
Functional and Logic Programming.

Lectures 1-7

Contents

1 Programming styles 3

2 Characteristics of functional programming 3

3 A crash course to Racket 4
3.1 Syntax . 4

3.1.1 The syntax of expressions 5
3.1.2 The syntax of definitions 7

3.2 Environment-based computations 8
3.2.1 Variable lookup . 8
3.2.2 Evaluation of expressions 8
3.2.3 The interpretation of definitions 9
3.2.4 Functions as values . 9
3.2.5 The evaluation of function calls 10
3.2.6 The evaluation of blocks 10

3.3 Recursion . 12
3.3.1 Functions defined by structural induction 13
3.3.2 Structural induction over the natural numbers 14
3.3.3 Other kinds of recursion 15

3.4 Tail recursion . 16
3.5 Techniques to write tail-recursive definitions 17

3.5.1 Convert an iterative solution into a tail-recursive solution 17
3.5.2 Defining a more general recursive function 18
3.5.3 Tail recursion with accumulators 18
3.5.4 Limitations of tail recursion 19

3.6 Problem solving strategies . 22
3.6.1 map (Haskell and Racket) 22
3.6.2 apply (only in Racket) . 23
3.6.3 filter (Haskell and Racket) 23
3.6.4 foldl and foldr (Haskell and Racket) 24

1

4 A crash course to Haskell 25
4.1 The syntax of Haskell . 25
4.2 Working with Haskell . 27

5 Exercises 28
5.1 Labworks 1 (Racket) – Homework 28
5.2 Labworks 2 (Racket) – Recommended 30
5.3 Labworks 3 (Racket) – Homework 32
5.4 Labworks 4 (Racket) – Homework 35
5.5 Labworks 5 (Haskell) – Homework 37
5.6 Miniproject: Working with power series 38
5.7 Labworks 7 (Racket) – Recommended 41

6 Answers to some exercises 43
6.1 Answers to labworks 1 . 43
6.2 Answers to recommended labworks 2 44
6.3 Answers to labworks 3 . 45
6.4 Answers to labworks 4 . 50
6.5 Answers to labworks 5 . 51
6.6 Labworks 7: Bottom-up problem solving 54

2

1 Programming styles

The main programming styles of software engineering are

1. procedural programming

2. object-oriented programming (OOP)

3. functional programming (FP)

4. logic programming (LP)

The first two are imperative programming styles, and the last two are declar-
ative programming styles.

Imperative programming styles perform computations by executing instruc-
tions (or commands) which change the state of a program (variables, ports,
etc.). In imperative programming, programmers write programs that de-
scribe how to solve a problem by changing the program state.

Declarative programming styles perform computations according to a fixed
and predictable strategy. In declarative programming, programmers write
programs that describe what they know about the problem, and trust the
built-in strategy which known how to compute the desired answer(s).

In FP, programs consists of definitions that describe what users know. Most
definitions are definitions of functions, but some functional programming lan-
guages allows us to define other things as well, such as type classes and data
types. Computation consists in computing the value of an expression with an
evaluation strategy. The most popular evaluation strategies are

1. strict (or call by value) evaluation. Languages based on this evaluation
strategy are called strict languages. Racket is a strict language.

2. lazy (or call by need) evaluation. Languages based on this evaluation
strategy are called lazy languages. Haskell is a lazy language.

In LP, programs consist of definitions of relations that describe what users know.
The most popular language is Prolog. Prolog programs consists of rules and
facts. Computation consists in finding the answers to questions expressed in a
way, with a search strategy called SLDNF resolution.

2 Characteristics of functional programming

• No assignment. Variables are just names given to expressions, and their
values can not be changed.

• Data is immutable – it can not be changed. This implies that we can not
change the content of a list, array, or any other composite data structure.

3

• Functions are values. In general, values are objects that can be passed
as named, passed as arguments to function calls, returned as results of
function calls, or stored as components of composite values.

In FP, a value is an expression that evaluates to itself – it can not be
reduced anymore.

• Repetitive computation is simulated by recursion.

3 A crash course to Racket

Racket is a language for FP. It is a dialect of Lisp.

Historical note: Lisp was the first high-level language designed for
functional programming. It was developed by John McCarthy in 1958 and
quickly became the favored programming language for AI research. Lisp
derives from ”LISt Processor” because linked lists are one of Lisp’s major
data structures, and the source code of Lisp is made of lists. It is the
second oldest high-level programming language, and is still in widespread
use today.

Lisp has changed since its early days, and many dialects have existed
over its history. Today, the best-known general-purpose Lisp dialects are
Racket, Common Lisp, Scheme and Clojure.

Like all dialects of Lisp, Racket has a peculiar syntax for writing expressions,
called fully perenthesised notation (See below).

• Racket is a strict language. This means that

– When we give a name x to an expression expr: first, we compute the
value v of expr; next, we give the name x to value v.

– When we call a function f with arguments arg1, . . . , argn: first,
we compute the values v1, . . . , vn; next, we call f with arguments
v1, . . . , vn.

• It is dynamically typed: types are not associated to variables, but only to
values. There is no type checker to detect type errors before runtime.

Racket an be downloaded freely from https://racket-lang.org, for every major
operating system, including Windows, Mac OS X, and Linux. The Racket Guide
is a gentle quide for programmers who are new to Racket.

3.1 Syntax

Racket has a peculiar syntax, called fully parenthesised notation. This
notation is used to write both definitions and expressions.

Like many other programming languages, Racket is block-structured. A block
is a group of definitions and expressions which ends with an expression. Blocks
can be used instead of expressions in many programming constructs, including
the special forms lambda (for function definitions), cond, etc.

4

https://racket-lang.org
https://racket-lang.org
file:///Applications/Racket%20v8.0/doc/guide/index.html

3.1.1 The syntax of expressions

An expression is either a literal for the value of a predefined data type, a function
call, or a special form. The following are built-in datatypes in Racket:

Booleans, with literals #t (for boolean true) and #f (for boolean false). These
constants are recognized by the function boolean?

Numbers, recognized by the function number?

Thare are many kinds of numbers. The most important ones are

• Integers, such as 6, 99999999999999999 or -12. These constants are
recognized by the function integer?

• IEEE floating-point representations of a number, such as -3.0 or
3.14e+87. These constants are recognized by the function real?

Strings, which are fixed-length array of characters. They are written as usual:
delimited with double quotes. Typical examples are "abc" and "I am Sam"

Strings are recognized by the function string?

Symbols, which are Racket identifiers preceded with a quote (’). Typical
examples are ’a and ’X12

Symbols are recognized by the function symbol?

Pairs are a composite datatype which joins together two arbitrary values with
the cons constructor, and breaks them apart with the car and cdr selec-
tors.

Pairs are recognized by the function cons?

Lists are a composite datatype which is recursively defined: it is either the
constant null, or it is a pair whose second value is a list.

A list with component values v0, v1, . . . , vn is built with the constructor
(list v0 v1 . . . vn) and the i-th component of a list lst (starting from
0) is selected with

(list-ref lst i)

Lists are recognized by the function list?, and the empty list is recognized
by the function null?

Vectors are fixed-length arrays with constant-time access of the values stored
in their slots. A vector of length n + 1 with values v0, v1, . . . , vn stored
in its slots is built with the constructor (vector v0 v1 . . . vn) and the
i-th component of a vector vec (starting from 0) is selected with

(vector-ref vec i)

Lists are recognized by the function vector?

5

The other kinds of expressions are function calls and special forms.

Function calls: instead of f(arg1, . . . , argn) we write

(f arg1 . . . argn)

where f is either a function name, or an expression that describes a func-
tion.

• We use whitespace (instead of comma) to separate the arguments of
a function call.

• Every open parenthesis must have a corresponding close parenthesis.

Special forms have special rules of evaluation. They are of the form

(id ...)

where id is the identifier of the special form. Examples of special forms
are: lambda, if, let, let*, cond.

• Abstractions (also known as lambda expressions) are expressions
that describe functions. They have the form

(lambda (x1 . . . xn) block)

and describe an anonymous function which, for inputs x1, . . . , xn,
computes the value of block.

– x1, . . . , xn are the formal parameters of the abstraction.

– block is the body of the abstraction.

• Conditional expressions allow to choose what to compute depend-
ing on the result of a boolean test. The most important special forms
for conditional computation are if and cond.

(if test expr1 expr2)

computes the value of expr1 if the value of test is true1. Otherwise,
it returns the value of expr2.

(cond

[test1 block1]
[test2 block2]
...

[testn blockn])

evaluates the boolean expressions test1, . . . , testn in this order.

– As soon as it finds expri whose value is true, it stops evaluating
the other tests and evaluates blocki, whose value is returned as
result.

1In Racket, a value is true if it is not #f.

6

– If all expri are #f, the evaluation returns the value #void

• The special forms let and let* allow to define local variables in the
evaluation of an expression.

(let ([x1 expr1]
[x2 expr2]
...

[xn exprn])
expr)

is an abbreviation of

((lambda (x1 . . . xn) expr) expr1 . . . exprn)

The let special form behaves as follows:

I It computes the values v1, . . . , vn of expressions expr1, . . . , exprn,
and assigns them to local variables x1, . . . , xn

I It uses x1, . . . , xn with these values in the computation of the
value of expr.

(let* ([x1 expr1]
[x2 expr2]
...

[xn exprn])
expr)

is an abbreviation of

((lambda (x1)
(lambda (x2)
...

(lambda (xn) expr) ...))

expr1) expr2) ...) exprn)

It behaves similar to let, with the only difference that we can use
x1, . . . , xi−1 in the expression expri which gives the value of xi.

3.1.2 The syntax of definitions

(define name expr)

assigns the value of expr to name. A function definition

(define name (lambda (x1 . . . xn) body))

can be written using the simplified syntax

(define (name x1 . . . xn) body)

7

3.2 Environment-based computations

The evaluation of any expression is performed in an environment which provides
the values of the variables used in the expression.

An environment is a linked list of frames. A frame is a table which binds
variables to values. For example

E
z

x

5

4

y

z

"abc"

8

is an environment with two frames:

The first (top) frame has the bindings z→ 5 and x→ 4.
The second frame has the bindings y→ "abc" and z→ 8.

3.2.1 Variable lookup

Variable lookup is the operation of finding the value of a variable in an environ-
ment. If E is an environment and x a variable, then the value of x in E, written
E(x), is determined as follows:

• The frames of the environment are traversed until a frame is found with
a binding x→ v. In this case, E(x) = v.

• If no frame of E has a binding for x, x is undefined in E and the variable
lookup raises an error.

For example, E(x) = 4, E(y) = "abc", E(z) = 5, and E(t) is undefined.

Note that variable lookup ignores the binding z → 8 in the second frame
because there is the binding z → 5 in the top frame. Such a situation,
when a binding is ignored because a previous binding of the same variable
in a previous frame, is called shadowing.

3.2.2 Evaluation of expressions

The environment is initialized with bindings for predefined variables when we
start Racket. The built-in functions are just predefined variables with functions
as values.

The value of an expression expr in an environment E is computed in two
steps: (1) all variables x in expr are replaced with E(x); and (2) the new
expression is evaluated using the rules of evaluation.

