West University of Timisoara, Computer Science Department
PMD, IE II, IR ll, spring 2021
Course no. 3 phd. lecturer Liviu Octavian Mafteii-Scai

The Anatomy of an Android Application

Content:

- Android Activities

- Android Intents

- Broadcast Intents

- Broadcast Receivers

- Android Services

- The Application Manifest
- Application Resources

- Application Context

The Anatomy of an Android Application : Android Activities

Apps = one ar more Activities linked together, to do one or more tasks

Remember: Activity is not a task s activty s ity
: ; /’_\>».tessage
start | ::,’m "

. W
caller called

Definition: An activity is a single, standalone module of application
functionality that usually has a single user interface screen (a view)

and its corresponding functionality (layout).
Example: In a game, we have an activity screen (main activity) that displays game’s
scene, score, user’s account, themes, and so on. A second activity could be a screen

where the user types their personal data.

Each activity is implemented as a single class that extends the
Android Activity base class.

The Anatomy of an Android Application : Android Activities

In fact, most mobile apps consist of multiple screens.

I For each screen we have an activity !

Example: a text messaging application might have one screen that shows a list of
contacts to send messages to, a second screen to write the message to the chosen
contact, and other screens to review old messages. Each of these screens would be
implemented as an activity.

Moving to another screen means starting a new activity.

In some cases an Activity may return a value/object to the previous
activity.

Example: an activity that lets the user pick a photo in called activity would return
the chosen photo to the caller.

First Activity

caller called

The Anatomy of an Android Application : Android Activities

When a new screen opens, the current screen (at this moment
will be previous) is paused and put onto a history stack.

->

The user can navigate backward through previously opened
screens in the history.

->

Screens can also choose to be removed from the history stack
when it would be inappropriate for them to remain.

->

Android retains history stacks for each application launched
from the home screen.

The Anatomy of an Android Application : Android Activities

ACtIVIty StaCk [Starting Activity]
\ * Push
4 ™
[Active Activity “_ﬂ). Current
3 y (will be previous when a
new activity comes)
€ [Previous Active)
S Activit
g\ —
[Activity]
L
L
L
L Kllled
L . Terminated
L, -
S [Oldest Activity J — (to free memory)
\. /

An activity cannot directly call methods or access data of
another activity.

This is achieved using Intents and Content Providers.

The Anatomy of an Android Application : Android Intents

Intents are the mechanism by which one activity (caller) is
able to launch another activity (called)

An intent implement the flow through the activities.

Intents consist of a description of the operation to be
performed (action and data)

Android uses a special class called Intent to move from
screen to screen (caller activity -> called activity)

The Anatomy of an Android Application : Android Intents

Intents describe what an application wants done.

The two most important parts of the intent data structure
are the action and the data transmitted.

Typical values for action are MAIN, VIEW, PICK, EDIT, etc. The data is
expressed as a Uniform Resource Indicator (URI).

What is URI?
URI is a string of characters that identifies a particular resource.
URI does nothing!

Example: to view a website in the browser, you would create an Intent

with the VIEW action and the data set to a Website-URI:
new Intent(android.content.Intent.VIEW_ACTION, ContentURI.create("http://uvt.ro"));

The Anatomy of an Android Application : Android Intents

Explicit Intents: they request the launch of a specific activity by
specifying the activity by class name.

Implicit Intents: by starting the type of action to be performed.
Android runtime will select the activity to launch that most closely
matches the criteria specified by the Intent using a process
referred to as Intent Resolution.

Examples:

Explicit intent: pass the information from one activity to another (see our multiple
activities example where string “123” were passed, Course no. 2)

Implicit intent: send an intent requesting that the content of a particular web page be
loaded and displayed to the user (see second example from same course)

The Anatomy of an Android Application : Android Intents

Navigating from screen to screen is accomplished by resolving
intents.

To navigate forward, an activity calls startActivity(mylintent).

The system then looks at the intent filters for all installed

applications and picks the activity whose intent filters best
matches mylntent.

The new activity is informed of the intent, which causes it to
be launched.

The Anatomy of an Android Application : Android Intents

The process of resolving intents happens at runtime when startActivity
is called.

An intent filter is a description of what intents an activity is capable of
handling.

