ Generic models for the software process

⚫ Coping with change

⚫ RUP (Rational Unified Process)

⚫ Risk management

Coping with change

⚫ Change is inevitable in all large software projects.

• Business changes lead to new and changed system

requirements.

• New technologies open up new possibilities for improving

implementations.

• Changing platforms require application changes.

⚫ Change leads to re-work, so the costs of change include both

rework (e.g. re-analysing requirements) as well as the costs of

implementing new/changed functionality.

Reducing the costs of rework

⚫ Change avoidance: the software process includes activities that can

anticipate possible changes before significant rework is required.

Example: a prototype system may be developed to show some key features of the

system to customers.

⚫ Change tolerance: the process is designed so that changes can be

accommodated at relatively low cost.

Involves some form of incremental development. Proposed changes may be

implemented in increments that have not yet been developed or only a single

existing increment may have be altered to incorporate the change.

⚫ Combination of change avoidance and change tolerance.

Spiral development model. In which changes are considered as result of project

risks and includes explicit risk management activities to reduce these risks.

•Software prototyping

•Incremental delivery

•Spiral development

Software prototyping

Prototype = an initial version of a system used to

⚫ demonstrate concepts and

⚫ try out design options.

⚫ A prototype can be used in:

• The requirements engineering process to help with requirements

elicitation and validation;

• In design processes to explore options and develop a UI design;

•Software prototyping

•Incremental delivery

•Spiral development

Software prototyping - benefits

⚫ A closer match to users’ real needs.

⚫ Improved system usability.

⚫ Improved design quality.

⚫ Improved maintainability.

⚫ Reduced development effort.

•Software prototyping

•Incremental delivery

•Spiral development

Prototype development

May be based on rapid prototyping languages or tools.

May involve leaving out functionality:

⚫ Prototype should focus on areas of the product that are not well-understood;

⚫ Error checking and recovery may not be included in the prototype;

⚫ Focus on functional rather than extra-functional requirements such as

reliability and security.

Prototype:

• Is generally undocumented

• Does not meet all system qualities

• May have a degraded structure

• Some requirements are relaxed

•Software prototyping

•Incremental delivery

•Spiral development

The process of prototype development

•Software prototyping

•Incremental delivery

•Spiral development

Establish

protopype

objectives

Evaluate

prototype

Define

prototype

functionality

Develop

prototype

Prototype

plan

Outline

definition

Executable

prototype

Evaluation

report

Incremental delivery

⚫ Rather than deliver the system as a single delivery, the development and

delivery is broken down into increments, with each increment

delivering part of the required functionality.

⚫ User requirements are prioritised and the highest priority

requirements are included in early increments.

⚫ Once the development of an increment is started, the

requirements are frozen, though requirements for later

increments can continue to evolve.

•Software prototyping

•Incremental delivery

•Spiral development

Incremental development and delivery

⚫ Incremental development

• Develop the system in increments and evaluate each increment

before proceeding to the development of the next increment;

• Normal approach used in agile methods;

• Evaluation done by user/customer representative.

⚫ Incremental delivery

• Deploy an increment for use by end-users;

• More realistic evaluation about practical use of software;

• Difficult to implement for replacement systems, as increments

have less functionality than the system being replaced.

•Software prototyping

•Incremental delivery

•Spiral development

Incremental delivery

Plan-driven approach

•Software prototyping

•Incremental delivery

•Spiral development

Incremental delivery

Incremental development

Incremental delivery

Agile approach

•Software prototyping

•Incremental delivery

•Spiral development

Incremental development

Incremental delivery

Incremental development and delivery

•Software prototyping

•Incremental delivery

•Spiral development

https://twitter.com/michelnadeau7/status/527798932269973504

Advantages of incremental delivery

⚫ Accelerated delivery of customer services.

Customer value can be delivered with each increment so system

functionality is available earlier. Moreover, each increment delivers the

highest priority functionality to the customer.

⚫ User engagement with the system.