For example, the value of (+ x (* y z)) in environment E where

E
z

x

5

4

y

z

7

8

+

*

is (+ x (* y z))→(+ 4 (* 7 5))→(+ 4 35)→39

The underlined parts are the subexpressions that get replaced in every reduction
step, until we obtain a value.

8

3.2.3 The interpretation of definitions

When the interpreter reads a definition

(define var expr)

in an environment E, it does the following:

1. It computes the value v of expr in E

2. It adds the binding var → v to the top frame of E.

For example, suppose E is the environment

E
z

x

5

4

y

z

7

8

The value of (+ x (* y z)) in E is 39 because

(+ x (* y z))→(+ 4 (* 7 5))→(+ 4 35)→39

The definition (define y (- z 4)) computes the value 1 of (- z 4) ı̂n E, and
adds the binding y→ 1 to the top frame of E:

E
z

x
y

5

4

1

y

z

7

8

Afterwards, the value of (+ x (* y z)) in E is different:

(+ x (* y z))→(+ 4 (* 1 5))→(+ 4 5)→9

This happens because the new binding y → 1 in the top frame shadows the
binding y→ 7 in the second frame.

3.2.4 Functions as values

Remember that the abstraction

(lambda (x1 . . . xn) block)

is an expression for the anonymous function which, for inputs x1, . . . , xn returns
the value produced by the evaluation of block.

The evaluation of this expression in an environment E produces a function
value, whose representation in the memory of the computer is the pair 〈code,E〉,
where code is the expression (lambda (x1 . . . xn) block) and E refers to the
environment where the function was created. Such a pair is called a closure.

For example, the evaluation of (lambda (u) (* u x)) in the environment

E
z

x

5

4

y

z

7

8

9

produces the function value

E
z

x

5

4

(lambda (u) (* u x))

y

z

7

8

and the definition (define (f u) (* u x)) in E extends the top frame of E
with the binding depicted below.

E
z

x

5

4

(lambda (u) (* u x))

y

z

7

8

f

3.2.5 The evaluation of function calls

The evaluation of a function call

(f expr1 . . . exprn)

in an environment E proceeds as follows:

1. E(f) is looked up, which must be a closure 〈(lambda (x1 . . . xn) block), E′〉.

2. The values v1, . . . , vn of expr1, . . . , exprn in E are computed.

3. The value v of block is computed in the environment

E′′ E′x1
...

xn

v1

vn

The top frame of E′′ is temporary and stores the values of x1, . . . , xn
curing the evaluation of the function call.

4. The top frame of E′′ is garbage-collected, and v is returned as result of
the function call.

3.2.6 The evaluation of blocks

The evaluation of a block block in an environment E proceeds as follows:

1. E is extended with a temporary, initially empty, top frame

2. The components of block are evaluated one-by-one in this extended envi-
ronment.

• The definitions in the block will add bindings to the top frame.

• The value of the last expression in block is returned as result, and the
initial environment is restored, by garbage collecting the (temporarily
created) top frame.

10

Here are some examples of how environment-based computation works. Let

E
x

z

2

3

The interpretation of the definition

(define f

(let ([u (* x z)])

(lambda (x y)

(define v (- u x))

(- v y))))

in E has the following effect:

1. We evaluate the let form in E. This is equivalent with the evaluation in
E of the function call

((lambda (u)

(lambda (x y)

(define v (- u x))

(- v y)))

(* x z)) ; E(x) = 2, E(z) = 3

→((lambda (u) (lambda (x y) ...)) 6)

→(lambda (x y) (define v (- 6 x)) (- v y))

which produces the function value 〈code,E〉 where
code = (lambda (x y) (define v (- 6 x)) (- v y))

2. We add the binding f→ 〈code,E〉 to the top frame of E:

E
x

z

f

2

3

code |

The evaluation of the function call (f x (- z x)) in E proceeds as follows:

1. We compute the values 2 and 1 of x and (- z x) in E.

2. We extend E with a temporary frame that binds the formal parameters
x, y of f to the values 2 and 1:

x
y

2

1

x

z

f

2

3

code |

and evaluate the body of f in this environment. Since the body is a block,
it’s components will be evaluated in an extension of this environment with
an empty top frame. The block definition

11

(define v (- 6 x))

computes the value 4 of (- 6 x) and adds the binding v → 4 to the top
frame:

v 4 x
y

2

1

x

z

f

2

3

code |

The last expression in the body of f is (- v y). Its value in this environ-
ment is

(- v y)→(- 4 1)→3

Value 3 is returned as result of the function call, the temporary frames
are garbage-collected, and the environment E is restored.

3.3 Recursion

In computer science, recursion is a method to define a data structure or solve a
problem by decomposing it into smaller instances of the same kind.

In functional programming

• A function is recursive when it calls itself from within its code, directly or
indirectly.

• A data structure is recursive if it is defined in terms of itself.

• All repetitive computations can be performed only by recursion.

The structure of a recursive function definition consists of

• one or terminating scenarios, called base cases, that do not use recursion
to produce an answer.

• one or more recursive cases that reduce the computation, directly or
indirectly, to simpler computations of the same kind.

For example, the following is a recursive definition of a function that computes
the length of a list:

(define (length lst)

(cond [(null? lst) 0] ; base case
[(list? lst) (+ 1 (length (cdr lst)))])) ; recursive case

To write a recursive function definition, use the following guidelines:

1. Try to break a problem into subparts, at least one of which is similar to
the original problem. There may be many ways to do so. For example, if
m,n ∈ N and m > n > 0 then
gcd(m,n) = gcd(m− n, n), or gcd(m,n) = gcd(n,m mod n)

12

2. Make sure that recursion will operate correctly:

I there should be at least one base case and one recursive case (it’s OK
to have more)

I The test for the base case must be performed before the recursive
calls.

I The problem must be broken down such that a base case is always
reached in a finite number of recursive calls.

I The recursive call must not skip over the base case.

I The non-recursive portions of the subprogram must operate correctly.

3. Ensure termination of the computation, by verifying that the reduction
process will eventually lead to base case computation.

For example, length is a terminating function because the recursive call
is on a shorter list, therefore we will eventually reach the base case.

The rest of this section presents techniques to define recursive functions.

3.3.1 Functions defined by structural induction

Usually, a recursive datatype has a grammar that describes the structure of its
data values. When functions operate on data from recursive datatypes, we can
try to define them by structural induction:

Principle of Structural Induction. When defining a function based
on structural induction, the structure of the function should be patterned
after the structure of the data.

Typically, the grammar for a composite datatype T is of the form

T ::= (C1 T1,1 . . . T1,k1
) | ... | (Cn Tn,1 . . . Tn,kn

)

where C1, . . . , Cn are data constructors and Ti,j are the types of its components.
For example, the datatype of lists of integers is defined by the grammar

intList ::= null | (cons integer intList)

which indicates that such a list is either the empty list null, or (cons n lst)
where n is an integer and lst is a list of integers. The data constructors of
intList are null and cons. A function f defined by structural induction on an
argument xi of this type has the structure

(define (f x1 . . . xi . . . xn)
(cond

[(null? xi) non-recursive computation] ; base case
[#t computation involving (f ... (cdr xi) ...)])) ; recursive case

Examples:

13

1. ; recognizer of intList
(define (intList? lst)

(cond [(null? ls)] #t]

[#t (and (list? lst) (intList? (cdr lst)))]))

or, even simpler:

(define (intList? lst)

(or (null? lst) (and (list? lst) (intList? (cdr lst)))))

2. ; compute the sum of numbers in an intList

(define (n-sum lst)

(cond [(null? lst) 0]

[#t (+ 1 (n-sum (cdr lst)))]))

3. ; join two list by structural induction on the first list
(define (joinLists lst1 lst2)

(cond [(null? lst1) lst2]

[#t (cons (car lst1) (joinLists (cdr lst1) lst2))]))

Structural induction can also be used simultaneously on more than one argu-
ment. For example

; merge two lists of numbers sorted in increasing order
(define (mergeLists lst1 lst2)

(cond [(null? lst1) lst2] ; base case 1
[(null? lst2) lst1] ; base case 2
[(< (car lst1) (car lst2)) ; recursive case 1
(cons (car lst1) (mergeLists (cdr lst1) lst2))]

[(> (car lst1) (car lst2)) ; recursive case 2
(cons (car lst2) (mergeLists lst1 (cdr lst2)))]

[(= (car lst1) (car lst2)) ; recursive case 3
(cons (car lst1) (mergeLists (cdr lst1) (cdr lst2)))]))

3.3.2 Structural induction over the natural numbers

For some data values, such as numbers n ∈ N, we there are many ways to
choose a recursive structure. The choice should depend on the problem we want
to solve. Here are some examples:

1. n ∈ N is either 0 (base case) or the successor of a natural number (recursive
case). We can use this recursive structure to define the sum of the first n
elements of a vector v with length at least n.

(define (vector-sum v n)

(cond [(= n 0) 0]

[(> n 0) (+ (vector-ref v (- n 1))

(vector-sum v (- n 1)))]))

14

Note that (vector-ref v (- n 1)) is the n-th element of v because the
elements of v are indexed starting from 0.

2. n ∈ N is either

• 0 (case 1), or

• 2 ·m with m a smaller natural number (case 2), or

• 2 ·m+ 1 with m a smaller natural number (case 3).

We can use this recursive structure to define a function that computes an

for a ∈ R and n ∈ N:

; (pow a n) computes an for a ∈ R and n ∈ N
(define (pow a n)

(cond [(= n 0) 1] ; case 1
[(= (remainder n 2) 0) (pow (* a a) (/ n 2))] ; case 2
[#t (* a (pow (* a a) (/ (- n 1) 2)))])) ; case 3

When a function f depends on two parameters a, b ∈ N, we can try to define
(f . . . a . . . b . . .) in terms of (f . . . c . . . d . . .) where (c, d) ∈ N2 is
somehow “smaller” than (a, b) ∈ N2.

For example, we can consider (c, d) < (a, b) if c < a, and define the gcd of
a, b ∈ N2 as follows:

(define (gcd a b)

(cond [(= b 0) a] ; base case 1
[(> a b) (gcd b a)] ; recursive case 1
[#t (gcd b (remainder a b))])) ; recursive case 2

This definition describes a terminating computation because every recursive call
in the body of (gcd a b) is of the form (gcd c d) where (c, d) < (a, b).

3.3.3 Other kinds of recursion

Sometimes, we need more complicated arguments to prove that the reduction
process of recursive calls will terminate.

To illustrate, consider the problem of flattening nested lists of symbols de-
fined by the grammar

NSL ::= null | (cons symbol NSL) | (cons NSL NSL)

For example, ’(((a (b c))) d) is a nested list of symbols, and its flattened
form is ’(a b c d).

To compute the flattened form of a nested list lst, we can reason as follows:

1. If lst is null, the flattened form is null.

2. Otherwise, it is (cons e1 e2) where e2 ∈ NSL and e1 is either a symbol
or e1 ∈ NSL. We proceed by case analysis on the structure of e1:

15

(a) If e1 is symbol, we should compute (cons e1 lst2) where lst2 is the
flattened form of e2 = (cdr lst).

(b) If e1 = null, we should compute the flattened form of e2 = (cdr lst).

(c) Otherwise, e1 = (cons e11 e12) and the flattened form of lst coin-
cides with the flattened form of (cons e11 (cons e12 e2)), which is
(cons (caar lst) (cons (cdar lst) (cdr lst))).