Activities publish their IntentFilters in AndroidManifest.xml

W Andtond v O -1 8 actity_mamnxml X o AndrodMandestaml x | @ anngsaml X € MamActwvity java X
L app <2ml version="1.0" encoding="utf-8"2>
("1 manifests <panifest mins:android="http://schenas, android.con/apk/res/android”
o AndroidManifestaml package="android.com. frapelayoutexample”>
~—
L java
= <application
Larnes

android:allovBackup="trye

=] drawable android: icon="fnipmap/ic launcher'

=] layout android;label="gstring/label’
=] mipmap android: supportsRtle"true"
r B values android: theme="2style/AppThene" >

<activity android:namse=" MainActivity">
—- Cintent-filter android:icon="fdrawable/icon’
android: label="8string/label">

& colorsaml
71 dimensaml

© stringsaml

v caction android:name="android,intent.action.MAIN' />|
= stylesaml {category android:name="android.intent.category . LAUNCHER" />
+ Gradle Scripts </intent-rilter>

</activity>
</application>

The Anatomy of an Android Application : Android Intents

Intent Receiver
You can use an Intent Receiver when you want to code an
app that has a reaction to an external event (when the
phone rings, or when the data network is available, or when
it's midnight).
To create an alert when your phone rings:
-import android.telephony.TelephonyManager;
-create : extend class public class PhoneReceiver extends BroadcastReceiver
-declare a method: public void onReceive(Context context, Intent intent)

-use intent to take the caller phone number: givenstring= intent.getExtras()

- Put the given number into a string to be displayed)or other action):
String phoneNumber = givenstring.getString(TelephonyManager.EXTRA_INCOMING _NUMBER);

In most cases, Intent receivers do not display a Ul.
Sometimes they may display Notifications to alert the user if
something interesting has happened.

Intent receivers are also registered in AndroidManifest.xml

The Anatomy of an Android Application : Android Intents

Broadcast Intents
Broadcast Intent: is sent out to all applications that have registered an
“interested” Broadcast Receiver.

Example: Broadcast Intents can be used to indicate changes in device status such as
the completion of system start up, connection of an external power source to the
device or the screen being turned off.

A Broadcast Intent can be:

- normal (asynchronous): it is sent to all interested Broadcast
Receivers at the same time

- ordered: it is sent to one Broadcast receiver at a time where it can be
processed.

The Anatomy of an Android Application : Android Intents

Broadcast Intents - Example:

Intent broadcastintent = new Intent();
broadcastintent.setAction(“bci.example”);
broadcastintent.putExtra(“SentData", 123);
sendBroadcast(broadcastintent),

The code creates and sends a broadcast intent including a unique action
string(SentData) and data(123).

The action string(SentData), which identifies the broadcast event, must
be unique

In Manifest.xml file must be the <action> tag inside <activity> tag to set
an action:
<action android:name="bci.example" > </action>

The Anatomy of an Android Application : Android Intents

Broadcast Receivers
Broadcast Receivers are the mechanism by which applications are able
to respond to Broadcast Intents.
An application listens for specific broadcast intents by registering a
broadcast receiver.

A Broadcast Receiver must be registered by an application and
configured with an Intent Filter to indicate the types of broadcast in
which it is interested (in Manifest file)

Note that a broadcast receiver does not need to be running all the
time. Only when an event that a matching intent is detected, the
Android runtime system will automatically start up the broadcast
receiver before calling the onReceive() method.

Broadcast Receivers operate in the background and do not have a
user interface.

The Anatomy of an Android Application : Android Intents

Broadcast Receivers — Example
The Broadcast Receiver subclass:
import android.content.BroadcastReceiver;

public class BCReceiver extends BroadcastReceiver {
public BCReceiver() {

/

public void onReceive(Context context, Intent intent) {

// here must be the code to be performed when the broadcast is detected

In Manifest file, a <receiver> entry must be added for the receiver:
<receiver android:name=“BCReceiver" >

The Anatomy of an Android Application : Android Intents

Android Services
Android Services are processes that run in the background
and do not have a user interface.

They can be started and managed from Activities, Broadcast Receivers
or other Services.

Android Services are ideal for situations where an application needs to
continue performing tasks but does not necessarily need a user
interface to be visible to the user.

Although Services lack a user interface, they can still notify the user of
events using notifications and toasts (small notification messages that
appear on the screen without interrupting the currently visible activity).

The Anatomy of an Android Application : Android Intents

Android Services
Example:
A media player playing songs from a play list. In this media player
application, there would probably be one or more activities that allow
the user to choose songs and start playing them (Ul exists). However,
the music playback itself should not be handled by an activity because
the user will expect the music to keep playing even after navigating to
a new screen (another app). The system will then keep the music
playback service running until it has finished.

When connected to a service, you can communicate
with it through an interface exposed by the service.
In case of music service example, this might allow

you to pause, rewind, choose songs, set volume.. etc.

StartService() and stopService() techniques are

needed to start and stop the service.
public class SampleService extends Service {.....

111 The service can be stoped by itself or a user! !!

Call to
startService()
L J
onCreata()

v
onStartCommand()
L
Service

running

The service is stoppad
by itself or a client

Y
onDestroy()
L

Service
shut down

The Anatomy of an Android Application : Android Intents

EXAMPLE Android Services — a media player service implementation

Start MediaService => the default ringtone will start playing
Stop MediaService => will stop the service
It will continue playing between two ClickOn() (START ->STOP) (until we stop the service)

‘START MediaService ‘START MediaService ‘
P ?