Users have to be involved in the development, which means the system is

more likely to meet their requirements and the users are more

committed to the system.

⚫ Software process improvement.

– Early increments act as a prototype to help elicit requirements

for later increments.

– Lower risk of overall project failure.

– The highest priority system services tend to receive the most

testing.

•Software prototyping

•Incremental delivery

•Spiral development

Problems of incremental delivery

⚫ Most systems require a set of basic facilities that are used by

different parts of the system.

• As requirements are not defined in detail until an increment is to

be implemented, it can be hard to identify common facilities that

are needed by all increments.

⚫ The essence of iterative processes is that the specification is

developed in conjunction with the software.

• However, this conflicts with the procurement model of many

organizations, where the complete system specification is part

of the system development contract.

•Software prototyping

•Incremental delivery

•Spiral development

Incremental delivery and throw-away prototyping

Incremental
delivery

Throw-away
prototyping

Delivered system

Executable prototype +
System specification

Outline
requirements

Experimental system,

basis for formulating

the requirements.

Thrown away when the

system specification has

been agreed.

Evolutionary exploratory development

Objective - to deliver a working system to end-users.

The development starts with those requirements which are best

understood.

Objective - to validate or derive the system requirements.

The prototyping process starts with those requirements which are

poorly understood.

•Software prototyping

•Incremental delivery

•Spiral development

Spiral development (Bohem)

⚫ Process is represented as a spiral

(rather than as a sequence of activities with backtracking).

⚫ Each loop in the spiral represents a phase in the process.

⚫ No fixed phases (like specification or design) – loops in the spiral are

chosen depending on what is required.

⚫ Risks are explicitly assessed and resolved throughout the process.

Ex.

Loop 1 (innermost) - system feasibility

Loop 2 - requirements definition

Loop 3 - system design,

etc.

•Software prototyping

•Incremental delivery

•Spiral development

Spiral model of the software process

Risk analysis

Prototype 1

Prototype 2

Prototype 3
Operational
prototype

Concept of
operation

Simulations, models, benchmarks

Software
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code

Unit test

Integration test

Acceptance test

Service Develop, verify
current level product

Evaluate alternatives,
Identify and resolve risks

Determine objectives,
alternatives and constraints

Planning

Integration and test plan

Development plan

Requirements plan
Life-cycle plan

REVIEW

Risk analysis

Risk analysis

Risk
analysis

1
2

3

4

Plan next phase

•Software prototyping

•Incremental delivery

•Spiral development

Spiral model sectors

Each loop in the spiral is split into four sectors:

⚫ Objective setting

• Specific objectives for the phase are identified.

⚫ Risk assessment and reduction

• Risks are assessed and activities put in place to reduce the
key risks.

⚫ Development and validation

• A development model for the system is chosen, which can be
any of the generic models.

⚫ Planning

• The project is reviewed and the next phase of the spiral is
planned.

1

2

3

4

•Software prototyping

•Incremental delivery

•Spiral development

Formative evaluation

1. Realize the correct mapping between the activity diagram and

what is represented on it.

2. Explain why incremental delivery implies that the highest priority

system services tend to receive the most testing ?

https://forms.gle/dJzcFavKJLN74WfUA

https://forms.gle/dJzcFavKJLN74WfUA

Topics covered

⚫ Generic models for the software process

⚫ Coping with change

⚫ RUP (Rational Unified Process)

⚫ Risk management

UP (Unified Process)

Modern model for the software process.

Features:

⚫ Extensible framework which can be customized for different organizations

and projects.

⚫ Iterative and incremental

⚫ Use case driven

⚫ Architecture centric

⚫ Focused on risk

Representative refinements and variations:

⚫ Rational UP (Basic UP, Enterprise UP)

⚫ Open UP

⚫ Agile UP

⚫ Oracle Unified Method

The Rational Unified Process

RUP – IBM Rational Unified Process derived from the work on the UML

and associated process.