The implementation of this method in Racket is

(define (flatten lst)

(cond [(null? lst) null] ; case 1
[(symbol? (car lst)) (cons (car lst) ; case 2

(flatten (cdr lst)))]

[(null? (car lst)) (flatten (cdr lst))] ; case 3
[#t (flatten (cons (caar lst) ; case 4

(cons (cdar lst) (cdr lst))))]))

Does this definition describe a terminating computation? The first two recursive
calls in the body of flatten are

(flatten (cdr lst))

and they describe a terminating process by structural induction, but it is not
obvious why the third recursive call

(flatten (cons (caar lst) (cons (cdar lst) (cdr lst))))

describes a terminating process. The reason is more subtle: if lst is of the form
(cons (cons e1 e2) e3) then lst1 = (cons e1 (cons e2 e3)) is a nested list
of symbols with the same flattened form as lst, but simpler in the sense that
its first element has smaller depth. This simplification process is terminating
because it will lead eventually to a case when the first element is either a symbol
(case 2) or the empty list (case 3).

3.4 Tail recursion

Tail recursion is a programming technique to define functions which run fast and
consume small space of memory. It is effective only in programming language
whose compilers/interpreters implement a technique called tail-call optimiza-
tion. Tail-call optimization is explained in the Course 3 of this lecture.

Racket and Haskell perform tail-call optimization, therefore it is useful to
learn how to write tail recursive definitions in Racket and Haskell.

A function is tail recursive if it is defined such that the recursive calls are the
last things executed in the body of the function.

Examples of tail recursive function definitions:

16

1. ; (fact n) computes n!

(define (fact n [result 1])

(cond [(= n 0) result] ; base case
[#t (fact (- n 1) (* n result))])) ; recursive case

Runtime: O(n). Space complexity: O(1).

2. ; (revList lst) computes the reverse of list lst
(define (revList lst [result null])

(cond [(null? lst) result]

[#t (revList (cdr lst)

(cons (car lst) result))]))

Runtime: O(n) where n is the length of lst. Space complexity: O(1).

3. ; (fib n) computes the n-th Fibonacci number
(define (fib n [A1 1] [A2 1])

(if (= n 1)

A1

(fib (- n 1) A2 (+ A1 A2))))

Runtime: O(n). Space complexity: O(1).

The following recursive definitions are not tail recursive:

1. (define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

Runtime: O(n). Space complexity: O(n).

2. (define (revList lst)

(if (null? lst)

lst

(append (revList (cdr lst))

(list (car lst)))))

Runtime: O(n2) where n is the length of lst. Space complexity: O(n).

3. (define (fib n)

(if (or (= n 1) (= n 2))

1

(+ (fib (- n 1) (fib (- n 2))))))

Runtime: O(2n). Space complexity: O(n).

3.5 Techniques to write tail-recursive definitions

3.5.1 Convert an iterative solution into a tail-recursive solution

Every iterative program with for or while loops can be transformed into an
equivalent tail-recursive program:

17

• The variables that change in the loop become parameters of the recursive
function that change in the recursive calls.

For example, fact(N) has the iterative definition

result = 1
n = N
while n > 0
result = n ∗ result
n = n− 1

return result

A tail-recursive definition is obtained by defining a function which has the ar-
gument result initialized with 1. In Racket:

(define (fact n [result 1])

(if (= n 0) result (fact (- n 1) (* n result))))

3.5.2 Defining a more general recursive function

Some computations are special cases of more general computations which are
easy to define by tail recursion. Here are some examples:

1. The computation of an for a ∈ R and n ∈ N is a special case of the
computation of c ·an where a, c ∈ R and n ∈ N. A tail recursive definition
for the computation of c · an is easy to derive from the observation that

c · an =


c if n = 0,
c · (a2)n/2 if n > 0 is even,
(c · a) · (a2)(n−1)/2 if n is odd.

In Racket:

; (pow a n c) computes c · an for a, b ∈ R and n ∈ N.
(define (pow a n

[c 1]) ; optional argument c initilized with 1

(cond [(= n 0) c]

[(even? n) (pow (* a a) (/ n 2) c)]

[#t (pow (* a a) (/ (- n 1) 2) (* c a))]))

3.5.3 Tail recursion with accumulators

Some computations depend on the results of a finite number of previous recursive
calls. We can use extra parameters, called accumulators, to refer to these
results and pass them from one recursive call to another.

This technique works well for definitions of linear recursive functions, whose
mathematical definition is of the following form: f : N→ R,

f(n) =

{
fn if 1 ≤ n ≤ k,
c1 · f(n− 1) + . . .+ ck · f(n− k) if n > k

18

where f1, . . . , fk, c1, . . . , ck ∈ R are given constants.
An iterative, accumulator-based computation, of this function is

a1 = f1; ...; ak = fk
for i = 1 to n
if i = n

return a1
else

a1 = a2; a2 = a3; . . . ; ak−1 = ak;
ak = c1 · ak + c2 · ak−1 + . . .+ ck · a1;

Note that, when i = n, we have a1 = f(n), a2 = f(n + 1), . . . , ak = f(n + k).
The conversion of this iterative code into a tail recursive code is straightforward.
In Racket:

(define (f n [i 1] [a1 f1] . . . [ak fk])
(cond [(= i n) a1]

[#t (f n (+ i 1) a2 . . . ak (+ (* c1 ak) ... (* ck a1)))]))

The accumulator-based technique can se used to write tail recursive definitions
of any primitive-recursive function (See Course 3).

3.5.4 Limitations of tail recursion

It is well known that some recursive definitions can not be defined by tail-
recursion, and their computation can become highly inefficient and slow. The
classical example is the Ackermann function A : N× N→ N defined by

A(m,n) =

 n+ 1 if m = 0,
A(m− 1, 1) if m > 0 and n = 0,
A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

; Definition of Ackermann function in Racket
(define (A m n)

(cond [(= m 0) (+ n 1)]

[(= n 0) (A (- m 1) 1)]

[#t (A (- m 1) (A m (- n 1)))]))

To appreciate the inefficiency of this definition, try to compute (A 5 0).
Another operation that can be defined by recursion, but not by tail recursion,

is the computation of the disjunctive normal form (DNF) of a propositional
formula. We consider representations of propositional formulas defined by

F ::= symbol ; representation of atomic formula
| (list ’and F1 F2) ; representation of F1 ∧ F2

| (list ’or F1 F2) ; representation of F1 ∨ F2

| (list ’not F1) ; representation of ¬F1

| (list ’impl F1 F2) ; representation of F1 → F2

19

For example, the representation of the propositional formula (¬A∨B)→ (B∧C)
is ’(impl (or (not A) B) (and B C)).

A disjunctive normal form is a propositional formula whose representation
is defined by the grammar

DNF ::= conj | (list ’or DNF DNF)
conj ::= literal | (list ’and conj conj)
literal ::= atom | (list ’not atom)

atom ::= symbol

and the representation of a formula into an equivalent disjunctive normal form
can be obtained in 3 steps:

1. Eliminate implications by the top-down propagation of the transformation

Replace P → Q with (¬P) ∨Q.

2. Eliminate negation by the top-down propagation of the following trans-
formations:

Replace ¬(P ∨Q) with (¬P) ∧ (¬Q),
Replace ¬(P ∧Q) with (¬P) ∨ (¬Q),
Replace ¬(¬P) with P .

3. Distribute conjunctions inwards over disjunctions by the bottom-up prop-
agation of the following transformations:

Replace P ∧ (Q1 ∨Q2) with (P ∧Q1) ∨ (P ∧Q2),
Replace (P1 ∨ P2) ∧Q with (P1 ∧Q) ∨ (P2 ∧Q).

For example, this method computes the DNF of ¬(¬A∨B)∧(B → C) as follows:

¬(¬A ∨B) ∧ (B → C) = ¬(¬A ∨B) ∧ (¬B ∨ C) = (¬(¬A) ∧ ¬B) ∧ (¬B ∨ C)

= (A ∧ ¬B) ∧ (¬B ∨ C) = ((A ∧ ¬B) ∧ ¬B) ∨ ((A ∧ ¬B) ∧ C)

We will implement the function (DNF F) which computes the representation of
the DNF of a propositional formula F. First, we define some auxiliary recognizers
for propositional formulas:

; (conj? F) holds if F represents a conjunction F1 ∧ F2

(define (conj? F) (and (list? F) (eq? (car F) ’and)))

; (disj? F) holds if F represents a disjunction F1 ∨ F2

(define (disj? F) (and (list? F) (eq? (car F) ’or)))

; (impl? F) holds if F represents an implication F1 → F2

(define (impl? F) (and (list? F) (eq? (car F) ’impl)))

; (atom? F) holds if F represents an atom
(define atom? symbol?)

; (neg? F) holds if F represents a negated formula ¬F
(define (neg? F) (and (list? F) (eq? (car F) ’not)))

; (mk-and F1 F2) makes the representation of F1 ∧ F2

(define (mk-and F1 F2) (list ’and F1 F2))

; (mk-or F1 F2) makes the representation of F1 ∨ F2

20

(define (mk-or F1 F2) (list ’or F1 F2))

; (mk-neg F) makes the representation of ¬F
(define (mk-neg F) (list ’not F))

Next, we define the transformations corresponding to the three top-down
steps mentioned before.

; Step 1.
; (elim-impl F) eliminates ’→’ from F by top-down propagation
(define (elim-impl F)

(cond [(atom? F) F]

[(neg? F) (mk-neg (elim-impl (cadr F)))]

[#t (let ([op (car F)] [F1 (cadr F)] [F2 (caddr F)])

(cond [(impl? F) (mk-or (mk-neg (elim-impl F1))

(elim-impl F2))]

[#t (list op (elim-impl F1) (elim-impl F2))]))]))

; Step 2.
; (elim-not F) eliminates negations from F by top-down propagation
(define (elim-not F)

(cond [(atom? F) F]

[(neg? F)

(define F1 (cadr F))

(cond [(neg? F1) (elim-not (cadr F1))] ; ¬(¬P) = P
[(atom? F1) F]

[#t (let ([F11 (cadr F1)]

[F12 (caddr F1)])

(cond [(disj? F1) ; ¬(P ∨Q) = (¬P) ∧ (¬Q)
(mk-and (elim-not (mk-neg F11))

(elim-not (mk-neg F12)))]

[(conj? F1) ; ¬(P ∧Q) = (¬P) ∨ (¬Q)
(mk-or (elim-not (mk-neg F11))

(elim-not (mk-neg F12)))]))])]

[#t (let ([op (car F)]

[F1 (cadr F)]

[F2 (caddr F)])

(list op (elim-not F1) (elim-not F2)))]))

; Step 3.
; (distr F) distributes ’∧’ inwards over ’∨’ in F by bottom-up propagation
(define (distr F)

(cond [(or (atom? F) (neg? F)) F]

[#t (let ([P (distr (cadr F))]

[Q (distr (caddr F))])

(cond [(disj? F) (mk-or P Q)]

[(conj? F)

(cond [(disj? Q) ; P ∧ (Q1 ∨Q2) = (P ∧Q1) ∨ (P ∧Q2)
(mk-or (mk-and P (cadr Q))

(mk-and P (caddr Q)))]

[(disj? P) ; (P1 ∨ P2) ∧Q = (P1 ∧Q) ∨ (P1 ∧Q)
(mk-or (mk-and (cadr P) Q)

21

(mk-and (caddr P) Q))]

[#t (mk-and P Q)])]))]))

Finally, we can define the function DNF by composing the operations that
perform the three steps:

(define (DNF F) (distr (elim-not (elim-impl F))))

Note that (elim-impl F) and (distr F) are defined by structural induction
because the recursive calls are on some parts of F, but (elim-not F) is not
defined by structural induction. Therefore, this recursive definition of DNF is
not by primitive recursion.