‘ STOP MediaService ‘ STOP MediaService ‘

The main steps of a service:
1 Create

_ _ _ _ 2 Start
MediaService Started MediaService Stoped
3 Stop

(see next slides)

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation

MainActivity.java
package com. mafteiuscai.liviu;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;

public class MainActivity extends AppCompatActivity {

protected void onCreate(Bundle savedInstanceState) { 1 create
super.onCreate(savedlnstanceState);

setContentView(R.layout.activity_main);

} Set the activity content from a layout resource

5 L o
public void startService(View view) { 2 start ? What type activity is ¢

startService(new Intent(this, MediaService.class));

} The Intent constructor takes two arguments for an explicit intent:
an application Context and the specific component that will

public void stopService(View view)w
stopService(new Intent(this, MediaService.class));
}
}

3 stop

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation-Activity _main.xml
<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmIns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="match_parent"
android:layout_height="match_parent">
<Button
android:id="@+id/btnStart"
android:layout_width="wrap_cont
android:layout_height="wrap_content"
android:onCIick="startService"\Cép\ "
android:layout_marginLeft="130dp" O

STOP MediaService

START MediaService

L

!

STOP MediaService

android:layout_marginTop="150dp"
android:text="START MediaService"/>

<Button /
android:id="@+id/btnstop"

android:layout_width="wrap_content"
android:layout_height="wrap_cont
android:onClick="stopService"
android:layout_marginLeft="130dp"
android:layout_marginTop="20dp"

android:text="STOP MediaService"/> ? LinearLayout ?
</LinearlLayout>

MediaService Started “ MediaService Stoped

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation
LinearLayout: a view group that aligns all children in a single direction, vertically or
horizontally. To specify the layout direction use android:orientation attribute.

AbsoluteLayout is less flexible and harder to maintain than linear layout, relative
layout, table layout, etc. To specify views inside absolute layout, you have to
use android:layout_x for x-coordinate and android:layout_y for y-coordinate

I'ltis a little deprecated!

RelativelLayout : a view group that displays child views in relative positions.
- in positions relative to the parent (aligned to the bottom, left or center);

- relative to sibling elements (such as to the left-of or below another view)
Relative layouts are one of the more common types of layouts in android

TableLayout: arranges its children/controls into rows and columns

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation

MediaService.java
package com.mafteiuscai.liviu;
import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.IBinder;
import android.provider.Settings;
import android.widget.Toast;

public class MediaService extends Service {
private MediaPlayer player;
public IBinder onBind(Intent intent) { —

return null; ; ; i ;
. Binds MainActivity and Service

} (like in a client-server application)
public void onCreate() {

Toast.makeText(this, “MediaService was created", Toast.LENGTH_LONG).show();
}

? when and how many times the text “MediaService was created”is displayed?

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation
MediaService.java - part2

public int onStartCommand(Intent intent, int flags, int startld) {
player = MediaPlayer.create(this, Settings.System.DEFAULT _RINGTONE_URI);
D play the ringtone until the service is stoped

player.setLooping(true); <

start the mediaplayer
player.start(); <

Toast.makeText(this, “MediaService Started", Toast.LENGTH_LONG).show();

} return START_STICKY; START_STICKY- tells the system to create a fresh copy of the service, when

sufficient memory is available, after it recovers from low memory.
public void onDestroy()

The computed results -before- will be lost.
super.onDestroy();

stop mediaplayer and destroy the service

S
player.stop();
Toast.makeText(this, “MediaService Stopped", Toast.LENGTH_LONG).show();

} \

? when and how many times are displayed these messages?

}

Toast: a view containing a little message for the user

The Anatomy of an Android Application : Android Intents

Android Services —a media player service implementation

AndroidManifest.xm| A service must be registered
<?xml version="1.0" encoding="utf-8"?> in Manifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mafteiuscai.liviu">

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundlcon="@mipmap/ic_launcher_round"
android:supportsRtl="true” support right-to-left (RTL) layouts.
android:theme="@style/AppTheme"> default value is false (min APl =17)
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<service android:name="MediaService" />
</application>
</manifest>

The Anatomy of an Android Application : Android Intents

Content Providers

Content Providers implement a mechanism for the sharing of data
between applications.

Access to the data is provided via a Universal Resource Identifier (URI)
defined by the Content Provider.

Data can be shared in the form of a file or an entire SQLite database.
The native Android applications include a number of standard Content

Providers allowing applications to access data such as contacts and
media files.

