
A crash course to Haskell

1 How to get it?

Haskell is freely available to install on all major platforms, including Window,
Linux, and Mac OS X. We recommend to install the whole Haskell platform,
which contains, among others:

• The Glasgow Haskell Compiler

• The Stack tool for developing projects

• Core packages and widely used packages

Go to https://www.haskell.org/downloads/#platform and follow the link
for your platform (Linux/OS X/Windows) to download and install the Haskell
components for your operating system.

The installation steps on Windows are:

1. Make sure you have PowerShell v2+ and and .NET Framework 4+ already
installed

2. Start PowerShell as administrator via the Run command window:

• Press Win Key + R. A a small window will pop up.

• Type in powershell and press Ctrl+Shift+Enter or press and hold
Ctrl+Shift.

• Click OK to make PowerShell run as administrator

3. Install Chocolatey by running the command below in powershell:

> Set-ExecutionPolicy Bypass -Scope Process -Force;

[System.Net.ServicePointManager]::SecurityProtocol =

[System.Net.ServicePointManager]::SecurityProtocol -bor 3072;

iex ((New-Object System.Net.WebClient).DownloadString(’https://chocolatey.org/install.ps1’))

and wait a few seconds for the command to complete.

4. Run

> choco install haskell-dev

1

https://www.haskell.org/downloads/#platform
https://www.haskell.org/ghc/
https://docs.haskellstack.org/en/stable/README/


You may be asked to confirm many installation steps by pressing Y

5. Run

> refreshenv

You may need to restart powershell, before being able ro run the command

> ghci

to run the GHC interactive environment.

2 How to work with Haskell?

We will use the GHCi to initiate Haskell sessions, load and execute programs.

GHCi stands for GHC interactive environment. It is a command-line tool
that can be started by typing ghci at the command prompt:

> ghci

GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help

Prelude>

GHCi works in the Read-Eval-Print (REPL) mode: it performs repeatedly the
following sequence of operations:

1. It waits for us to type a definition, expression, or command. After we
submit it (usually, by pressing Enter), the input is read and evaluated.

2. The result of evaluating an expression is printed.

The evaluation of a definition does not produce output (therefore nothing
is printed), but it adds a binding to the environment.

GHCi commands have side effects too (see subsection below).

3. The input prompt is shown again, to indicate that GHCi is waiting for
another input.

Example:

> x = 3 -- a definition that binds x to 2; nothing to print
> x^2+2 -- compute the value of x2 + 2; print 11
11

Haskell recognizes comments: they start with ’--’ and extend to the end
of line. Comments are used to document the written code, and are ignored
(not read) by GHCi.

Documentation about how GHCi works is available online: click here
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3 Haskell programs

A Haskell program is a text file consisting of a group of definitions grouped in
a module.

• We can use any text editor to write Haskell programs. A Haskell program
for a module Name should be named Name.hs. This is similar to the
naming convention in Java: the source file of a class C should be named
C.java

• The simplest structure of a source file for a module Name is

module Name where

definition1

...

definitionn

Definitions are of the following kinds:

• Definitions which name expressions of different types, including functions.

Examples

x::Integer -- if omitted, the type declaration is computed gy GHCi
x = 1

intsFrom::[Integer]->[Integer]

intsFrom x = x:intsFrom (x+1)

nats = intsFrom 1 -- GHCi will infer that nats::[Integer]

• Definitions of type classes, algebraic types, and type aliases (Lecture 6).

4 GHCi commands

The most important GHCi commands are:

:load Name reads definitions of module Name from file Name.hs

:quit quits the current working session with Haskell.

:type expr prints the type of expr without evaluating it.

:set +t sets GHCi to show the type of each variable bound by a state-
ment. For example:

> (x:y:xs) = "abcdefgh"

x :: Char

xs :: [Char]

y :: Char
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5 Useful predefined operations

For Integer arithmetic

Relational operators

There are ordering and (in(equality relations over the integers, as there are over
all basic types. These functions/operators take 2 integers as input and return
a Bol, that is either True or False. The relations are

Floating-point numers: Float

Literal floats in Haskell can be given by decimal numerals, such as

3.141592

-34.25

567.123

16.0

The numbers are called floating point because the position of the decimal point
is not the same for all Floats; depending upon a particular number, more of
the space can be used to store the integer or the fractional part.

Haskell also allows literal floating-point numbers in scientific notation. These
take the form below, where their values are given in the right-hand column of
the table:
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This notation is more convenient than the decimal notation for very large and
small numbers. Haskell provides a range of operators and functions over Float:

6 Getting started

The goal of Lab 5 is to illustrate a new style of functional programming,
called lazy programming. This programming style is supported by lan-
guages that implement the lazy evaluation strategy, or its optimized ver-
sion called call-by-need evaluation. Haskell is a language for functional
programming which implements the call-by-need evaluation strategy.
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In lazy evaluation, the arguments of a function call are evaluated only if
their value is needed to compute the overall result. Moreover, if an argument is
structured (a list or a tuple), only those parts of the argument which are needed
will be computed.