3.6 Problem solving strategies

There are two well known problem-solving strategies: top-down and bottom-up.
The top-down approach, also known as decomposition, solves a problem

by starting from the most abstract specification that can describe succintly
the solution, and decomposing it incrementally into simpler sub-problems until
we reach situations with straightforward implementations. This approach is
suitable for procedural programming and functional programming, because most
procedures and functions have a compositional structure that can be identified
by top-down refinement. For instance, defining functions by structural induction
is based on the top-down approach.

The bottom-up approach is based on the use of a small predefined set of
operations that can be combined to solve a large variety of problems.

• In Racket, such a set consists of the predefined functions map, apply,
filter, foldl and foldr.

• In Haskell, such a set consists of the predefined functions map, filter,
foldl and foldr. (Note that apply does not exist in Haskell).

These two strategies (top-down and bottom-up) can be combined in creative
ways to solve a particular problem.

Below is a summary of what these predefined functions do.

3.6.1 map (Haskell and Racket)

In Haskell, map is a polymorphic function of type (a->b)->[a]->[b]. The
syntax call is

map f lst

where f::a->b is a function, and lst is a list of elements of type a, say
[a1, . . . , an]. The result is the list [b1, . . . , bn] where bi = (f ai) for 1 ≤ i ≤ n.
For example:

> map (+1) [1,2,3] > map (\(x,y)->x*y) [(2,5) (3,4)]

[2,3,4] [10,12]

22

In Racket, the syntax call is

(map f lst1 ... lstk)

where f is a function that can take k input arguments, and lst1, . . . , lstk are
k lists of the same length. If all of them have length n and

lsti =(list vi1 ...vin) for 1 ≤ i ≤ k

then the result is the list (list v1 ...vn) where vj = (f v1j ... vkj) for
1 ≤ j ≤ n. For example:

> ; same as map (+1) [1,2,3] in Haskell
(map (lambda (x) (+ x 1)) ’(1 2 3))

’(2 3 4)

> ; same as map (\(x,y)->x*y) [(2,5) (3,4)] in Haskell
(map (lambda (p) (* (car p) (cadr p))) ’((2 . 5) (3 . 4)))

’(10 12)

> ; has no obvious Haskell counterpart
(map cons ’(a b c) ’(6 0 5))

’((a . 6) (b . 0) (c . 5))

> ; has no obvious Haskell counterpart
(map (lambda (x) (if (symbol? x) "symbol" #f)) ’(a #t (1 2) b))

’("symbol" #f #f "symbol")

3.6.2 apply (only in Racket)

In Racket, the function call

(apply f lst)

takes as inputs a list lst and a function f that can take as inputs the elements
of lst. If lst = (list a1 ... an) the result is the value of (f a1 ... an).
For example:

> (apply + ’(1 2 3 4)) > (map (lambda (l) (apply * l))

10 ’((1 2) (5 3) (-1 2)))

’(2 15 -2)

3.6.3 filter (Haskell and Racket)

In Haskell, filter is a polymorphic function of type (a->Bool)->[a]->[a].
The syntax call is

filter p lst

where p is a predicate (that is, a function of type a->[Bool]), and lst is a
list of elements of type a, say [a1, . . . , an]. The result is the list of elements
ai ∈ lst for which (p ai) is true. For example:

23

> filter (>2) [3,1,4] > filter (\(x,y)->x<y) [(2,5),(4,3),(1,6)]

[3,4] [(2,5),(1,6)]

In Racket, the syntax call is

(filter p lst)

and has the same effect as in Haskell. For example:

> ; same as filter (>2) [3,1,4] in Haskell
(filter (lambda (x) (> x 2)) ’(3 1 4))

’(3 4)

> ; same as filter (\(x,y)->x<y) [(2,5) (4,3),(1,6)] in Haskell
(filter (lambda (p) (< (car p) (cadr p)))

’((2 . 5) (4 . 3) (1 . 6)))

’((2 . 5) (1 . 6))

3.6.4 foldl and foldr (Haskell and Racket)

In Haskell, foldl and foldr are polymorphic functions:

foldl has type (b->a->b)->b->[a]->b

foldr has type (a->b->b)->b->[a]->b

This implies that their syntax calls are (foldl f v lst) and (foldr g v lst)

where f::b->a->b, g::a->b->b, v::b and lst::[a]. If lst=[a1, . . . , an] then

(foldl f v lst) returns the value of f (... (f (f v a1) a2)...) an
(foldr g v lst) returns the value of f a1 (f a2 (... (f an v)...))

Both function calls return the value of v when lst is the empty list.
In Racket

• foldr behaves like in Haskell

• (foldl f v lst) behaves slightly different: it returns the value of
(f an (... (f a2 (f a1 v))...)).

This means that (foldl f v lst) in Racket is the same as
foldl (\b a->f a b) v lst in Haskell.

24

4 A crash course to Haskell

Haskell is a language for FP. It emerged in 1997 from an effort to standardize
lazy programming languages.

Historical note: People became interested in lazy functional languages
after the release of the proprietary software Miranda in 1985. In 1987,
a committee was formed to define an open standard for lazy functional
languages. The committee’s efforts culminated in 1997 with the release
of Haskell 98, which specifies such a minimal and portable language, and
as a base for future extensions. The language continues to evolve rapidly,
with the Glasgow Haskell Compiler (GHC) implementation representing
the current de facto standard.

It is a lazy language, based on call-by-need evaluation. This means that

• When we give a name x to an expression expr, we don’t compute the value
of expr but bind name x to the unevaluated expression expr.

• When we call a function, we evaluate its arguments only as much as it is
needed to proceed with the computation of the result of the function call.

Haskell is statically typed. Types are associated to variables at compile time.
A type checker checks the types specified by the programmer and detects type
errors before runtime. Moreover, a type inference system can compute the types
omitted by the programmer. Haskell has one of the most advanced type systems
developed so far, with polymorphic types and type classes.

Haskell can be downloaded freely from https://www.haskell.org/downloads/
for every major operating system, including Windows, Mac OS X, and Linux.

4.1 The syntax of Haskell

A function call f(expr1, . . . , exprn) is written (f expr1 . . . exprn). Like in
Racket, we use whitespace instead of comma to separate the arguments of a
function call. Parentheses are necessary only when we want to disambiguate
the parsing of expressions (see Remark below).

Some binary functions are written between their arguments. These kind of
functions are called operators. The names of operators do not start with a letter,
but the names of all other functions must start with a letter. Typical examples
are the operators + for addition, and * for multiplication.

Remarks. Haskell uses the following rules of disambiguation:

• Function application has higher priority than operator application.
Example: f x+ g y is parsed as (f x) + (g y)

• Function application is left-associative: f x y z is parsed as (((f x) y) z)

25

https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://www.haskell.org/downloads/

Operator application x op y can be converted into function application, by
writing (op) x y. For example

3 + 4 → 7

(+) 3 4 → 7

Binary function application f x y can be converted into operator application,
by writing x ‘f‘ y. For example

mod 8 3 → 2

8 ‘mod‘ 3 → 2

A lambda expression λx.expr is written \x->expr, and λx1. · · · .λxn.expr is
written \x1 . . . xn->expr. It is also possible to write lambda expressions of the
form \patt.expr where patt is a pattern. For example

(\(x,_,(y:_))->x+y) (1,True,[4,2,5]) → 5

pentru că potrivire pattern-ului (x,_,(y:_)) cu (1,True,[4,2,5]) produce
substituţia [1/x,4/y], iar [1/x,4/y](x+y)=1+4 → 5.

Predefined datatypes

The following types are predefined:

• Bool for the type of boolean values True and False.

• Integer for integers of arbitrary size.

• Int for integers of fixed size.

• Char for characters, like ’a’, ’A’ and ’Z’.

• Float for floating-point numbers with single-word precision

• Double for floating-point numbers with double-word precision

• If T, T1, T2, . . . , Tn are types then

I [T] is the type of lists [v1, v1, . . .] of elements of type T . The empty
list is [].

I T1->T2 is the type of functions which map inputs of type T1 to out-
puts of type T2.

I (T1, . . . , Tn) is the type of tuples (v1, . . . , vn) with components of
type T1, . . . , Tn.

Strings are lists of characters. For example, "abc" is an abbreviation of the list
[’a’,’b’,’c’]. Thus, the type of strings is [Char].

26

Definitions

A definition gives a name (or identifier) to an expression of a particular type.

name::type -- declare name of type type
name = expr -- creates a binding of name to expr

For example:

x,y :: Int -- declare x,y of type Int

x = 12 + 13

y = y + 1 -- example of a recursive binding

If we omit type declarations, Haskell tries to infer the type of name from the
type of expr. There are very few cases when this is impossible.

expr is not evaluated: the environment stores a binding of name to expr.

More details about function definitions, type classes and type declarations
can be found in the lecture notes (Lectures 5, 6, 7).

4.2 Working with Haskell

To work with Haskell, we will use ghci, the interactive environment of the
Glasgow Haskell Compiler. This tool can be started from a shell with the
command ghci:

$ ghci

GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help

Prelude>

The tool recognizes definitions, expressions, and commands that are typed by
the user at the prompt. Haskell recognizes comments too: they start with ’--’
and extend to the end of line. Comments are used to document the written
code, and are ignored (not read) by ghci.

Commands have the form

:command args

The most important ghci commands are:

:load Name reads definitions of module Name from file Name.hs
:quit quits the current working session with Haskell.
:type expr prints the type of expr without evaluating it.
:set +t sets ghci to show the type of each variable bound by a statement.

We will typically use the following workflow:

1. Write a Haskell program Name.hs and save it in your home directory.
This is a text file with the following structure

27

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html

module Name where

name1::type1 -- type declaration
definition1 -- definition
...

Definitions assign names to expressions, or define type classes or
datatypes.

2. Start ghci and load the definitions form your program with the command

:load Name

After loading the program, the prompt will change to

*Name>

3. Perform computations by evaluating expressions that make use of the
definitions in your program.

If the program is modified or extended with new definitions, it should be
reloaded.

5 Exercises

5.1 Labworks 1 (Racket) – Homework

HW1. A list is good if it is either empty, or it is of the form

(list s1 n1 . . . sm nm)

where s1, . . . , sm are symbols, and n1, . . . , nm are numbers. Define recur-
sively a predicate (good-list? l) which returns #t if l is a good list,
and #f otherwise. For example:

> (good-list? null) > (good-list? ′(a 1 b 2 c 3/4))

#t #t

> (good-list? "abc") > (good-list? ′(1 a b))

#f #f

Remember that list? recognises lists, null? recognises the empty list,
symbol? recognises symbols, and number? recognises numbers.

HW2. Define recursively a function (symb-value l s) which takes as input a
good list l and a symbol s which occurs in l, and returns the number that
appears immediately after s in l.