The Anatomy of an Android Application : Android Intents

Content Providers

Applications can store their data in text files or SQLite databases or
even over a network.

A content provider is useful when an app wants to share its data with
other apps.

A content provider component supplies data from one application to
others on request.

A content provider behaves very much like a database: you can query it,
edit its content, add or delete content using insert(), update(), delete(),
and query() methods

A content provider is implemented as a subclass ContentProvider class:
public class MyApp extends ContentProvider {....}

The Anatomy of an Android Application : Android Intents

Content Providers

Data layer

Files ‘

The Anatomy of an Android Application : Android Intents

Content Providers
How to code a content provider?

import android.content.ContentProvider;

public class ExampleContentProvider extends ContentProvider {
public ExampleContentProvider() { }

The Anatomy of an Android Application : Android Intents

The Application Manifest
The glue that pulls together the various elements that comprise an
application is the Application Manifest file: activities, services,
broadcast receivers, data providers and and so on.

Application Resources
In addition to the Manifest file and the DEX files that contain the byte
code, an Android application package will also typically contain a
collection of resource files.

These resources files contain strings, images, fonts and colors that
appear in the user interface together with the XML representation of
the user interface layouts.

By default, these files are stored in the .../res sub-directory of the
application project’s hierarchy.

The Anatomy of an Android Application : Android Intents

Application Context

When an application is compiled, a class named R is created that
contains references to the application resources.

ApplicationManifest file + R class/file = Application Context

Application Context (represented by the Android Context class) be used
in the application code to gain access to the application resources at
runtime.

Difference between Activity Context and Application Context
Even they are both instances of Context,
-Activity Context refers the lifecycle of an activity
-Application Context refers the lifecycle of the application

The Anatomy of an Android Application : Android Intents

Recommendations in using different types of Contexts

Application Context

Application | Activity | Service | ContentProvider BroadcastReceiver

Show a Dialog NO YES NO NO NO
Start an Activity NO YES NO- NO NO

Start a Service YES YES YES YES YES
Bind to a Service YES YES YES YES NO
Send a Broadcast YES YES YES YES YES
Register BroadcastReceiver YES YES YES YES NO?
Load Resource Values YES YES YES YES YES

West University of Timisoara, Computer Science Department
phd. lecturer Liviu Octavian Mafteiu-Scai

Fragments

Fragments are is reusable component that encapsulates
functionality.

Fragment has its own life cycle but it depends on its Activity.

It cannot be used apart from the activity. If the activity is
stopped then the fragment cannot be started and if the
Activity is destroyed all fragments inside that activity
destroyed automatically.

Fragment has its own layout or user interface and it is also
possible to create Fragment without user interface.

Fragment can be added dynamically or statically in the

Aacrctivityv

Fragments

How to create Fragment?
Fragment creation is almost similar to the Activity.

Use Android studio to create new Fragment: create new
fragment by right clicking on the java folder as you can see in

image beIOW: ANAronda AUto

. Folder 2
build)
crc H Fragment 2 Fragment (Blank)
main Link C++ S Google 2 EL Fragrment (List)
ass o« Cut Other] EL Fragment (with ViewModel]
jav =] Copy » Service 2 EL Fragment {with a +1 button)
Ul Component (2 EL Modal Bottom Sheet

H) Conflgure Component
Creates a blank fragment that is compatible

back to API level 4.

aaaaaaaaaaaaaa

Fragments

import
import
import

android.content.Context:
android.net.Uri;
android.os.Bundle;

import

android.app.Fragment;

import
import
import

android.view.LayoutInflater;
android.view.View;
android.view.ViewGroup;

public

clazs=s BlankFragment extends Fragment| {

private OnFragmentInteractionlistener mListener;

public BlankFragment () {

public static BlankFragment newlnstance (Strin

BlankFragment fragment = new BlankFragment():

paraml,

String param?)

{

Fragments

A Fragment is a little similar to the Activity and it has its own
life cycle.

Fragment contains callback methods similar to activity such
as onStart, onPause and onStop.

The Fragment always render inside the Activity like controls in
other programming languages. You can add <fragment> inside
the layout file of the activity and specifies the properties:

<fragment android:name="com.example.fragment.
InformationFragment "
android:layout height="match_parent”

android:layout_width="match_parent">
</fronments

Fragments

Set Fragment Layout
The layout designing for the fragment is same as Activity.

The layout contains the controls definition in the XML and you
can also dejigpﬂugjgg the Qeggign mode

- C MainActivity.java a5 Mainxml wss fragment_blank.xml € BlankFragment.java
Falette Qo — & ‘6' O Pixel~ 28~ '@'AppThemev %) Default (en-us) ~
Common Ab &
. Text I Button
M IrnageView
Butto —)
1= RecyclerView
Widgets

<> «fragment>
Layouts B ScrollView
Containers =~ =® Switch

Fragments

An Activity hosting a Fragment can send data to and receive
data from the Fragment.

Recommendation: A Fragment can't communicate directly
with another Fragment, even within the same Activity. The
host Activity must be used as an intermediary.

In order for an activity to communicate with a fragment, the
activity must identify the fragment object via the ID assigned
to it using the findViewByld() method.

Once this reference has been obtained, the activity can simply
call the public methods of the fragment object.

Fragments

Summary
-Fragments provide a powerful mechanism for creating re-usable modules of
user interface layout and application behavior, which, once created, can be
embedded in activities.
-A fragment consists of a user interface layout file and a class.
-All communication between fragments should be performed via the activity
within which the activities are embedded.
-To design an interface, you can design fragments and put it together.
-A Fragment represents a portion of a user interface or an operation that runs
within an Activity.
-A single activity can contain multiple fragments and many fragments can be
reused in many and different activities.
-It is not wrong if we say that a fragment is a type of sub-activity that can be
utilized again in multiple activities.
-Even if each fragment has each own lifecycle, because it is connected with
the Activity, it’s lifecycle is directly influenced by the activity’s lifecycle.
-The main advantage of using fragments is due to the convenience of reusing
the components in different layouts.

Fragments -> Example

Start a New Projeclt —> Empty activity —

-4

FragmentExample
DMy Work\FACULTA...D\FragmentExample
Quiz

D:AMyWork\FACULTA..O

_PMDOuiz
My Application

DMy Work\FACULTA... 2019, _PMD\examples
AndroidSample

DMy Worlk\FACULTA.. jects\AndroidSample
ServiceExample

DMy Work \FACULTAT.. .ects\ServiceExample
Audichpp

DMy Work\FACULTAT.. kProjects’\AudioApp
Database

DMy Work\FACULTAT.. kProjects\Database

TestAlarmManager
M RAAN ArAFACTII TA ATectAlarmbAananer

Welcome to Android Studio = =

Vs

Android Studio

Version 3.3.1

‘+ Start a new Android Studio project ‘

&= Open an existing Android Studio project
M Checkout project from Version Control -

[# Profile or debug APK

Choose your project

Phone and Tablet Wear 05 ™

Add No Activity

Create New Project

Android Auto Android Things

Basic Activity

Fullscreen Activity

Empty Activity

Master/Detail Flow

Ernpty Activity

Navigation Drawer Activity

T~

Bottorn Mavigation Activity

’

Google Maps Activity

Fragments -> Example

Create New Project
Configure your project

Mame

‘ MyFragments

Package name

Save location

MyWoerlk\FACULTATE__ Facultate2018-201%_PMD\examples'

Language

lava

Pinimum AP level

Empty Activity

APl 1% Android 4.4 (KitKat)

© Your app will run on approximately 95.3% of devices.

Fragments -> Example

D:AMyWork\FACULTATE__ Facultate2018-2019
Idea
app
build
libs
SrC
androidTest
main
Java
com
example
myfragments
C MainActivity

res
drawable

drawable-v24
layout

gsy activity_rmain.xml

mipmap-anydpi-v26

Fragments -> Example

ments € MainActivity -

— g activity_mainxml € MainActivity,java

1 package com.eXample.myfragments; o
; Base class for activities that use the support

. i:pﬂl‘t N / library action bar features.

: 2 public class Maindctivity extends AppCompatActivity | When an Activity first call or launched then |
i onCreate(Bundle savedInstanceState) method is
responsible to create the activity.

@0verride
5 @ protected void onCreate (Bundle savedInstanceState) |
super.onCreate (3avedInstancestate);
getContentView (R. layout.activity main);

13 }

4

WHY SUPER?

Because the super class potentially also has to
execute code to work properly during creation. You
are overriding that method in your class and unless
you don’t call super.onCreate the method in the super
class will never be called, potentially leading to
unwanted behavior.

Fragments -> Example

esy activity_main.xml € MainActivity.java

1 <72am] wversion="1.0" encoding="utf-8"32>

c <androlid.support.constraint.Constraintlayout xmlns:android="ht
mins:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
tools:context=" .MainActivity">

(Wj] [T L I % |

(m)]

<TextView

10 android: layout width="wrap content"

11 android:layout height="wrap content"

12 android: text="Hello World!"

13 app:layout constraintBottom toBottomOf="parent"
app:layout constraintleft toleftOf="parent"
app:layout constraintRight toRightOf="parent"
16 app:layout constraintTop toTopOf="parent" />

18 </android.support.constraint.ConstraintLayouts>

A ConstraintLayout is a ViewGroup which allows you to position and size widgets in a flexible way.

- It allows us to lay out child views using ‘constraints’ to define position based relationships between
different views found in our layout.

- The aim of the ConstraintLayout is to help reduce the number of nested views, which will improve the
performance of our layout files.

Fragments -> Example <- ConstraintLayout attributes:

layout_constraintTop_toTopOf- Align the top of the desired view to the top of another.
layout_constraintTop_toBottomOf- Align the top of the desired view to the bottom of another.
layout_constraintBottom_toTopOf-Align the bottom of the desired view to the top of another.
layout_constraintBottom_toBottomOf-Align the bottom of the desired view to the bottom of
another.

layout_constraintLeft_toTopOf- Align the left of the desired view to the top of another.
layout_constraintLeft_toBottomOf-Align the left of the desired view to the bottom of another.
layout_constraintLeft_toLeftOf- Align the left of the desired view to the left of another.
layout_constraintLeft_toRightOf- Align the left of the desired view to the right of another.
layout_constraintRight_toTopOf- Align the right of the desired view to the top of another.
layout_constraintRight_toBottomOf- Align the right of the desired view to the bottom of
another.

layout_constraintRight_toLeftOf-Align the right of the desired view to the left of another.
constraintRight_toRightOf-Align the right of the desired view to the right of another.

These all give us a great amount of control over the positioning of our
views within the ConstraintLayout, much more so than that of the
RelativeLayout.

Fragments -> Example

AFACULTA e males\MyFragm
b
O
10:09 ¢ P &
MyFragments 0
.l ‘I

Hello Warld!

Fragments -> Example

ConstraintLayout => LinearLayout

ctivity_main.xml C MainActivity.java

<Z@ml]l version="1.0" encoding="utf-8" 2>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >
<Button
android:id="Eg+id/buttonl"
android:layout width="fill parent"
android:layout height="wrap content"
android: text="Fragment No.l1l"
android:onClick="selectFrag" />

<Button
android:id="g+id/button2"
android:layout width="fill parent"
android:layout height="wrap content"
android:onClick="zelectFrag"
android: text="Fragment Ho.2" />

</ LinearLayout>

Fragments -> Example

AFACULTA SIo TR T galest MyFragm
®
d
10:15 & 9 &
)
MyFragments 0
1l
3 FRAGMENT NO.1 *l
™
FRAGMENT NO.2 Q
(%
<
O
O
mplesiMyFrag

3 moamo— -2

Fragments -> Example

Add code for first fragment in activity_main.xml|

The android:name defines an object of a Fragment Class

<Button
android:id="g+id/button2"”
android:layout width="fill parent"”
android:layout height="wrap content"
android:onClick="=selectFrag"
android: text="Fragment Ho.2" />

<fragment l
andrnid:name=":Dm.example.myfragmentd.fragmentﬂne"
android:id="g+id/fragment place"

,//ﬂ android:layout width="match parent”

android:layout height="match parent" />

r - T

1earLayout * fragment

android:id specifies the unique id of that fragment

Fragments -> Example

Add a class called FragmentOne to define the fragments, that extends
the Fragment Class.

Put it in the same package as the MainActivity.java file.
Right click on package - New —> Class.

FACULTATE__Facultate2018-2019_PMD\examples\MyFragments 1 <?xml version="1.0" encoding="utf-8"7»
— ent"
Link C++ Project with Gradle k Kotlin File/Class rent"
9 Cut Corex | Android Resource File 5
B) CiieC Android Resource Directory
~=0py i+ :
Sample Data Directo
droidTest Copy Path CteShiteC |y - g v parent”
= File)
in Copy Reference Ctrl+Alt+Shift+C _ _ _content
. f past CirlsV = Scratch File Ctrl+Alt+5hift+Insert »
Java Faste r+
corm i - i - Package o
Jump to External Editor Ctrl+Alt+F4
5 C++ Class
example Find Usages Alt+F7 CJCrs S -
w C/C++ Source File
MG Eidin Path. Ctrl+Shift+F | ° eos Hender i t
€ Main , _ " ++ Header File parent®
B Replace in Path... Ctrl+5hift+R | _ ' content”

Fragments -> Example

— RN I TN I |

I G

=l ey = e]

Mame: FragmentOne

Kind: T Class
Superclass:

Interface(s):

Visibility:) Public
Medifiers:) Mone

|:| Show Select Owverrides Dialog

-

Create Mew Class

Package: com.example.myfragments

D Package Private
) Abstract

Cancel

Help

Fragments -> Example

I = - -

ty_rmain.xml € FragmentOne.java gs fragment_onexml € FragmentTwo.java i

package com.eXample.myfiragments;
onCreateView method is called when Fragment should

create its View object hierarchy (either dynamically or via
XML layout inflation)

import android.app.Fragment;
import android.os.Build;
import android.os.Bundle
import android.view.LayoutInflater;
import android.view.View;
import android.view

public class FragmentOne /extends Fragment |
E0verride

public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle sawvedInstanceState) |

return inflater.inflate(
R.layout.fragment ane, container, attachToRoot: false):

}

Defines the xml file for the fragment

Fragments -> Example

Create the layout of the Fragment.