Lazy evaluation has consequences on the style of programs we can write.
Since an intermediate list will only be generated on demand, using partially
generated intermediate list can reduce significantly the overall cost of computa-
tion We will illustrate this programming style with a series of examples.

6.1 Lazy programming

Our first Haskell program is a text file HLab1.hs with the following content:

module HLab1 where

intsFrom::Integer->[Integer] -- type declaration
intsFrom x = x:intsFrom (x+1) -- definition

nats::[Integer] -- type declaration
nats = intsFrom 1 -- definition

(During the lab, we will extend this program with new definitions.) This pro-
gram contains two definitions, for variables intsFrom and nats. Definitions are
preceded by type declarations of the form

name::type

with the intended reading “name has type type”. Often, Haskell can compute
the types of the variables that get defined. If this is the case, we can omit the
type declaration. For example, the ghci command

> :type intsFrom 1

intsFrom 1 :: [Integer]

indicates that Haskell can compute the type of intsFrom 1, which is [Integer].
This computation is called type inference, and does not evaluate the expres-
sion intsFrom 1.

In lazy programming (including Haskell), the evaluation of a definition

name = expr

adds a binding of name to expr to the top frame of the evaluation environ-
ment. This is different to what happens in strict functional programming
(including Racket), where name is bound to the value of expr.

For example, the evaluation of the definitions

intsFrom x = x:intsFrom (x+1)

nats = intsFrom 1
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extends the top frame of the evaluation environment with two bindings, as
illustrated below:

intsFrom λx.(x : intsFrom (x+ 1)) |
nats intsFrom 1

. . .
top frame of the evaluation environment

In strict functional programming, the previous two definitions would be written
as

(define (intsFrom x) (cons x (intsFrom (+ x 1))))

(define nats (intsFrom 1))

The first definition will add the same binding to the top frame, but the second
definition will crash the system (stack overflow) because Racket will try to
bind nats to the value (intsFrom 1), and the evaluation of (intsFrom 1)

is nonterminating and does not display anything:

(intsFrom 1) → (cons (1 (intsFrom 2)) → ...

• intsFrom is bound to a function.

intsFrom x computes the infinite list [x, x + 1, x + 2, . . .]

• nats is bound to an expression whose evaluation produces the infinite list
of all integers starting from 1: [1,2,3,...]

If we ask Haskell to compute the value of intsFrom 1, it performs the same
infinite computation like Racket:

intsFrom 1 → 1:(intsFrom 2) 1 : 2 : (intsFrom 3) → ...

but Haskell will display the elements of the list as soon as they are generated:

> intsFrom 1

[1,2,3,4,...

The computation can be interrupted by pressing Ctrl-C.
nats is an example of defining an infinite data structure in lazy program-

ming. The attempt to compute its complete value will run forever, but we can
still use it in computations that need only finite portions of the structure rather
than the whole value. The following examples illustrate such computations.

Getting the first n elements of an infinite list

Haskell has the built-in function take n lst which takes as inputs an integer
n ≥ 1 and a list lst, and returns the list of first n elements of lst. If lst has
less then n elements, then take n lst returns lst. The function take is easy
to define by recursion on n:
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take n _

| (n <= 0) = [] -- taking n ≤0 elements from any list yields []
take _ [] = []

take n (x:xs) = x:take (n-1) xs

To take the first 3 elements from nats, we must compute only the first 3 elements
of intsFrom 1. This is what call-by-need evaluation does:

> take 3 nats

[1,2,3]

because

take 3 nats = take 3 (intsFrom 1) -- need an element
→ take 3 (1:intsFrom 2) -- get an element
→ 1:take 2 (intFrom 2) -- need an element
→ 1:take 2 (2:intsFrom 3) -- get an element
→ 1:2:take 1 (intsFrom 3) -- need an element
→ 1:2:take 1 (3:intsFrom 4) -- get an element
→ 1:2:3:take 0 (intsFrom 4) -- stop
→ 1:2:3:[] = [1,2,3]

Quiz

Consider the following definitions:

sieve1,sieveAll:[Integer]->[Integer]

sieve1 (x:xs) = x:filter (\y->(mod y x) > 0) xs

sieveAll (x:xs) = x:sieveAll (filter (\y->(mod y x) > 0) xs)

With list comprehensions (see Lecture Notes 5), the previous definitions
can be rewritten in the more readable but equivalent form

sieve1 (x:xs) = x:[y | y<-xs, y ‘mod‘ x > 0]

sieveAll (x:xs) = x:sieveAll [y | y<-xs, y ‘mod‘ x > 0]

1. What does sieve1 [n..] compute for n ∈ N, n > 1?

Suggestion: check the results returned by take 10 (sieve1 [n..]) for
n ∈ {2, 3, 4}

2. What does sieve1 [1..] compute? Does the computation terminate?

3. What does sieveAll [2..] compute?

Suggestion: add these definition to program HLab1.hs, reload it with command

:load HLab1

and test them.
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1. sieve1 [n..] computes the infinite list of Integers from n, without the
multiples of n which are different from n. It is a nonterminating compu-
tation, For example:

> sieve1 [2..]