For example

28

> (symb-value ′(x 2 y 3 z 4 t 5) ′z)

4

> (symb-value ′(a 3.14) ′a)

3.14

HW3. Define recursively the predicate (mem l v) which returns #t if v is an
element of the list l, and #f otherwise. Use the predicate equal? to check
if two elements are equal.

For example:

> (mem? ′(1 a b a c) ′a) > (mem? ′(1 a b a c) ′d)

#t #f

> (mem? ′(1 (2 3) 4) ′(2 3)) > (mem? ′() ′())

#t #f

HW4. Define recursively a function (add l) which takes as input a list of num-
bers, and computes the sum of its elements. If l is null, the function
should return 0.

HW5. Define recursively a function (mult l) which takes as input a list of num-
bers, and computes the sum of its elements. If l is null, the function
should return 1.

HW6. A nested list of numbers is either the empty list, or a list whose elements
are either numbers, or nested lists of numbers. Define recursively a predi-
cate (nlist? l) which returns #t if l is a nested list of numbers, and #f

otherwise. For example:

> (nlist? null) > (nlist? ′(((1) 2) 3.2 ((4))))

#t #t

> (nlist? 1) > (nlist? ′(4 ((-5) a)))

#f #f

HW7. Define recursively the following functions that take as input a nested list
of numbers l:

(a) (add-all l) which computes the sum of all elements in list l. If l
contains no number, this function should return 0.

(b) (max-elem l) which returns the maximum number that occurs in
list l. If If l contains no number, this function should return 0.

(c) (max-depth l) which returns the maximum number of nested paren-
theses in list l. For example:

> (max-depth ′()) > (max-depth ′(1 2 3))

1 1

> (max-depth ′((1 2) (3 ((0))))) > (max-depth ′(1 (())))

3 3

You can make use of the predefined function (max m n) which returns the
maximum of numbers m and n.

29

5.2 Labworks 2 (Racket) – Recommended

LW1. Consider binary trees of integers defined by the BNF

BTI ::= integer | (list n BTI BTI)

For example, the binary trees of integers

1

2 5

3 4 6 7

is represented by the list ′(1 (2 3 4) (5 6 7)). A recognizer of this
representation of binary trees of integers is

(define (BTI? bt)

(or (integer? bt)

(and (list? bt)

(= (length bt) 3)

(integer? (car bt))

(BTI? (cadr bt))

(BTI? (caddr bt)))))

Also, consider the following tree traversal strategies:

preorder: visit root, then left subtree, then right subtree.

inorder: visit left subtree, then root, then right subtree.

postorder: visit left subtree, then right subtree, then root.

Define recursively the functions (preorder bti), (inorder bti), and
(postorder bti) which return the list of nodes in the binary treee of
integers bti in the order in which they are visited. For example:

> (preorder ′(1 (2 3 4) (5 6 7)))
′(1 2 3 4 5 6 7)

> (inorder ′(1 (2 3 4) (5 6 7)))
′(3 2 4 1 6 5 7)

> (postorder ′(1 (2 3 4) (5 6 7)))
′(3 4 2 6 7 5 1)

LW2. A nested list of numbers is either the empty list, or a list whose elements
are either numbers, or nested lists of numbers.

(a) Write down the BNF definition for the recursive type nlist of nested
lists of numbers.

(b) Define recursively the recogniser (nlist? l) for values of type nlist.
For example:

30

> (nlist? null) > (nlist? ′(((1) 2) 3.2 ((4))))

#t #t

> (nlist? 1) > (nlist? ′(4 ((-5) a)))

#f #f

LW3. The decimal representation of a non-negative integer N is dndn−1 . . . d1d0
where n ≥ 0, and the sum of its digits is d0 + d1 + . . .+ dn−1 + dn.

Suppose we wish to define the function

(digit-sum N)

which computes the sum of digits of the non-negative integer N.

Note, again, that N does not have an explicitly defined recursive structure.
However, we observe that non-negative integers do have a recursively
defined structure, but we have to define our own recognisers and selectors
for it:

Base case: N consists of a single decimal digit. In this case (digit-sum N)

coincides with N.

Recursive case: N is of the form 10 · M + D where M < N is a positive
integer, and D is the last decimal digit of N. In this case, we must
add D with the value of (digit-sum M).

To take advantage of this structure of non-negative integers, we must
define the recogniser

I (is-digit? N) which recognises if N is a decimal digit

and the selectors

I (drop-last-digit N) which returns the number M obtained by drop-
ping the last digit of N, and

I (last-digit N) which returns the value of last digit D of N.

when N > 10.

LW4. Define the function (flatten sl) which takes as input a nested list of
symbols, and returns the list of symbols contained in sl in the order in
which they occur when sl is printed. Intuitively, flatten removes all the
inner parentheses form its argument. For example:

> (flatten ′(a b c))
′(a b c)

> (flatten ′((a b) c (((d)) e)))
′(a b c d e)

> (flatten ′((a) () (b ()) () (c)))
′(a b c)

31

Suggestion: First, write a recursive definition (BNF) for the nested lists
of symbols.

LW5. Define the function (swapper s1 s2 sl) which takes as input the sym-
bols s1 and s2 and the list of symbols sl, and returns the list of symbols
which is the same as sl, but with all occurrences of s1 replaced with s2

and all occurrences of s2 replaced by s1.

For example, (swapper ’a ’b ’(a b r a c a d a b r a)) should pro-
duce the list ’(b a r b c b d b a r b)

5.3 Labworks 3 (Racket) – Homework

Exercise set 1

1. Define the function (joinLists lst1 lst2) which returns the results of
joining lists lst1 and lst2. For example, (joinLists ’(1 2) ’(a b))

should return ’(1 2 a b).

2. (LW3 from labwork 2) Define the numeric function (digit-sum N) which
computes the sum of digits of the decimal representation of N. For example,
(digit-sum 726) should return 15 because 7 + 2 + 6 = 15. Racket has
the following predefined functions for a, b ∈ N:

(quotient a b) ; returns the quotient of dividing a by b

(remainder a b) ; returns the remainder of dividing a by b

3. (LW4 from labwork 2) Define (flatten sl) which takes as input a nested
list of symbols, and returns the list of symbols contained in sl in the order
in which they occur when sl is printed. Intuitively, flatten removes all
the inner parentheses form its argument. For example:

> (flatten ′(a b c))
′(a b c)

> (flatten ′((a b) c (((d)) e)))
′(a b c d e)

> (flatten ′((a) () (b ()) () (c)))
′(a b c)

Note that nested lists of symbols are defined by the grammar

SL ::= null | (cons s SL) | (cons SL SL)

where s is a symbol.

Exercise set 2

32

1. Let (rev2 lst1 lst2) be the function which returns the result of joining
the reverse of list lst1 with list lst2. For example, (rev2 ’(3 4) ’(2 1))

yields ’(4 3 2 1).

Note that, if lst1 is not empty, then (rev2 lst1 lst2) returns the same
result as

(rev2 (cdr lst1) (cons (car lst1) lst2))

(a) Write a tail recursive definition of rev2.

(b) Define the function (revList lst) which computes the reverse of
list lst as a special case of using the function rev2.

2. Let (f2 a b c) the function which computes c · ab when a, b, c are non-
negative integers. Note that

c · ab =


c if b = 0,
c · (a2)b/2 if b > 0 is even,
(c · a) · (a2)(b−1)/2 if b is odd.

(a) Write a tail recursive definition of f2.

(b) Define the function (power a b) which computes ab for a, b ∈ N as
a special case of using the function f2.

3. Newton discovered the following method to compute
√
a when a is a non-

negative number:
√
a is the limit of the sequence of numbers (xn)n∈N

where
x0 = 1.0, xn+1 = (xn + a/xn)/2 for all n ∈ N.

(a) Define the function (improve xn a) which takes as inputs the values
of of xn and a and returns the value of xn+1.

(b) x a good enough approximation of
√
a if |x2 − a| ≤ 0.000001. Define

the boolean function (good? x a) which returns #t if the value of x
is a good enough approximation of

√
a, and #f otherwise.

(c) Newton’s method finds a good approximation of
√
a starting from a

number x, as follows: If x is a good approximation of
√
a it returns

x, otherwise it returns a good approximation od
√
a starting from

(improve x a).

Write a tail recursive definition of the function (newton2 a x) which
uses Newton’s method to compute a good approximation of

√
a start-

ing from x.

4. Newton discovered the following method to compute 3
√
a when a ∈ R: 3

√
a

is the limit of the sequence of numbers (xn)n∈N where

x0 = 1.0, xn+1 = (2 · xn + a/x2n)/3 for all n ∈ N.

33

(a) Define the function (improve3 xn a) which takes as inputs the val-
ues of of xn and a and returns the value of xn+1.

(b) x a good enough approximation of 3
√
a if |x3 − a| ≤ 0.000001. Define

the boolean function (good3? x a) which returns #t if the value of
x is a good enough approximation of 3

√
a, and #f otherwise.

(c) Newton’s method finds a good approximation of
√
a starting from a

number x, as follows: If x is a good approximation of 3
√
a it returns

x, otherwise it returns a good approximation of 3
√
a starting from

(improve3 x a).

Write a tail recursive definition of the function (newton3 a x) which
uses Newton’s method to compute a good approximation of 3

√
a start-

ing from x.

5. Write a tail-recursive definition of the function (eval v lst) which takes
as input a list of numbers

lst = ’(a0 a1 . . . an)

and computes the value of a0 + a1 · v + . . .+ an · vn.

6. Consider lists of symbols defined by the grammar

SL ::= null | (cons symbol SL) | (cons SL SL)

Write a tail recursive definition of (flattenTR sl) which computes the
reverse of the flattened form of a list of symbols sl.

7. A rational number is a number whose value coincides with a
b

where a, b ∈ Z
and b 6= 0. Suppose we choose to represent every rational number a

b
as

a pair (cons a b) where a, b ∈ Z. Thus, we consider the following BNF
for rational numbers

〈rat〉::=(cons 〈integer〉 〈integer〉)

Define the following operations:

(a) (rat? q), which recognizes if q ∈ 〈rat〉.
(b) (qsum q r), (qdif q r), (qmul q r), and (qdiv q r),

which take as inputs two values q, r ∈ 〈rat〉 and compute their ratio-
nal sum, difference, product, and division.

(c) (rat-eq? q1 q2), which returns #t if q and r represent the same
rational number, and #f otherwise.

(d) (simplify q), which returns r ∈ 〈rat〉 such that q and r represent
the same rational number, and r=(cons a b) where a, b are relatiely
prime. To define this function, you can use the predefined function
(gcd u v) which returns the greatest common divisor of two integers
u, v ∈ Z.

34

8. A complex number is a number whose value coincides with a + i · b where
a, b are floating-point numbers and i ∈ C is the imaginary unit that
satisfies the equation i2 = −1. Suppose we choose to represent such a
complex number as a pair (cons a b). Thus, we consider the following
BNF for complex numbers

〈cplx〉::=(cons 〈real〉 〈real〉)

Define the following operations:

(a) (cplx? c), which recognizes if c ∈ 〈cplx〉.
(b) (abs-value c), which computes the absolute value of c ∈ 〈cplx〉.

Remember that the absolute value of a complex number z = a+ i · b
is |z| =

√
a2 + b2.