Create a simple Ul for fragment layout: fragment_one.xml

Right click on res/layout folder > New = Android XML File and name the xml file. Choose
the LinearLayout as root element.

e B e R =

£

i Hl

Link C++ Project with Gradle

% Cut Ctrl+ X
B Copy Ctrl+C
Copy Path Ctrl+Shift+C
Copy Reference Ctrl+ Alt+Shift+C

O Paste Ctrl+V
np to External Edito Ctrl+Alt+F4

Find Usages Alt+F7
Find in Path... Ctrl+5Shift+F
Reolace in Path... Ctrl+5Shift+R

X — | gm actvity_mainxml

Sample Data Directory

File

= Scratch File

5

Directory

C++ Class

Ctrl+ Alt+Shift+ Insert

cve CSC++ Source File

C/C++ Header File

H

Image Asset
Vector Asset

| £ FragmentOne,jave

LJMET

'ty
: q-]-

1. Ban

exte

fiew(

Fragments -> Example

'y Inflat

o New Layout Resource File ﬂ

& the lswrant far this frsament

File name: fragment_ﬂ-nel

Root element: | android.suppert.constraint. ConstraintLayout

DK Cancel

L

Fragments -> Example

wctivity_mainxml - c© FragmentOne,java - Efragment_une.xml x [N MainActivity.java -

<Zxm]l version="1.0" encoding="utf-8"2>
© | <Linearlayout
xmlns:android="http://schemas.android.comn/apk/res/andrnid"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical"
[android:background="#00ffff">

<TextView
android:id="g+id/textViewl"
android:layout width="match parent"
android:layout height="match parent"
android: layout weight="1"
android: text="This is= fragment Ho.1l"
android: textStyle="bold" />

Add a TextView :

Fragments -> Example

Add to MainActivity a method to select fragments:

setContentView (R. layout.activity main);

}

pubklic woid selectFrag(View view) |
Fragment f£r;
if (view == findViewById({R.id.button2)) |
fr = new FragmentTwo();

lelse if buttonl1 is pressed
[/ Return the FragmentManager for
interacting with fragments
Ir = new Fragmentlne () ;

associated with this MainActivity.

1

FragmentManager fm = getFragmentManager(): the fragment is placed in

FragmentTransaction fragmentlransaction = fm.beginTransaction(); a FragmentTransaction

fragmentTransaction.replace (B.id.fra t place, fr);

fragmentIransactioplcommit () ;

IOYLUIL C EEY LI Ly I

For the given container view sy activity_main.xml \L\Fragmentt}ne.java s fragment_cnexml

id, we can replace existing 5 Efragment

fragment by hew given 10 android: name=""com. le.my fragments .. Fragmentine"
fragment. 11 android:id="@#+id/fragment place"

12 android: layout width="match parent"”
13 android:layout height="match parent" />

https://developer.android.com/reference/android/app/FragmentTransaction.html

Fragments -> Example

(y s rig
116 9 &

FRAGMENT NOL1 ‘D
= D EBEuwl

FRAGMENT NO.2 o [att

his is fragment No.1

ragmentTwo will

] sgra_ia_E scai

Fragments - Example

Now:

1 Create FragmentTwo class and its layout,
2 Modify MainActivity,

3 Rebuild,

4 Run

Fragments - Android Fragment Lifecycle

Fragment is Added

onAttach() J

A
onCreate())

S
onCreatView() }

L
onActivityCreated [})

L
onStart()]

oL
onResume() J

N

[J

N2

User navigates The fragment is
backword or added to the back
fragmentis stack them
removed/replaced rimm'e" [replaced

j The fragment
returns to the

L } layout from
onStop()] the back stack

N2
nDestroyview() }
N

(
(
(onDestroyy)
(

P N e

[onPause()

— o K

J J
onDetach() j
J o

The lifecycle of android fragment is like the activity
lifecycle. There are 12 lifecycle methods for fragment.

onAttach: When the fragment attaches to its host activity.

onCreate: When a new fragment instance initializes, which always
happens after it attaches to the host

onCreateView: When a fragment creates its portion of the view
hierarchy, which is added to its activity’s view hierarchy.
onActivityCreated: When the fragment’s activity has finished its

own onCreate event.

onStart: When the fragment is visible; a fragment starts only after its
activity starts and often starts immediately after its activity does.
onResume: When the fragment is visible and interactable; a fragment
resumes only after its activity resumes and often resumes immediately
after the activity does.

Fragment is active

onPause: When the fragment is no longer interactable; this occurs when
either the fragment is about to be removed or replaced or when the
fragment’s activity pauses.

onStop: When the fragment is no longer visible; this occurs either after
the fragment is about to be removed or replaced or when the fragment’s
activity stops.

onDestroyView: When the view and related resources created

in onCreateView are removed from the activity’s view hierarchy and
destroyed.

onDestroy: When the fragment does its final clean up.

onDetach: When the fragment is detached from its activity.

Fragments

Sending Data to Fragment from Activity

In Activity
One way to get data from activity is by calling a method on the activity that returns

data as shown above. Data can also be sent to fragment when it is created by adding
data to bundle:

Bundle bundle = new Bundle();
bundle.putString("user”, "user name");
SampleFragment fragment = new SampleFragment();

fragment.setArguments(bundle);

In Fragment
Read the data in onCreateView method of the fragment by calling getArguments()

method to get the bundle and calling appropriate methods on it to read values from it.

public View onCreateView(Layoutinflater inflater, ViewGroup container, Bundle
savedInstanceState) {

String user = getArguments().getString("user"),

return inflater.inflate(R.layout.fragment, container, false);

}

Fragments

Sending Data from Fragment to Activity

Fragment can send data to activity by calling a setter method
in the activity.

((FragmentActivity)getActivity()).setData("333");

Fragments - Example-continued with FragmentThree — send data

How to pass data (string) from MainActivity to fragment:

public void selectFrag(View view) |
Fragment fr;
if (view == findViewById(R.id.button2)) {
fr = new FragmentIwo():
}else

{
if (view == findViewById(R.id.buttan3)) {

Bundle bundle = new Bundle():;
bundle.putString("param”, "My name is SMART STUDENT");
fr = new FragmentThree():

fr.setArguments (bundle) ;

else
fr = new FragmentOne();
}

FragmentManager fm = getFragmentManager():;
FragmentIransaction fragmentIransaction = fm.beginIransaction();

fragmentTransaction.replace (R.id.fragment place, fr):
fragmentTransaction.commit ()

Fragments

Add a new button on activity_main.xml

Y UUL gy dULIVILY_TTIdITLATT

asy activity_main.xml € FragmentOne,java gsy fragment_cnexml
T e

10 <Button

- - android: id="g+id/button3i®

-& android:layout width="match parent"

13 android:layout height="wrap content"

android:onClick="selectFrag"
android: text="Fragment Ho.3 - send A->F" />

Fragments

Create java class for FragmentThree.:

1MpPOrtT anarold.app.lragment;

import android.os.Build;

import android.os.Bundle;

import android.view.Layoutlnflater;
import android.view.View;

import android.view.ViewGroup;

public class FragmentThree extends Fragment {

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

String myStr = getArguments().getString(key: "param");

Toflabtas +ra | P Cnr o-,- Q ;Y~.fv-w°v\‘-

addd 2l b= (P - -C W - - - - --C:“.._..-

return inflater.inflate(R.layout.fragment three, container, attachToRoot: false);

Fragments

Create a layout for FragmentThree
- a TextView control must be added

Rebuild and run the app

Fragments

If you want to use a fragment for two different action (strings):

FRAGMENT NO.T

FRAGMENT NO.2 if (view == [indViewById(ER.id.buttan2)) |
FRAGMENT NO.3 - FIRST STRING fr — new Fra g_E.IE ﬂt le: { :I '.
FRAGMEMNT|NO.3 - SECOND STRING } E_l Se

This is fragment No.3

if (view == findViewById(R.id.buttaon3)) {

Bundle bundle = new Bundle():

bundle.putString ("param", "FIRST =string passed"):
fr = new FragmentThree():

fr.setArguments (bundle) ;

FIRST string passed

1
FRAGMENT NO. else |
FRAGMENT NO.2 if (view == findViewById(E.id.button4)){
FRAGMENT NO.3 - FIRST STRING Bundle bundle = new Bundle():
FRAGMENTIAR - SEconp STRNOSS bundle.putString ("param", "SECOHD string passed");
This is fraginent No.3 fr = new FragmentThree():
Ifr.setirguments (bundle) ;
!
else

| fr = new FragmentOne();

}
SECOND string passed 1

Fragments

You can try to call a fragment inside of another fragment
(like a call of a function inside of another function)

-see the final state of the discussed project-

Source code for MainActivity, fragments and their layouts are
in MyFragments arhive on PMD site.

Note: there is a semantic bug in FragmentFour.java. It is not
recommended to call a fragment inside another fragment, as
you saw at project presentation (see FragmentFour.java lines
24-32). | inssisted about this in my presentation. A fragment
can call another fragment only if an activity is uses as an
intermediate.