Normally described from 3 perspectives:

• static perspective - shows process activities;

• dynamic perspective - shows phases over time;

• practice perspective - suggests good practice.

RUP phase model

Establish the business

case for the (sub)system.

Cross-phase iteration

Inception Elaboration Construction Transition

In-phase iteration

Deploy the (sub)system

in its operating

environment.

(sub)System design,

programming and

testing.

Develop an understanding

of the problem domain and

the (sub)system architecture.

RUP: Activities

Workflow Description

Business
modelling

The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases
are developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from
design models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in
their workplace.

Configuration and change
management

This supporting workflow manages changes to the system.

Project management This supporting workflow manages the system development.

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

Relative weight of activities

during the software process

www.ibm.org/developerworks

http://www.ibm.org/developerworks

Control of the RUP activities

Based on criteria well defined in advance.

Input criteria: - to initiate the activity

⚫ Needed artifacts

⚫ Needed personnel

⚫ Needed tools

⚫ Activity description

Output criteria: - to declare the activity complete

⚫ Produced artifacts

⚫ Conditions (ex. All artefacts are revied, all (x%) error are fixed, etc.)

RUP good practice

• Develop software iteratively

Plan increments based on customer priorities and deliver highest

priority increments first.

• Manage requirements

Explicitly document customer requirements and keep track of

changes to these requirements.

• Use component-based architectures

Organize the system architecture as a set of reusable components.

RUP good practice

• Visually model software

Use graphical UML models to present static and dynamic views of

the software.

• Verify software quality

Ensure that the software meets organizational quality standards.

• Control changes to software

Manage software changes using a change management system and

configuration management tools.

Topics covered

⚫ Generic models for the software process

⚫ Coping with change

⚫ RUP (Rational Unified Process)

⚫ Risk management

Risk management

Risk management is concerned with identifying risks and drawing

up plans to minimise their effect on a project.

A risk is a probability that some adverse (or favourable)

circumstance will occur :

Project risks affect schedule or resources;

Product risks affect the quality or performance of the software

being developed;

Business risks affect the organisation developing or procuring

the software.

Software risks - examples

Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is
finished.

Management
change

Project There will be a change of organizational
management with different priorities.

Hardware
unavailability

Project Hardware that is essential for the project will not
be delivered on schedule.

Requirements
change

Project and product There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not
available on schedule.

Size underestimate Project and product The size of the system has been underestimated.

CASE tool
underperformance

Product CASE tools, which support the project, do not
perform as anticipated.

Technology change Business The underlying technology on which the system is
built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

The risk management process

Risk identification

Identify project, product and business risks;

Risk analysis

Assess the likelihood and consequences of these risks;

Risk planning

Draw up plans to avoid or minimise the effects of the risk;

Risk monitoring

Monitor the risks throughout the project;

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

The risk management process

Risk identification

Types of risks:

Technology risks.

People risks.

Organisational risks.

Tools risks.

Requirements risks.

Estimation risks.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risks and risk types

Risk type Possible risks

Technology The database used in the system cannot process as many transactions per
second as expected. (1)

Reusable software components contain defects that mean they cannot be
reused as planned. (2)

People It is impossible to recruit staff with the skills required. (3)

Key staff are ill and unavailable at critical times. (4)

Required training for staff is not available. (5)

Organizational The organization is restructured so that different management are
responsible for the project. (6)

Organizational financial problems force reductions in the project budget. (7)

Tools The code generated by software code generation tools is inefficient. (8)

Software tools cannot work together in an integrated way. (9)

Requirements Changes to requirements that require major design rework are proposed.
(10)

Customers fail to understand the impact of requirements changes. (11)

Estimation The time required to develop the software is underestimated. (12)

The rate of defect repair is underestimated. (13)

The size of the software is underestimated. (14)

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk analysis

Assess probability and effects of each risk.

Probability may be very low, low, moderate, high or very high.

Risk effects might be catastrophic, serious, tolerable or

insignificant.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk analysis (1)

Example

Risk Probability Effects

Organizational financial problems force reductions in the
project budget (7).

Low Catastrophic

It is impossible to recruit staff with the skills required for the
project (3).

High Catastrophic

Key staff are ill at critical times in the project (4). Moderate Serious

Faults in reusable software components have to be repaired
before these components are reused. (2).

Moderate Serious

Changes to requirements that require major design rework
are proposed (10).

Moderate Serious

The organization is restructured so that different
management are responsible for the project (6).

High Serious

The database used in the system cannot process as many
transactions per second as expected (1).

Moderate Serious

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk analysis (2)

Example

Risk Probability Effects

The time required to develop the software is
underestimated (12).

High Serious

Software tools cannot be integrated (9). High Tolerable

Customers fail to understand the impact of requirements
changes (11).

Moderate Tolerable

Required training for staff is not available (5). Moderate Tolerable

The rate of defect repair is underestimated (13). Moderate Tolerable

The size of the software is underestimated (14). High Tolerable

Code generated by code generation tools is inefficient
(8).

Moderate Insignificant

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk planning

Consider each risk and develop a strategy to manage that risk.

Main strategies:

Avoidance strategies

Reduce the probability that the risk will arise;

Minimisation strategies

Reduce the impact of the risk on the project or product;

Contingency plans

If the risk arises, contingency plans are plans to deal with that
risk;

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk management strategies (1)

Examples

Risk Strategy

Organizational financial
problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business and presenting reasons why cuts to the
project budget would not be cost-effective.

Recruitment problems Alert customer to potential difficulties and the possibility of
delays; investigate buying-in components.

Staff illness Reorganize team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in
components of known reliability.

Requirements changes Derive traceability information to assess requirements change
impact; maximize information hiding in the design.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk management strategies (2)

Examples

Risk Strategy

Organizational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database performance Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of a program
generator.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk monitoring

Assess each identified risks regularly to decide whether or not it is

becoming less or more probable.

Also assess whether the effects of the risk have changed.

Each key risk should be discussed at management progress

meetings.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Risk indicators

Risk type Potential indicators

Technology Late delivery of hardware or support software; many reported
technology problems.

People Poor staff morale; poor relationships amongst team members;
high staff turnover.

Organizational Organizational gossip; lack of action by senior management.

Tools Reluctance by team members to use tools; complaints about
CASE tools; demands for higher-powered workstations.

Requirements Many requirements change requests; customer complaints.

Estimation Failure to meet agreed schedule; failure to clear reported
defects.

•Risk identification

•Risk analysis

•Risk planning

•Risk monitoring

Formative evaluation

1. What is repezented on this diagram ?

2. Elaborate on the building and maintaining the prioritized risks

list.

https://forms.gle/Dbh7rzYfNodDJxND8

https://forms.gle/Dbh7rzYfNodDJxND8

Key points

⚫ Software process is a structured set of the activities involved in producing a

software system. A software process model is an abstract representation of the

software process.

⚫ Generic software process models include the ‘waterfall’ model, incremental

development, and reuse-oriented development.

⚫ Coping with change may involve a prototyping phase that helps avoid poor

decisions on requirements and design.

⚫ Processes may be structured for incremental development and delivery so that

changes may be made without disrupting the system as a whole.

⚫ The Rational Unified Process is a modern process model that is organized into

phases (inception, elaboration, construction and transition) but separates

activities (requirements, analysis and design, etc.) from these phases.

⚫ Risk management is concerned with identifying risks which may affect the

project and planning to ensure that these risks do not develop into major

threats.

Waterfall and Agile

https://www.theserverside.com/opinion/Why-the-Waterfall-or-Agile-

debate-will-be-around-forever?track=NL-

1839&ad=919881&src=919881&asrc=EM_NLN_92368225&utm_med

ium=EM&utm_source=NLN&utm_campaign=20180319_Waterfall%25

20vs.%2520Agile:%2520The%2520never-ending%2520debate