(c) (rdiv c r) which takes as inputs c ∈ 〈cplx〉 and r ∈ 〈real〉, r 6= 0,
and returns the value from 〈cplx〉 corresponding to the division of c
by r.

(d) (csum q r), (cdif q r), (cmul q r), and (cdiv q r),
which take as inputs two values q, r ∈ 〈cplx〉 and compute their
complex sum, difference, product, and division.

9. Consider sets represented by lists without repeating elements, and let A, B
be two such sets. Define the following operations:

(a) (union A B), which computes the set union of A and B.

(b) (difference A B), which computes the set difference of A and B.

You can use the predefined function (member v lst) which returns #f if
v is not equal to any element of list lst, and true otherwise.

5.4 Labworks 4 (Racket) – Homework

1. Define foldr with foldl and reverse, and indicate the runtime complex-
ity of this definition.

2. Define filter with foldr.

3. Define length with foldl.

4. Define the following higher-order functions:

(a) (nest f n) which takes as input a function f : A → A and n ∈ N,
and returns the function that maps x ∈ A to the value of f(. . . f︸ ︷︷ ︸

n times

(x) · · ·).

If n = 0 then (nest f 0) should return the identity function (lambda (x) x).

(b) (nestwhile f v p) which takes as inputs a function f : A → A,
a predicate p : A → bool and a value v ∈ A, and returns the value
w = fn(v) for the smallest n ∈ N such that (p w) is #f.

35

5. Use foldr to define the variadic function

(comp f1 . . . fn)

which takes as inputs n ≥ 0 unary functions f1, . . . , fn and returns the
function that maps x to the value of

(f1 ... (fn x)...)

6. Define the function (list->set lst), which drops the duplicate occur-
rences of elements from a list lst.

Suggestion: express the computation of (list->set lst) as

(foldr f null lst)

with a suitable function f . You can use the built-in function (member e l)

which is true if e is an element of list l and #f otherwise.

7. Consider the problem of counting the number of occurrences of every word
in a document d. More precisely, let d be a list of symbols (the words of
document d). We wish to define (count-words d) which returns the list
of pairs (cons w n) where w is a string in d, and n is the number of
occurrences of w in d. For example

> (count-words ′(a b a b b c x z z x))
′((a . 2) (b . 3) (c . 1) (z . 2) (x . 2))

8. Give recursive definitions to the following variadic functions:

(a) (fmap-2 a b f1 . . . fn) which computes (list w1 . . . wn) where
wi is the value of (fi a b) for every 1 ≤ i ≤ n. For example:

> (fmap-2 4 2 + * /) > (fmap-2 4 2)
′(6 8 2) ′()

(b) (inc? a1 . . . an) which takes as inputs n ≥ 0 integers and returns
#t if and only if a1 < a2 < . . . < an. For example:

> (inc? 1 4 3) > (inc?) > (inc? 1) > (inc? 4 7 8 9)

#f #t #t #t

(c) (dec? a1 . . . an) which takes as inputs n ≥ 0 integers and returns
#t if and only if a1 > a2 > . . . > an. For example:

> (inc? 1 4 3) > (dec?) > (dec? 1) > (dec? 9 7 5 0)

#f #t #t #t

(d) Find the common pattern of computation of inc? and dec? and
define

(sorted? cmp a1 . . . an)

which returns #t if and only if (cmp ai ai+1) is true for all 1 ≤ i < n.

36

(e) (monotone? a1 . . . an) which takes as inputs n ≥ 0 integers and
returns #t iff a1 < a2 < . . . < an or a1 > a2 > . . . > an.

9. Define (f-inc n) which takes an input n ∈ N and computes the list of
functions (list f1 . . . fn) where, for all k ≥ 1, (fk x) returns the value
of x+ k.

5.5 Labworks 5 (Haskell) – Homework

1. Define recursively the function map2::(a->b->c)->[a]->[b]->[c]

such that, if

• f is a binary function that takes inputs of types a and b, and computes
result of type c,

• lst1=[a1, . . . , an] is a list of n elements of type a,

• lst2=[b1, . . . , bn] is a list of n elements of type b

then (map2 f lst1 lst2) computes the list [c1, . . . , cn] where ci is the
value of (f ai bi) for all 1 ≤ i ≤ n. For example:

> map2 (+) [1,2,3] [4,5,6] > map2 (*) [1,2,3] [4,5,6]

[5,7,9] [4.10,18]

2. Use map and addLists to define the infinite list of Integers

yList = [y1, y2, y3, . . .]

where y1 = y2 = 1, y3 = 2 and yn = y2n−1−2 ·y2n−2 + 3 ·yn−3 for all n > 3.

3. Define the function nestList::(Double->Double)->Double->[Double]

such that

nestList f v

computes the infinite list

[v, f v, f (f v),f (f (f v)),...]

4. Consider the function g defined by

nwtList a = let g x = (x+a/x)/2 -- same as g=\x.((x+a/x)/2)

in nestList g 1.0

This definition extends the top frame of the evaluation environment E
with the binding for nwtList, as shown below:

37

E
gnwtList λx.((x+ a/x)/2) |

nestList

...

λf.λv. · · ·
λa.(nestList g 1.0) |

(a) What is the value of nwtList 5.0? Does the computation terminate?

(b) What is the value of

head (drop 5 (nwtList 7.0))

Does the termination terminate?

Suggestion: remember Newton’s method to compute
√
x when x is a pos-

itive real number.

5. Consider the function definition

triples::Int->[(Int,Int,Int)]

triples n = [(a,b,n-a-b)|a<-[1..n-2],b<-[1..n-1-a]]

What is the value of the function call (triples n) when n > 2?

Suggestion: use ghci to compute the values of (triples n) for some
small values n > 2, to see what you get.

6. Define recursively the function triplesFrom::Int->[(Int,Int,Int)] such
that, if n > 0, then (triplesFrom n) returns the list of all triples (a, b, c)
with a > 0, b > 0, c > 0 and a+ b+ c ≥ n.

7. Define the list t3List of all triples (a, b, c) of type (Int,Int,Int) with
a > 0, b > 0, c > 0.

8. A Pythagorean triple is a triple (a, b, c) of strict positive integers such that
a2+b2 = c2. Define the function (pythTriples n) which returns the first
n Pythagorean triples from t3List.

5.6 Miniproject: Working with power series

Power series have many applications in sciences and engineering. We consider
power series of the form

∑∞
n=0 an x

n with an ∈ R for all n ≥ 0, and represent
them by infinite lists of Doubles. For example

1)

∞∑
n=0

xn is represented by the list comprehension [1|i<-[0..]]

2) ex =

∞∑
n=0

xn

n!
can be represented by

eRepr = map (\x->1/fromInteger x) (coeffList [1..] 1 (*))

38

where

coeffList::[Integer]->a->(Integer->a->a)->[a]

-- coeffList [1..] x f computes the list [c0, c1, c2, . . .] where
-- c0 = x and cn = (f n cn−1) for all n > 0.
coeffList (n:ns) x f = x:coeffList ns (f n x) f

3) sinx = x− x3

3!
+
x5

5!
− . . . =

∞∑
n=0

(−1)n · x2n+1

(2n+ 1)!
can be represented by

sinRepr = map c plist where

c (x,y) = x/fromInteger y

f n (_,y)

| mod n 2 == 0 = (0,y*n)

| mod n 4 == 1 = (1,y*n)

| otherwise = (-1,y*n)

plist = coeffList [1..] (0,1) f

Note that (coeffList [1..] (0,1) f) generates on demand the infinite
list of tuples

[(0,1),(1,1),(0,2!),(-1,3!),(0,4!),(1,5!),(0,6!),(-1,7!),...]

and map c plist generates on demand the list representation of sinx.
Another, less efficient, lazy implementation of the representation of ex is
the list comprehension

sinRepr = [(coeff n) | n<-[0..]] where

coeff n = if (mod n 2) == 0

then 0

else ((-1)^(div (n+1) 2))/fromInteger (foldr (*) 1 [1..n])

4) A polynomial
∑n

k=0 ak x
k is a power series too:

∑∞
k=0 ak x

k where ai = 0
for all i > n. A lazy implementation of the representation of the power
series of the polynomial

∑n
k=0 ak x

k is

[a0, a1 . . . , an] ++ [0|<-i<-[1..]]

39

Power series can be added, multiplied, scaled and divided as follows: if r ∈ R,
a(x) =

∑∞
n=0 an x

n and b(x) =
∑∞

n=0 bn xn are power series, then

a(x) + b(x) =

∞∑
n=0

(an + bn)xn

r · a(x) =

∞∑
n=0

(r · an)xn

x · a(x) =

∞∑
n=0

an x
n+1 =

∞∑
n=0

cn x
n where cn =

{
0 if n = 0,
an−1 if n > 0.

a(x) · b(x) =

(
a0 + x ·

∞∑
n=0

an+1 x
n

)
· b(x) = a0 · b(x) + x ·

(
b(x) ·

∞∑
n=0

an+1x
n

)

Also, if b0 6= 0 then

a(x)

b(x)
=
a0
b0

+ x ·
∑∞

n=1(an − a0

b0
· bn)xn−1

b(x)

=
a0
b0

+ x ·
∑∞

n=0 an+1 x
n + (−a0

b0
·
∑∞

n=0 bn+1 x
n)

b(x)

Suppose ra, rb are representations of the power series a(x) =
∑∞

n=0 an x
n and

b(x) =
∑∞

n=0 bn x
n. Define lazy implementations of the following functions:

eval::[Double] -> Double -> Int -> Double

sumS,prodS,divideS::[Double]->[Double]->[Double]

xprodS::[Double]->[Double]

rprodS::Double->[Double]->[Double]

such that

• (eval ra v m) computes
∑m

n=0 an v
n

• (sumS ra rb) computes the representation of a(x) + b(x)

• (rprodS r ra) computes the representation of r ·a(x) where r is the value
of r

• (xprodS a) computes the representation of x · a(x)

• (prodS ra rb) computes the representation of a(x) · b(x)

• if b0 6= 0 then (divS ra rb) computes the representation of
a(x)

b(x)

Note that

• The list a:[0|i<=1..]] represents the constant polynomial a.

40

• If ra represents the power series

∞∑
n=0

an x
n then

(0:ra) represents the power series

∞∑
n=0

an x
n+1

(tail ra) represents the power series

∞∑
n=0

an+1 x
n

• You can make use of the function map2 and of predefined functions foldl,
foldr, map.

To test if your implementation is correct, try this:

> :{
ar,br,cr::[Double]

ar = [1,2,3]++[0|i<-[1..]] -- 1 + 2x+ 3x2

br = 1:[0|i<-[1..]] -- constant polynomial 1

cr = [1,-1]++[0|i<-[1..]] -- 1− x
:}
> take 4 (prodS ar cr) -- (1 + 2x+ 3x2) · (1−x) = 1 +x+x2− 3x3

[1.0,1.0,1.0,-3.0]

> take 6 (divideS br cr) -- 1/(1− x) = 1 + x+ x2 + x3 + . . .
[1.0,1.0,1.0,1.0,1.0,1.0]

> eval sinRepr (pi/4) 16 -- compute an approximation of sin (pi/4)

0.7071067811865474

> eval eRepr 1 16 -- compute an approximation of e1 = e
2.718281828459042

5.7 Labworks 7 (Racket) – Recommended

Bottom-up problem solving

B1. Define by recursion on m the function (range m n) which takes as inputs
two integers m, n and returns:

B The list of integers from m to n, if m ≤ n,

B The empty list, if m > n.

