
West University of Timisoara, Computer Science Department
PMD, IE II, IR II, spring 2021
Lab 4 phd. lecturer Liviu Octavian Mafteiu-Scai

How to display an image on screen
Using only layout file

- Create a new project
- Put the picture you want to display in drawable subfolder

- Modify activity_main.xml:
a)
<ImageView
 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:srcCompat="@drawable/poza_mea"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"/>

b) Drag and drop ImageView in activity_main.xml file,
 then double click on ImageView and choose the location of your picture.
NOTE MainActivity: nothing to do

How to rotate an image

Modify activity_main.xml:

<ImageView
 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:srcCompat="@drawable/poza_mea"
 android:rotation="180"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"/>

.

Image Zoom – steps-
1.Create a new emply project and put your working image on drawable subfolder
2. Modify the layout
- You must use FrameLayout style, because we have two different frames:

- first: the original image
- second: zooming

3. Modify MainActivity
(click on image -> transition)

4. Rebuild and run app

Image Zoom –activity_main-
 You must use FrameLayout style, because we have two different frames:

- first: the original image
- second: bigger image

FrameLayout is designed to block out an area on
the screen to display a single item.

This view is invisible, but it still takes up
space for layout purposes.

Image Zoom –MainActivity- libraries used

Android includes different animation APIs depending on what type of animation you want
(animate a bitmap, physics-based motion)
Animator is a superclass for classes which provide basic support for animations
AnimatorSet provide a class used to play Animatorobjects in a specified order.
ObjectAnimator provides support for animating properties on target objects
DecelerateInterpolator is a public class used to change the speed of animation (first quickly
and then decelerates)
GraphicsPoint holds two integer coordinates
GraphicsRect holds four integer coordinates for a rectangle. The rectangle is represented by
the coordinates of its 4 edges (left top, right bottom).
ImageView is used to display image resources (bitmaps, etc)

Image Zoom –MainActivity-
1. You must create a class from superclass Animator:

private Animator mCurrentAnimator;

2. Declare a variable used to set the animation duration:

private int mAnimationDuration;

To set this, you have two options:

mAnimationDuration = getResources().getInteger(android.R.integer.config_longAnimTime);
or
mAnimationDuration = getResources().getInteger(android.R.integer.config_mediumAnimTime);
or
mAnimationDuration = getResources().getInteger(android.R.integer.config_shortAnimTime);

NOTE: on average, the ratio between these values is 500-400-200 ms, when default value is 300

Image Zoom –MainActivity-
Two rectangles are used to fit the image on initial state and on final state:
final Rect startBounds = new Rect();
final Rect finalBounds = new Rect();
Four integer that represent coordinates of its two corners: left top, right bottom

A variable called Offset (Point type, i.e. 2 integers for x and y coordinates) is used to
compute image moving:
final Point Offset = new Point();
--
We need to compute the Scale, a ratio between startBounds and finalBounds :
a) Scale = (float) startBounds.width() / finalBounds.width();
b) Scale = (float) startBounds.height() / finalBounds.height();

? Width is the rectangle's width.

Note: method does not check for a valid rectangle (i.e. left <= right) so the result may
be negative!!!!!!!!!!!

a) When finalBounds.width() / finalBounds.height() > (float) startBounds.width() / startBounds.height()
i.e. the final picture is greater than the initial picture

Image Zoom –MainActivity-
After these, AnimatorSet class is instantiated:
AnimatorSet set = new AnimatorSet();
and after, the new image (with zoom) is put on screen on new coordinates using a
given duration

Of course, this process must have a start() and an end()

Because in our app a button was used to start the zoom process, a method OnClick() is
necessary

Using android.graphics.Matrix
Library android.graphics.Matrix is a class that can be used to process images in
android.

In fact, this class holds a 3x3 matrix for transforming coordinates of an image object

There are many methods that can be used to animate images: rotate, scale, screw,
translate

It's not complicated to make animations using these methods.

See https://developer.android.com/reference/kotlin/android/graphics/Matrix

From this library point of view, an image is composed of pixels
To animate an image consist in transforming each pixel of the image

https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix
https://developer.android.com/reference/kotlin/android/graphics/Matrix

Image Translation
What a translation is?
Move an image from P0 to P, without changing the image (size, shape...)

Image Translation – activity_main.xml

Image Translation – MainActivity-

Image Translation –MainActivity-

wraps a bitmap

?

If bitmap's internal config is in one of the public formats, getConfig return that config,
otherwise return null.

Image Translation – MainActivity -

The action after button was pressed

It’s a user method

Image Translation – Use Matrix class to process images

1. Create a new Bitmap object based on the original image’s width and
height. Bitmap translateBitmap = Bitmap.createBitmap(originalImageWith +

xTranslate, originalImageHeight + yTranslate, originalImageConfig);

2. Create a Canvas object based on above Bitmap object.
Canvas translateCanvas = new Canvas(translateBitmap);

3. Create Matrix object, and use it’s method to set transformation info.
Matrix translateMatrix = new Matrix(); // Set x y translate value.
translateMatrix.setTranslate(xTranslate, yTranslate);

4. Draw original bitmap image to the newly created Canvas using Matrix
effect. So the created Bitmap in step 1 will has the new image effect.
translateCanvas.drawBitmap(originalBitmap, translateMatrix, new Paint());

5. Set the newly created Bitmap to an ImageView to show the
transformation effect.
imageViewOriginal.setImageBitmap(translateBitmap);

Image Translation – MainActivity-

That is all. Build and run the app

Image Translation – Final app-
That is all. Build and run the app

OnClick()

OnClick()

Image Rotation - what a rotation is-
Rotation comes from geometry.

There are 2D (in plane) and 3D (in space) rotation

A 2D rotation is a circular movement of an object (in a 2D plane)
around a center (or point) of rotation. For this we have one rotation
axis

A three-dimensional object can be rotated around an infinite number
of imaginary lines called rotation axes

NOTE: In the following we will refer to 2D rotation
After a rotation the size and shape are the same!

Image Rotation - what a rotation is-
In case of a 2D rotation there are two possible situations:
a) we know rotation angle and rotation axis and we want to obtain/compute the final
position
b) we know the axis and the position and we want to know the angle

Note: the axis of rotation is perpendicular to the plane (image), so, the most important
are the coordinates of point where axis intersects the plan.
This point can be inside or outside related to image

In our project, we will be in case a) and the intersection point is inside

Image Rotation -!-
More math is necessary to make a 2D rotation of an image and is not easy to
implement all

But… it is very easy if we use Matrix library in AS where we
have a friendy method called setRotate
And there is not very hard, because the original image
(bitmap) is wrapped in a matrix

So, let use this library to rotate a 2D object, where rotation
axis intersects image on its central point: x/2 and y/2

Image Rotation – activity_main.xml
The layout is similar like in previous example (Translation app).

Image Rotation – MainActivity -
The most important used method :

public void setRotate (float degrees, float px, float py)

Set the matrix to rotate by the specified number of degrees, with a pivot point at
(px, py). The pivot point is the coordinate that should remain unchanged by the
specified transformation.

Another form of setRotate is
public void setRotate (float degrees)
set the matrix to rotate about (0,0) by the specified number of degrees.
(0,0) / (px,py) point refers the left-upper corner of our image

In our MainActivity.java this function is:

setRotate(rotateDegree, originalBitmap.getWidth()/2, originalBitmap.getHeight()/2);

Image Rotation
.

setrotate(degree)
 left-top corner (0,0)

setrotate(deg, pxWidth/2, pyHeight/2)
(central point)

Scale Image
The image is reduced to the information that can be carried by the smaller image.
There are many algorithms to do this: nearest-neighbor interpolation, Lanczos
resampling, Fourier-transform method, vectorization, neural networks methods,….

In Matrix class we have two dedicated methods for this operation:

- setScale(float scaleX,float scaleY) : Scale image, scaleX and scaleY are the scaling
ratio in X and Y direction.
- setScale(float scaleX,float scaleY,float x,float y) : Similar with setScale(float
scaleX, float scaleY), but axis is (x, y).

Scaling defines the size of the image. You can define two values — one for the x-axis
and the other for the y-axis. But with scale you can also set a pivot point.
The pivot point defines which point will be unchanged by the transformation. By
default it is at 0, 0 — the top-left point — meaning the image will stretch to the right
and bottom, leaving the top-left unchanged (setScale(0.5f, 0.5f))
If you want to scale the image from the centre, you can set the pivot to the centre
of the image. (setScale(0.5f, 0.5f, dWidth / 2f, dHeight / 2f))

Negative scale values-> mirror the image around an axis (or two).

Scale Image
.

Skew Image
.

Skew Image
.

Skew Image
.

Skew Image
.

Skew Image
.

Skew Image - an unwanted effect
The image obtained after scanning an opened book page usually
suffers from various scanning artifacts. One such major artifact is the
Skew defect. This defect reduces the quality of the scanned images
and cause many problems to the process of document image analysis.
It is difficult to understand such documents by the Optical Character
Recognizer (OCR).

Skew Image - an unwanted effect
How can we solve this problem?
1) Hough Transform: the process includes capturing the images with

a camera, detecting the skew angle and applying Skew correction
algorithm:

2) Method of extreme points
3) Radon transform
4) Principal component analysis (PCA)

Skew Image
In Matrix class:

setSkew(float skewX,float skewY) : Skew image, skewX and skewY are the skew
ratio in X and Y direction.

setSkew(float skewX,float skewY,float x,float y) : Similar with setSkew(float
skewX,float skewY), but axis is (x, y).

Skew Image
Example:

setSkew(1f, 0f, dWidth / 2f, dHeight / 2f)

This will skew the image across the x-axis (and around the centre point) by 1, which
is the width of the image, resulting in a 45 degree tilt of the image.