[2,3,4,5,6,...

2. sieve1 [1..] is a nonterminating computation of a list. It does not
display anything because it runs indefinitely trying to find and display a
nonexisting n > 1 such that mod n 1 > 0. Only the first element, which
is 1, gets computed.

3. sieveAll [2..] computes the infinite list of all prime numbers:

> sieveAll [2..]

[2,3,5,7,11,13,17,19,23,...

Thus, we can define

primes = sieveAll [2..]

and use it to get finite portions of prime numbers. For example

take 2 primes

generates and gets only the first two prime numbers, because that is all we need:

take 2 primes = take 2 (sieveAll [2..]) -- need an element
→ take 1 2:sieveAll [y|y<-[3..],y ‘mod‘ 2 > 0] -- get an element
→ 2:take 1 sieveAll [y|y<-[3..],y ‘mod‘ 2 > 0] -- need an element
→ 2:take 1 3:sieveAll [y|y<-[4..],...] -- get an element
→ 2:3:take 0 sieveAll [y|y<-[4..,...]] -- stop
→ 2:3:[] = [2,3]

6.2 Proposed exercises

The following exercises will be discussed during the next lab.

1. Define recursively the function map2::(a->b->c)->[a]->[b]->[c]

such that, if

• f is a binary function that takes inputs of types a and b, and computes
result of type c,

• lst1=[a1, . . . , an] is a list of n elements of type a,

• lst2=[b1, . . . , bn] is a list of n elements of type b

then (map2 f lst1 lst2) computes the list [c1, . . . , cn] where ci is the
value of (f ai bi) for all 1 ≤ i ≤ n. For example:

9



> map2 (+) [1,2,3] [4,5,6] > map2 (*) [1,2,3] [4,5,6]

[5,7,9] [4.10,18]

2. Use map and addLists to define the infinite list of Integers

yList = [y1, y2, y3, . . .]

where y1 = y2 = 1, y3 = 2 and yn = y2n−1−2 ·y2n−2 + 3 ·yn−3 for all n > 3.

3. Define the function nestList::(Double->Double)->Double->[Double]

such that

nestList f v

computes the infinite list

[v, f v, f (f v),f (f (f v)),...]

4. Consider the function g defined by

nwtList a = let g x = (x+a/x)/2 -- same as g=\x.((x+a/x)/2)

in nestList g 1.0

This definition extends the top frame of the evaluation environment E
with the binding for nwtList, as shown below:

E
gnwtList λx.((x+ a/x)/2) |

nestList

...

λf.λv. · · ·
λa.(nestList g 1.0) |

(a) What is the value of nwtList 5.0? Does the computation terminate?

(b) What is the value of

head (take 5 nwtList 7.0)

Does the termination terminate?

Suggestion: remember Newton’s method to compute
√
x when x is a pos-

itive real number.

5. Consider the function definition

triples::Int->(Int,Int,Int)

triples n = [(a,b,n-a-b)|a<-[1..n-2],b<-[1..n-1-a]]

What is the value of the function call (triples n) when n > 2?

Suggestion: use ghci to compute the values of (triples n) for some
small values n > 2, to see what you get.
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6. Define recursively the function allTriples::Int->(Int,Int,Int) such
that, if n > 0, then (allTriples n) returns the list of all triples (a, b, c)
with a > 0, b > 0, c > 0 and a + b + c ≥ n.

7. Define the list t3List of all triples (a, b, c) of type (Int,Int,Int) with
a > 0, b > 0, c > 0.

Suggestion: Define recursively the recursive function

triplesFrom n

which generates the list of all triples (a, b, c) of type (Int,Int,Int) with
a > 0, b > 0, c > 0 and a + b + c ≥ n.

8. A Pythagorean triple is a triple (a, b, c) of strict positive integers such that
a2+b2 = c2. Define the function (pythTriples n) which returns the first
n Pythagorean triples from t3List.

6.3 Miniproject 1

Power series have many applications in sciences and engineering. We consider
power series of the form

∑∞
n=0 an x

n with an ∈ R for all n ≥ 0, and represent
them by infinite lists of Doubles. For example

Ex. 1)

∞∑
n=0

xn is represented by the list comprehension [1..]

Ex. 2) ex =

∞∑
n=0

xn

n!
can be represented by

eRepr = map (\x->1/fromInteger x) (coeffList [1..] 1 (*))

where

coeffList::[Integer]->a->(Integer->a->a)->[a]

-- coeffList [1..] x f computes the list [c1, c2, . . .] where
-- c1 = x and cn = (f n cn−1) for all n > 1.
coeffList (n:ns) x f = x:coeffList ns (f n x) f

Ex. 3) sinx = x− x3

3!
+

x5

5!
− . . . =

∞∑
n=0

(−1)n · x2n+1

(2n + 1)!
can be represented by

sinRepr = map c plist where

c (x,y) = x/fromInteger y

f n (_,y)

| mod n 2 == 0 = (0,y*n)

| mod n 4 == 1 = (1,y*n)

| otherwise = (-1,y*n)

plist = coeffList [1..] (0,1) f

11



Note that (coeffList [1..] (0,1) f) generates on demand the infinite
list of tuples

[(0,1),(1,1),(0,2!),(-1,3!),(0,4!),(1,5!),(0,6!),(-1,7!),...]

and map c plist generates on demand the list representation of sinx.
Another, less efficient, lazy implementation of the representation of ex is
the list comprehension

sinRepr = [(coeff n) | n<-[0..]] where

coeff n = if (mod n 2) == 0

then 0

else ((-1)^(div (n+1) 2))/fromInteger (foldr (*) 1 [1..n])

Ex. 4) A polynomial
∑n

k=0 ak x
k is a power series too:

∑∞
k=0 ak x

k where ai = 0
for all i > n. A lazy implementation of the representation of the power
series of the polynomial

∑n
k=0 ak x

k is

[a0, a1 . . . , an] ++ [0|<-i<-[1..]]

Power series can be added, multiplied, scaled and divided as follows: if r ∈ R,
a(x) =

∑∞
n=0 an x

n and b(x) =
∑∞

n=0 bn xn are power series, then

a(x) + b(x) =

∞∑
n=0

(an + bn)xn

r · a(x) =

∞∑
n=0

(r · an)xn

x · a(x) =

∞∑
n=0

an x
n+1 =

∞∑
n=0

cn x
n where cn =

{
0 if n = 0,
an−1 if n > 0.

a(x) · b(x) =

(
a0 + x ·

∞∑
n=0

an+1 x
n

)
· b = a0 · b(x) + x ·

(
b(x) ·

∞∑
n=0

an+1x
n

)
Also, if b0 6= 0 then

a(x)

b(x)
=

a0
b0

+ x ·
∑∞

n=1(an − a0

b0
· bn)xn−1

b(x)

=
a0
b0

+ x ·
∑∞

n=0 an+1 x
n + (−a0

b0
·
∑∞

n=0 bn+1 x
n)

b(x)

Suppose ra, rb are representations of the power series a(x) =
∑∞

n=0 an x
n and

b(x) =
∑∞

n=0 bn x
n. Define lazy implementations of the following functions:

eval::[Double] -> Double -> Int -> Double

sumS,prodS,divideS::[Double]->[Double]->[Double]

xprodS::[Double]->[Double]

rprodS::Double->[Double]->[Double]
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such that

• (eval ra v m) computes
∑m

n=0 an v
n

• (sumS ra rb) computes the representation of a(x) + b(x)

• (rprodS r ra) computes the representation of r ·a(x) where r is the value
of r

• (xprodS a) computes the representation of x · a(x)

• (prodS ra rb) computes the representation of a(x) · b(x)

• if b0 6= 0 then (divS ra rb) computes the representation of
a(x)

b(x)

Suggestions

Note that

• The list a:[0|i<=1..]] represents the constant polynomial a.

• If ra represents the power series

∞∑
n=0

an x
n then

(0:ra) represents the power series

∞∑
n=0

an x
n+1

(tail ra) represents the power series

∞∑
n=0

an+1 x
n

• You can make use of the function map2 and of predefined functions foldl,
foldr, map.

To test if your implementation is correct, try this:

> :{
ar,br,cr::[Double]

ar = [1,2,3]++[0|i<-[1..]] -- 1 + 2x + 3x2

br = 1:[0|i<-[1..]] -- constant polynomial 1

cr = [1,-1]++[0|i<-[1..]] -- 1− x
:}
> take 4 (prodS ar cr) -- (1 + 2x+ 3x2) · (1−x) = 1 +x+x2− 3x3

[1.0,1.0,1.0,-3.0]

> take 6 (divides br cr) -- 1/(1− x) = 1 + x + x2 + x3 + . . .
[1.0,1.0,1.0,1.0,1.0,1.0]

> eval sinRepr (pi/4) 16 -- compute an approximation of sin (pi/4)

0.7071067811865475

> eval eRepr 1 16 -- compute an approximation of e1 = e
2.718281828458995
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