For example:

> (range 2 2) > (range 3 2) > (range 5 8)
′(2) ′() ′(5 6 7 8)

B2. For a, b ∈ N we write a|b to indicate that b is divisible with a, and a - b
to indicate that b is not divisible with a. Use range, map, and filter to
compute the lists of elements of the following sets:

41

(a) {(n+ 1)(n+ 2)/2 | n ∈ N, 1 ≤ n ≤ 100 and 11|n}.
(b) {2 · n | n ∈ N, 1 ≤ n ≤ 20, 2|n, 3 - n}.
(c) {n | n ∈ N, 1 ≤ n ≤ 50, n is divisible with 5 or with 13}.

B3. Use map to define the function (cprod1 a lst) which takes as inputs a
value a and a list lst, and returns the list of all pairs (cons a b) where
b is an element of lst. For example:

> (cprod1 ′x ′(a b c))
′((x . a) (x . b) (x . c))

B4. Use map, apply, append, and cprod1 to define (cprod lst1 lst2) which
returns the cartesian product of lists lst1 and lst2, which is the list of
all pairs (cons a b) with a from lst1 and b from lst2. For example:

> (cprod ′(x y) ′(a b c))
′((x . a) (x . b) (x . c) (y . a) (y . b) (y . c))

B5. Let lst be a list of pairs of the form (cons x y). Define the following
operations on such lists of pairs:

(a) (filter2 p lst), which returns the list of pairs (cons x y) from
lst for which (p x y) is true.

(b) (map2 f lst), which returns the list of values of (f x y) for the
pairs (cons x y) from lst.

B6. Use the previously defined functions cprod, map2 and filter2 to compute
the lists of elements of the following sets of pairs:

(a) {(cons a b) | a, b ∈ {1, 2, 3} and a + b is even}.
(b) {(cons a b) | a, b ∈ {1, 2, 3, 4}, a + b is odd and 2|b}.
(c) {(cons a b) | a, b ∈ {1, 2, 3, 4}, a is odd or b is odd}.

42

6 Answers to some exercises

6.1 Answers to labworks 1

HW1. (define (good-list? l)

(or (null? l)

(and (list? l)

(> (length l) 1)

(symbol? (car l))

(number? (cdr l))

(good-list? (cddr l)))))

HW2. (define (symb-value l s)

(cons [(eq? s (car l)) (cadr l)]

[#t (symb-value (cddr l) s)]))

HW3. (define (mem l v)

(cond [(null? l) #f]

[(equal? v (car l)) #t]

[#t (mem (cdr l) v)]))

or

(define (mem l v)

(and (list? l)

(> (length l) 0)

(or (equal? v (car l)) (mem (cdr l) v))))

HW4. (define (add l)

(if (null? l) 0 (+ (car l) (add (cdr l)))))

or

(define (add l) (foldr + 0 l))

HW5. (define (mult l)

(if (null? l) 1 (* (car l) (mult (cdr l)))))

or

(define (mult l) (foldr * 1 l))

HW6. Note that nested lists of numbers are defined by the grammar

nlist ::= null | (cons number nlist) | (cons nlist nlist)

(define (nlist? l)

(or (null? l) (and (list? l)

(or (number? (car l))

(nlist? (car l)))

(nlist? (cdr l)))))

43

HW7. (define (add-all l)

(cond [(null? l) 0]

[(number? (car l)) (+ (car l) (add-all (cdr l)))]

[#t (+ (add-all (car l)) (add-all (cdr l)))]))

; This implementation works well only if
; l contains at least one positive number
(define (max-elem l)

(cond [(null? l) 0]

[(number? (car l)) (max (car l) (max-elem (cdr l)))]

[#t (max (max-elem (car l)) (max-elem (cdr l)))]))

(define (max-depth l)

(cond [(null? l) 1]

[(number? (car l)) (max-depth (cdr l))]

[#t (max (+ 1 (max-depth (car l))

(max-depth (cdr l)))]))

6.2 Answers to recommended labworks 2

LW1. (define (preorder bt)

(cond [(number? bt) list bt)]

[#t

(let ([n (car bt)] [bt1 (cadr bt)] [bt2 (caddr bt)])

(cons n (append (preorder bt1)

(preorder bt2))))]))

(define (inorder bt)

(cond [(number? bt) (list bt)]

[#t

(let ([n (car bt)] [bt1 (cadr bt)] [bt2 (caddr bt)])

(append (inorder bt1)

(list n)

(inorder bt2)))]))

(define (postorder bt)

(cond [(number? bt) (list bt)]

[#t

(let ([n (car bt)] [bt1 (cadr bt)] [bt2 (caddr bt)])

(append (postorder bt1)

(postorder bt2)

(list n)))]))

LW2. (a) nlist ::= null

| (cons number nlist)

| (cons nlist nlist)

44

(b) (define (nlist? l)

(or (null? l) (and (list? l)

(or (number? (car l))

(nlist? (car l)))

(nlist? (cdr l)))))

LW5. This function is easy to define by structural induction on sl:

(define (swapper s1 s2 sl)

(if (null? sl)

null

(let ([sl1 (swapper s1 s2 (cdr sl))])

(cond [(eq? s1 (car sl)) (cons s2 sl1)]

[(eq? s2 (car sl)) (cons s1 sl1)]

[#t (cons (car sl) sl1)]))))

6.3 Answers to labworks 3

[Download from here]

Exercise set 1

1. (define (joinLists lst1 lst2)

(cond [(null? lst1) lst2]

[#t (cons (car lst1)

(joinLists (cdr lst1) lst2))]))

2. (define (is-digit? N)

(and (integer? N) (>= N 0) (<= N 9)))

(define (drop-last-digit N) (quotient N 10))

(define (last-digit N) (remainder N 10))

(define (digit-sum N) ; recursive but not tail recursive
(if (is-digit? N)

N

(+ (last-digit N)

(digit-sum (drop-last-digit N))))

It is possible to define this function by tail recursion too:

; A tail recursive definition
(define (digit-sum-tr N [result 0])

(if (is-digit? N)

(+ N r)

(digit-sum-tr (drop-last-digit N)

(+ result (last-digit N)))))

3. A nested list of symbols is sl ∈ NSL whereNSL is defined by the grammar

45

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/HW03.rkt

NSL ::= null | (cons symbol NSL) | (cons NSL NSL)

We can use this grammar to define flatten by structural induction:

(define (flatten sl)

(cond [(null? sl) null]

[(symbol? (car sl)) (cons (car sl)

(flatten (cdr sl)))]

[#t (append (flatten (car sl)))])

(flatten (cdr sl)))]))

Exercise set 2

1. (define (rev2 lst1 lst2)

(cond [(null? lst1) lst2]

[#t (rev2 (cdr lst1) (cons (car lst1) lst2))]))

(define (revList lst) (rev2 lst null))

2. (define (f2 a b c)

(cond [(= b 0) c]

[(= 0 (remainder b 2)) (f2 (* a a) (/ b 2) c)]

[#t (f2 (* a a) (/ (- b 1) 2) (* a c))]))

(define (power a b) (f2 a b 1))

3. (define (improve xn a) (/ (+ xn (/ a xn)) 2))

(define (good? x a) (< (abs (- (* x x) a)) 0.000001))

(define (newton2 a [x 1.0])

(if (good? x a)

x

(newton2 a (improve x a))))

4. (define (improve3 xn a) (/ (+ (* 2 xn) (/ a (* xn xn))) 3))

(define (good3? x a) (< (abs (- (expt x 3) a)) 0.000001))

(define (newton3 a [x 1.0])

(if (good3? x a)

x

(newton3 a (improve3 x a))))

5. This computation is a special case of (eval lst v s p) which takes the
extra arguments s, p ∈ R and computes

s + p · (a0 + a1 · v + . . .+ an · vn) = s + p ·

(
n∑

i=0

ai · vi
)

46

A tail recursive definition of this more general operation is easy to derive
from the observation that

s+ p·

(
n∑

i=0

ai · vi
)

=


s if lst is empty,

(s+ p · a0) + (p · v) ·

(
n−1∑
i=0

ai+1 · vi
)

otherwise

(define (eval lst v

[s 0] [p 1]) ; optional arguments with default values 0 and 1
(cond [(null? lst) s]

[#t (eval (cdr lst) v (+ s (* p (car lst))) (* p v))]))

Runtime: O(n) where n is the length of lst. Space complexity: O(1).

A much simpler implementation is with foldr:

(define (eval v lst) (foldr (lambda (a b) (+ a (* v b))) 0 lst))

6. SL ::= null | (cons symbol SL) | (cons SL SL)

We saw on page 16 that the flattened form of lst can be computed with

(define (flatten lst)

(cond [(null? lst) null]

[(symbol? (car lst)) (cons (car lst)

(flatten (cdr lst)))]

[(null? (car lst)) (flatten (cdr lst))]

[#t (flatten (cons (caar lst)

(cons (cdar lst) (cdr lst))))]))

The last two recursive calls are tail recursive, but the first one is not. This
definition can be transformed easily into a tail recursive definition if we
extend it with an accumulator:

(define (flattenTR lst [A null])

(cond [(null? lst) (reverse A)]

[(symbol? (car lst)) (flattenTR (cdr lst)

(cons (car lst) A))]

[(null? (car lst)) (flattenTR (cdr lst) A)]

[#t (flattenTR (cons (caar lst)

(cons (cdar lst) (cdr lst)))

A)]))

The additional argument A is an accumulator: it accumulates the sym-
bols in the reverse order of their occurrence in lst. Remember that the
operation (reverse A) is predefined and returns the reverse of list A.

47

7. (define (rat? r)

(and (list? r)

(= (length r) 2)

(integer? (car r))

(integer? (cadr r))

(not (= (cadr r) 0))))

(define (simplify r)

(let* ([a (car r)] [b (cadr r)] [d (gcd a b)])

(list (/ a d) (/ b d))))

(define (qsum q r)

(let* ([a1 (car q)]

[b1 (cadr q)]

[a2 (car r)]

[b2 (cadr r)]

[num (+ (* a1 b2) (* a2 b1))]

[denum (* b1 b2)])

(simplify (list num denum))))

define (qdif q r)

(let* ([a1 (car q)]

[b1 (cadr q)]

[a2 (car r)]

[b2 (cadr r)]

[num (- (* a1 b2) (* a2 b1))]

[denum (* b1 b2)])

(simplify (list num denum))))

(define (qmul q r)

(let* ([a1 (car q)]

[b1 (cadr q)]

[a2 (car r)]

[b2 (cadr r)]

[num (* a1 a2)]

[denum (* b1 b2)])

(simplify (list num denum))))

(define (qdiv q r)

(let* ([a1 (car q)]

[b1 (cadr q)]

[a2 (car r)]

[b2 (cadr r)]

[num (* a1 b2)]

[denum (* b1 a2)])

(simplify (list num denum))))

48

(define (rat-eq? q1 q2)

(let ([a1 (car q1)] [b1 (cadr q1)]

[a2 (car q2)] [b2 (cadr q2)])

(= (* a1 b2) (* a2 b1))))

8. (define (cplx? c)

(and (list? c)

(= (length c) 2)

(real? (car c))

(real? (cadr c))))

(define (abs-value c)

(let ([a (car c)]

[b (cadr c)])

(sqrt (+ (* a a) (* b b)))))

(define (rdiv c r)

(list (/ (car c) r) (/ (cadr c) r)))

(define (csum q r)

(list (+ (car q) (car r)) (+ (cadr q) (cadr r))))

(define (cdiff q r)

(list (- (car q) (car r)) (- (cadr q) (cadr r))))

(define (cmul q r)

(let ([a (car q)]

[b (cadr q)]

[c (car r)]

[d (cadr r)])

(list (- (* a c) (* b d)) (+ (* a d) (* b c)))))

(define (cdiv q r)

(let ([c (car r)] [d (cadr r)])

(rdiv (cmul q (list c (- d))) (+ (* c c) (* d d)))))

9. (define (union A B)

(cond [(null? A) B]

[(member (car A) B) (union (cdr A) B)]

[#t (cons (car A) (union (cdr A) B))]))

(define (difference A B)

(cond [(null? A) null]

[(member (car A) B) (difference (cdr A) B)]

[#t (cons (car A) (difference (cdr A) B))]))

49

Another possibility is to define these functions with foldr:

(define (union A B)

(foldr

(lambda (v lst) (if (member v lst) lst (cons v lst)))

B A))

(define (difference A B)

(foldr

(lambda (v lst) (if (member v B) lst (cons v lst)))

null A))

6.4 Answers to labworks 4

1. (define (foldr f v lst) (foldl f v (reverse lst)))

Runtime complexity: O(n) where n is the length of lst.

2. (define (filter p lst)

(foldr (lambda (v l) (if (p v) (cons v l) l)) null lst))

3. (define (length lst) (foldl (lambda (v l) (+ l 1)) 0 lst))

4. (define (nest f n)

(if (= n 0)

(lambda (x) x)

(lambda (x) ((nest f (- n 1)) (f x)))))

(define (nestwhile f v p)

(if (p v) v (nestwhile f (f v) p)))

5. (define (comp . flst)

(foldr (lambda (f g) (lambda (x) (f (g x))))

(lambda (x) x)

flst))

6. (define (list->set lst)

(foldr (lambda (v l) (if (member v l) l (cons v l)))

null

lst))

7. (define (count-words lst)

(define (count-word w)

(length (filter (lambda (x) (eq? w x)) lst)))

(map (lambda (w) (cons w (count-word w)))

(list->set lst)))

Note that count-word is an auxiliary function which is local to the body
of function count-words; it is used to count the number of occurrences of
a word w in list lst.

50

8. (define (fmap-2 a b . flst)

(map (lambda (f) (f a b)) flst)

(define (inc? . lst)

(or (< (length lst) 2)

(and (< (car lst) (cadr lst)) (inc? (cdr lst)))))

(define (dec? . lst)

(or (< (length lst) 2)

(and (> (car lst) (cadr lst)) (dec? (cdr lst)))))

(define (sorted? cmp . lst)

(sAux cmp lst))

(define (sAux cmp lst)

(or (< (length lst) 2)

(and (cmp (car lst) (cadr lst))

(sAux cmp (cdr lst)))))

(define (monotone? . lst) (or (sAux < lst) (sAux > lst)))

9. Note that (f-inc n) is the list (list f1 . . . fn) where fk = (nest inc k)
for all 1 ≤ k ≤ n. Based on this observation, we define

(define (f-inc n)

(define (inc x) (+ x 1))

(define (listTo n)

(if (= n 0) null (cons 1 (map inc (listTo (- n 1))))))

(map (lambda (k) (nest inc k)) (listTo n)))

The auxiliary function (listTo n) is defined to return the list of numbers
from 1 to n.

6.5 Answers to labworks 5

[Download from here]

Preliminary exercises

intsFrom x = x:intsFrom (x+1)

sieve1,sieveAll:[Integer]->[Integer]

sieve1 (x:xs) = x:filter (\y->(mod y x) > 0) xs

sieveAll (x:xs) = x:sieveAll (filter (\y->(mod y x) > 0) xs)

-- the list of all integers, starting from 1

nats = intsFrom 1

-- the list of all prime numbers

primes = sieveAll (intsFrom 2)

51

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/HLab1.hs

1. map2::(a->b->c)->[a]->[b]->[c]

map2 _ [] [] = []

map2 f (x:xs) (y:ys) = (f x y):map2 f xs ys

(addLists lst1 lst2) performs the componentwise addition of two lists
of numbers. The lists must have same length, or both can be infinite.

addLists [] [] = []

addLists (x:xs) (y:ys) = (x+y):addLists xs ys

This function can also be defined with map2:

addLists lst1 lst2 = map2 (+) lst1 lst2

2. yList =

let

lst1 = map (\y->y*y) (tail (tail yList))

lst2 = map (\y->(-2)*y^2) (tail yList)

lst3 = map (*3) yList

in 1:1:2:addLists lst1 (addLists lst2 lst3)

> take 6 yList

[1,1,2,5,20,356]

3. nestList:: (a->a)->a->[a]

nestList f v = v:(nestList f (f v))

4. nwtList a = let f x = (x+a/x)/2 in (nestList f 1.0)

(a) (nwtList 5.0) is the infinite list of successive approximations of√
5.0, computed by Newton’s method, starting with the initial ap-

proximation 1.0. This computation does not terminate.

(b) > head (drop 5 (nwtList 7.0))

2.6457513111113693

(drop 5 (nwtList 7.0)) drops the first five approximations of
√
7.0

and (head (drop 5 (nwtList 7.0))) returns the sixth approxima-
tion. If we compare this approximation with the the floating point
value of

√
7.0 returned by Haskell:

> sqrt 7.0

2.6457513110645907

we notice that they coincide up to nine decimals.

5. (triples n) for n > 2 returns the list of all triples (a, b, c) ∈ N3 with
a > 0, b > 0, c > 0 and a+ b+ c = n.

6. triplesFrom n = (triples n) ++ triplesFrom (n+1)

52

7. -- the list of all triples (a, b, c) of type (Int,Int,Int)

-- with a > 0, b > 0, c > 0
allTriples = triplesFrom 3

8. pythTriples n =

take n (filter (\(a,b,c)->(a^2+b^2==c^2)) allTriples)

> pythTriples 5

[(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13)]

Answer to miniproject

[Download from here]

module PowerSeries where

eval::[Double] -> Double -> Int -> Double

eval ra v m = foldr (\a r->a+r*v) 0 (take (m+1) ra)

rprodS::Double->[Double]->[Double]

rprodS r as = map (r*) as

xprodS::[Double]->[Double]

xprodS ra = (0:ra)

sumS,prodS,divideS::[Double]->[Double]->[Double]

sumS (a:as) (b:bs) = (a+b):sumS as bs

prodS (a:as) bs = sumS (rprodS a bs) (xprodS (prodS bs as))

divideS (a:as) (b:bs) = (a/b):divideS (rprodS (-a/b) bs) (b:bs)

-- (coeffList [1..] c0 f) computes the list [c0, c1, c2, . . .] where
-- cn = (f n cn−1) for all n > 0.
coeffList::[Integer]->a->(Integer->a->a)->[a]

coeffList (n:ns) c f = c:coeffList ns (f n c) f

-- sinRepr = [1,0.-
1

3!
,0,

1

5!
,0,-

1

7!
,0,...] because sin(x) =

∑∞
n=0

(−1)n·x2n+1

(2n+1)!)

sinRepr = map c plist where

c (x,y) = x/fromInteger y

f n (_,y)

| mod n 2 == 0 = (0,y*n)

| mod n 4 == 1 = (1,y*n)

| otherwise = (-1,y*n)

plist = coeffList [1..] (0,1) f

-- eRepr = [
1

0!
,
1

1!
,
1

2!
,
1

3!
,...] because ex =

∑∞
n=0

xn

n!

eRepr = map (\x->1/fromInteger x) (coeffList [1..] 1 (*))

53

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/PowerSeries.hs

6.6 Labworks 7: Bottom-up problem solving

[Download from here]

B1. (define (range m n)

(if (> m n) null (cons m (range (+ m 1) n))))

This recursive definition is not tail recursive, but a tail recursive definition
is easy to find:

(define (rangeTR m n [result null])

(if (> m n) result (rangeTR m (- n 1) (cons n result))))

B2. ; (a) {(n+ 1)(n+ 2)/2 | n ∈ N, 1 ≤ n ≤ 100 and 11|n}.
(map

(lambda (n) (/ (* (+ n 1) (+ n 2)) 2))

(filter (lambda (n) (= (remainder n 11) 0)) (range 1 100)))

; (b) {(2 · n | n ∈ N, 1 ≤ n ≤ 20, 2 | n, 3 - n}.
(map (lambda (n) (* 2 n))

(filter (lambda (n) (and (even? n) (> (remainder n 3) 0)))

(range 1 20)))

; (c) {(n | n ∈ N, 1 ≤ n ≤ 50, 5 | n or 13 | n}.
(filter (lambda (n) (or (= (remainder n 5) 0)

(= (remainder n 13) 0)))

(range 1 50))

B3. (define (cprod1 a lst) (map (lambda (x) (cons a x)) lst))

B4. (define (cprod lst1 lst2)

(apply append (map (lambda (x) (cprod1 x lst2)) lst1)))

B5. (define (filter2 p lst)

(filter (lambda (xy) (p (car xy) (cdr xy))) lst))

(define (map2 f lst)

(map (lambda (xy) (f (car xy) (cdr xy))) lst))

B6. ; (a)

(let* ([A (range 1 3)]

[A2 (cprod A A)])

(filter2 (lambda (a b) (even? (+ a b))) A2))

; (b)

(let* ([A (range 1 4)]

[A2 (cprod A A)])

(filter2 (lambda (a b) (and (odd? (+ a b)) (even? b))) A2))

54

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Lab07.rkt

; (c)

(let* ([A (range 1 4)]

[A2 (cprod A A)])

(filter2 (lambda (a b) (or (odd? a) (odd? b))) A2))

55

	Programming styles
	Characteristics of functional programming
	A crash course to Racket
	Syntax
	The syntax of expressions
	The syntax of definitions

	Environment-based computations
	Variable lookup
	Evaluation of expressions
	The interpretation of definitions
	Functions as values
	The evaluation of function calls
	The evaluation of blocks

	Recursion
	Functions defined by structural induction
	Structural induction over the natural numbers
	Other kinds of recursion

	Tail recursion
	Techniques to write tail-recursive definitions
	Convert an iterative solution into a tail-recursive solution
	Defining a more general recursive function
	Tail recursion with accumulators
	Limitations of tail recursion

	Problem solving strategies
	redmap (Haskell and Racket)
	redapply (only in Racket)
	redfilter (Haskell and Racket)
	redfoldl and redfoldr (Haskell and Racket)

	A crash course to Haskell
	The syntax of Haskell
	Working with Haskell

	Exercises
	Labworks 1 (Racket) – Homework
	Labworks 2 (Racket) – Recommended
	Labworks 3 (Racket) – Homework
	Labworks 4 (Racket) – Homework
	Labworks 5 (Haskell) – Homework
	Miniproject: Working with power series
	Labworks 7 (Racket) – