
West University of Timisoara, Computer Science Department
PMD, IE II, IR II, spring 2021
Course 2 phd. lecturer Liviu Octavian Mafteiu-Scai

User Interface
and

User eXperience

Phd. Lecturer Liviu Octavian Mafteiu-Scai

The goal of this part
The terms UI and UX are very important for software
developers, especially for those involved in "front-end"
department of a company.

Who don’t understand the importance of these and don’t
know basic rules of them, can not performs good software
apps

What is User Interface (UI)?

In general, UI is the meeting place between user and machine

In our case, the machine is (hardware + a particular software)

In general:

Input1 and Output2 = mechanical, audio, optical or electrical signals

Input2 and Output1 = chars, numerical values (single, arrays, matrices etc, derived
from math representation of the problem) (binary values)

output1 output2

input2 input1

User Interface (UI)?

In past the user had to somehow adapt to the system
(no UI or very poor)

At present the system/app must adapt to the user.

User Interface (UI)?

A good communication between user and machine is ensured only if we have a
good UI

Important questions for programmers (front-end area)

• Is UI a software component designed for the users?

• What users want? In general they want apps that meet their needs.

• An app must be easy to use. If an app is difficult to use, the users stop to use it
and they will seek a similar app, even your software is technically superior.

• It is know that a good UI allows user who understand the problem domain to work
with an app without having to read the app’s manual or receive training. So, a
first advantage of a good UI is that it reduce the user’s training costs.

• To design a good UI must have a good understanding of the user’s, his mental
and physical model, his physical and psychological abilities.

User Interface – Interface-flow diagrams
Before to making an Ui for an app, you must to do a project of it,

i.e. paint an interface-flow diagram (see Software engineering course)

Interface-flow diagrams:

- show the relationships between the user interface components (screens/inputs and
reports/outputs, buttons, input boxes, messages …...controls…)

- allow to gain a high-level overview of the interface for apps

- help in understanding of how the system is expected to work

- will alow the validation/testing of the UI design.

Legend: boxes-> user interface objects (screens, reports, or forms)

 arrows-> possible flows between screens.

User Interface - Rules

R1 Consistency. This will create an accurate mental model for users.

- the same action in different places must have the same effect (a click on mouse on Yes
button)

- a word, a message or a warning must have the same meaning.

- a consistent color scheme must be used all over

R2 Standards. It is strong recommended to respect standards.

-IBM (Common User Access (CUA) 1987 or Advanced CUA (for graphical interfaces) in 1990)

-Microsoft (The Windows Interface Guideline for Software Design, 1995) set useful
standards.

R3 Difficulty level. A good UI must be easy to use both by novices and experts.

R4 Working rules of apps. The rules of how an app works should be simple and few in
number.

R5 Text: must be consistently and positively

? Examples for positively and not positively messages for users

User Interface - Rules

R6 Clustering : think in terms of clusters of app’s interface objects.
? Example

R7 UI objects: should look and behave exactly like the real-world objects that they
represent. Look at these and identify how users work with them.

R8 Contrast rule: dark text on light backgrounds and/or light text on dark backgrounds.
A good combination seems to be yellow-blue.

R8 Reduce users’ memory load because the capabilities and the human memory are
limited. (few rules)

R9 Aligns: right justify numbers, left justify strings, left justify edit fields, right justify labels.

R10 Density: don’t create busy/crowded screens.

R11 Provide Defaults, Undo, and Redo

R12 Provide Interface Shortcuts (F for File, E for Edit, V for View, and H for Help.)
(not useful for mobile apps)

User Interface - Rules

R12 Menus: The menus, more exactly the pop-up menus, shouldn’t be the only
source of functionality. But, don't put menu in a dialogue box. This is too
complex/complicated for users.

R13 Main objects: in each UI (especially in GUI) there are some main objects. So, the
next problems must be solved:

• Identify the main objects.

• Check if these main objects are appropriate for the target users?

• Place main objects in the centre.

• Ideal: only one main object on a screen

• Give largest space to the main objects (this is very important in mobile apps)

R14 Use screen space effectively, avoid large empty spaces in a screen/window.

R15 Check boxes or radio buttons? Use check boxes for non-exclusive options, and
radio buttons for exclusive options.

? Examples

R16 Radio buttons or drop-down list? Use radio buttons for a short list, e.g., < 10 and
use drop-down list for a long list.

User Interface - Rules

R17 Remember,

This is a golden rule in software development: “less is more…”
“Make it simple, but no simpler.” (Albert Einstein)

R18 Manipulation: Direct manipulation is intuitive and easy to use but difficult to repeat
precisely (examples: positioning, resize, alignment.). Indirect manipulation is less intuitive
but easy to repeat precisely.

? Examples for good and bad user’s input for each control in part

R19 Grouping: Group related items together and separate unrelated items.
Place “unsafe” elements away from “safe” elements. The “safe” element must be default.

Use group boxes and whitespace to group logically related items on the screen.

User Interface - Rules

R20 Colours: Colour is used in UI (like in real life) to communicate:

• Meaning:

- gray: neutral

- blue: start, commit

- red: error, stop, vulnerable, critical, restricted , problems

- yellow: warning, caution, questionable

- green: go, proceed, progress, safe

• State: selected vs. not selected

• Differentiation: use the same colour for related items.

• Emphasis: use distinct and power colours to draw attention.

R21 Colour contrast: use contrasting colours for clarity.

R22 Colour matching: don't put together colours that look bad. Looks unprofessional

? Question only for girls: examples for combinations of unsuitable colors

User Interface - Rules

R23 Texts and Messages: Texts provide descriptive info and feedback to users.
Texts and messages have two attributes:
- visual appearance: font, size, colour
- semantic: use of terms, sentence construction

Provide informative feedback

Don't be potentially destructive.

Use familiar terms

Don't use programming jargon. Avoid messages like this “The password is too short. It
must be at least 1024 bytes long! OR Type the string of chars again! OR End with the EOL
character!”

Use terms appropriate to the context.

Write in user's vocabulary, provide suggestions.

Use fonts that are easy to read and avoid shadow and other font effects in main text.

User Interface - Rules

R24 Let users think they are in control. Allow users to
customize the interface (Themes that can be modified by
user)

R25 Even if the interface on mobile apps is designed to be
optimized for TOUCH/TAP and DRAG, sometimes, a keyboard
(even virtual) could be useful and more safe.

R26 Allow Users to Change Focus

UI should be designed so users are able to interrupt their
current actions or tasks (by a phone call…) and either
continue later.

User eXperience

What is User eXperience (UX)?

Another golden rule for UI design, guided by UX

It matters what the user wants, no matter what programmers want

To have a successful project you need a shared vision of the project’s future. It is
known that all the details of a project are very important, but getting too caught up in
the details can lead to an inconsistent UI over time.

Unfortunately, many projects start without a clear sense of the final objectives. The
main goal of a project must be known before its start, but often the user goals are not
articulated, that leads to frustrate or dissatisfied users.

In general, UX encompasses all aspects of the end-user's interaction with a company,
its services, and its products.

A good understanding of UX is often the main key to a product’s success.

What is User eXperience (UX)?

Every painting or movie you see, product you use, and even place you
go, also has UX. You could have a bad experience in traffic, a good one
on a eMAG shop, a bad experience on an exam, a good one in a
restaurant….

Bad experiences must be erased from user mind. Good ones must be
amplified

In a good UX design it is necessary to build something that meets
clients’ needs and goals.

Psychology is used to find UX’ element. To create a good UX, you must
analyze user behavior.

What is User eXperience (UX)?

How to find what users want?

There are two methods:

- Analytics

 examples: 325,090 clicks, 45 views per month, 12%

 How: specialized companies can be used for survey

- Relationships

 examples: studied CS, has 2 kids, hasn’t to much free time

 How: get face to face time with your users (forums, mail lists,
 direct presentation meetings …)

What is User eXperience – UI is not UX

If someone knows what to do exactly with the UX, he will be able to
create extraordinary apps, because the usability of an app can be
improved using a UX strategy.

!!!

UI is not UX:

- UI refers to the actual system they interact with users

- UX is about the users’ emotions and induced behavior by emotions.

? Examples?

User experience differs from ‘experiences in a general sense’, in that it
explicitly refers to the experience(s) derived from encountering systems.

What is User eXperience ?

UX as a phenomenon can be described as follows:

- UX is a subset of experience as a general concept. UX is more specific, since it is
related to the experiences of using a given system

- UX includes encounters with systems – not only active, personal use, but also being
confronted with a system in a more passive way, for example, observing someone
else using a system

- Sometimes, UX of others could be included in our UX

?Example?

- UX is unique to an individual

- UX is influenced by prior experiences and expectations based on those experiences

- UX is rooted in a social and cultural context

What is User eXperience ?

What is not UX?

- UX is not technology driven, it focuses on humans behavior and experiences

- UX is not about just an individual using a system in isolation

- UX is not the same as usability, UX design is more than UI design

What is User eXperience - TIME SPANS

[Dagstuhl Seminar on Demarcating User Experience, September 15-18, 2010]

What is User eXperience - TIME SPANS

[Dagstuhl Seminar on Demarcating User Experience, September 15-18, 2010]

What is User eXperience - rules

You must keep in mind what’s interesting to you as a user, not what’s fun to do as a
designer. These can be very different.

i.e.

If you were the user in a given situation, how would you feel?

Psychology is the most effective UX element. To create a good UX, you must analyze
user behavior.

UX is not about the icons or colors you choose. To obtain a successful result, you must
develop a content strategy.

Positioning the user as a central concern in the design process

Identifying the aspects of the design that are important to the target user group

A lot of books are there about UX. One of these, that must be taken into consideration
“User experience guidelines for Universal Windows Platform (UWP) apps” , Microsoft,
August 2015

 Practical advices

“When people make a repeated error using my
code, instead of asking why these people are
idiots, I learned to ask what’s wrong with my
software that causes the nice people to look like
idiots” Cem Kaner, Professor of Software Engineering, Florida

Institute of Technology

Programming for Mobile Devices, Android Studio, Apps with multiple Activities

Most apps need more than one activity.

Programming for Mobile Devices, Android Studio, Apps with multiple Activities

An activity is a single focused thing.

A window(layout) is created for user interaction
• Remember: activities are declared in Manifest file:

<manifest ... >
 <application ... >
 <activity android:name=“MyActivity" />
 ...
 </application ... >
 ...
</manifest >

NOTE: All mobile apps for Android OS have an (only one) AndroidManifest.xml file
(with precisely that name). There are described a lot of important information about
app.

A task represent multiple activities linked together to do
something more complex.

android:name ,specifies the class name of the activity.

Programming for Mobile Devices, Android Studio, Apps with multiple Activities

In general, applications with

multiple activities,

need

intents

to communicate to each other.

Programming for Mobile Devices, Android Studio, About Intents

What an intent is?

An Intent is a messaging object used to request an action from
another app component.

An Intent describes the activity to start and carries any necessary data

Programming for Mobile Devices, Android Studio, About Intents

What an intent is? – example -

An Intent is a messaging object used to request an action from
another app component.

An Intent describes the activity to start and carries any necessary data

Programming for Mobile Devices, Android Studio, About Intents

Intents are used to:

- Start an activity

! If results from activity called are needed in caller activity, the
method startActivityForResult() must be uses.

- Starting a service

A service is a component that performs operations in the background
without a user interface (music, AV programs…)

- Delivering a broadcast

A broadcast is a message that any app can receive (a low battery message)

Programming for Mobile Devices, Android Studio, About Intents

Types of intents:

- Explicit intents: specify which application will satisfy the intent.

Used to start a component of app, when the class name of the activity
or service are known (start an activity after a button is clicked or start a download file

service in the background).

- Implicit intents: used to declare a general action to perform (if a

geographical location is necessary in your app, the implicit intent is used to call another app that
capable to find and show a location on a map)

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 1

One2TwoActivities

Goal: launching two activities from other activity (called main activity) and passing
data from main activity to secondary activities:

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 1

One2ManyActivity App - The Main Steps

1. Create a standard Android Studio project. Name it One2ManyActivity, with a
Blank Activity.

2. Add Button, EditText and TextView into activity_main.xml.

3. In src > main > java > add new fragments activity classes: FirstActivity.java and
SecondActivity.java.

4. In src > main > res > layout > add new layout xml files for fragments:
activity_first.xml and activity_second.xml. After, add Button and TextView for each
of them.

5. Rewrite MainActivity.java code in accordance with the requirements of the app.

6. Finaly, Run and Test your app.
The source code of this app is in next slides

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 1

One2ManyActivity App - MainActivity.java
package com.example.mafteiu_scai.one2manyactivity;
import android.content.Intent;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends ActionBarActivity {
 Button button1, button2;
 EditText editTextInt;
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 button1 = (Button) findViewById(R.id.btnCall1);
 button2 = (Button) findViewById(R.id.btnCall2);
 editTextInt = (EditText) findViewById(R.id.editText2);

 button1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Integer i =Integer.parseInt(editTextInt.getText().toString());
 //the first activity name
 Intent intent = new Intent(getApplicationContext(),FirstActivity.class);
 // pass value to Activity 1.
 intent.putExtra("Int",i);
 startActivity(intent);
 }
 });

 button2.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Integer i =Integer.parseInt(editTextInt.getText().toString());
 //the second activity name
 Intent intent = new Intent(getApplicationContext(),SecondActivity.class);
 //pass value to Activity 2.
 intent.putExtra("Int",i);
 startActivity(intent);
 }
 });
 }
}

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 1

An Intent is a messaging object used to request an action from
another app component. More:
http://developer.android.com/guide/components/intents-filters.html

package com.example.mafteiu_scai.one2manyactivity;
import android.content.Intent;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends ActionBarActivity {
 Button button1, button2;
 EditText editTextInt;
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button1 = (Button) findViewById(R.id.btnCall1);
 button2 = (Button) findViewById(R.id.btnCall2);
 editTextInt = (EditText) findViewById(R.id.editText2);
 button1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Integer i =Integer.parseInt(editTextInt.getText().toString());
 //the first activity name
 Intent intent = new Intent(getApplicationContext(),FirstActivity.class);
 intent.putExtra("Int",i);
 startActivity(intent);
 }
 });
 button2.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Integer i =Integer.parseInt(editTextInt.getText().toString());
 //the second activity name
 Intent intent = new Intent(getApplicationContext(),SecondActivity.class);
 //pass value to Activity 2.
 intent.putExtra("Int",i);
 startActivity(intent);
 }
 });
 }
}

getApplicationContext returns the context for the entire application
(the process all the Activities are running inside of).

A Context is an entity that represents various environment data. It
provides access to local files, databases, class loaders associated to
the environment, services including system-level services, and
more.

start a new activity after button1 was pressed

pass value i (from editText2) to Activity 1.

All activities are also specified in AndroidManifest.xml file:
<activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>
<activity android:name=".FirstActivity" >
</activity>
<activity android:name=".SecondActivity" >
</activity>

One2ManyActivity App - MainActivity.java

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 1

One2ManyActivity App - FirstActivity.java (similar for SecondActivity.java)

package com.example.mafteiu_scai.one2manyactivity;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.content.Intent;
import android.view.View;
import android.widget.TextView;

public class FirstActivity extends AppCompatActivity {
 TextView txtInteger;

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_first);
 txtInteger = (TextView) findViewById(R.id.textView4);
 //read data from main ctivity
 Intent intent = getIntent();
 Integer i = intent.getIntExtra("Int", 0);
 i=2*i;
 txtInteger.setText(i.toString());

 findViewById(R.id.btnClose).setOnClickListener(new
View.OnClickListener() {

 public void onClick(View v) {
 //close Activity 1 and return to main activity
 finish();
 }
 });
 }
}

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="Activity 1"
 android:id="@+id/textView"
 android:layout_marginTop="134dp"
 android:textStyle="bold"
 android:layout_alignParentTop="true"
 android:layout_alignStart="@+id/btnClose" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="Receveid Value * 2 = "
 android:id="@+id/textView2"
 android:textStyle="bold"
 android:layout_below="@+id/textView"
 android:layout_alignParentStart="true"
 android:layout_marginTop="30dp" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:id="@+id/textView4"
 android:layout_alignTop="@+id/textView2"
 android:textStyle="italic"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:layout_toRightOf="@+id/textView2"
 android:paddingLeft="5dp" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Return"
 android:id="@+id/btnClose"
 android:layout_marginTop="48dp"
 android:layout_below="@+id/textView4"
 android:layout_centerHorizontal="true" />

</RelativeLayout>

Finish the curent/secondary activity

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 2

Example 2 A BrowserSearch App

- Goal: Launches a search process from a browser

 Main activity Second activity

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 3

BrowserSearch App - MainActivity.java
package com.example.mafteiu_scai.browsersearch;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.webkit.WebView;
import android.widget.CheckBox;
public class MainActivity extends Activity {
 CheckBox placeBox, titleBox, cityBox;
 WebView webView;
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 placeBox = (CheckBox) findViewById(R.id.checkBox);
 titleBox = (CheckBox) findViewById(R.id.checkBox2);
 cityBox = (CheckBox) findViewById(R.id.checkBox3);
 webView = (WebView) findViewById(R.id.webView);
 }
 public void onButtonClick(View view) {
 StringBuilder str = new StringBuilder("");
 if (placeBox.isChecked()) {
 str.append("West");
 }
 if (titleBox.isChecked()) {
 str.append("\"University\"");
 }
 if (cityBox.isChecked()) {
 str.append("\"Timisoara\"");
 }
 if (str.length() == 16) { str.insert(4, '+'); }
 if (str.length() == 21) { str.insert(10, '+'); }
 if (str.length() == 26) { str.insert(4, '+'); str.insert(17, '+'); }
 if (str.length() == 0){ str.append("University of Timisoara");
}
 webView.loadUrl
 ("http://www.google.com/search?q=" + str.toString());
 }
}

!

Programming for Mobile Devices, Android Studio, Apps with multiple Activities – Example 3

BrowserSearch App - activity_main.xml & reusable_layout.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <include
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 layout="@layout/reusable_layout"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:id="@+id/include"/>

 <WebView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/webView"
 android:layout_below="@+id/include"
 android:layout_centerHorizontal="true"/>
</RelativeLayout>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:gravity="center_horizontal"
 tools:showIn="@layout/activity_main">

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:gravity="center_horizontal">
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="West"
 android:id="@+id/checkBox"
 android:checked="false"/>
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="University"
 android:id="@+id/checkBox2"
 android:checked="false"/>
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Timisoara"
 android:id="@+id/checkBox3"
 android:checked="false" />
 </LinearLayout>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Search"
 android:id="@+id/button"
 android:layout_gravity="center_horizontal"
 android:onClick="onButtonClick"/>

</LinearLayout>

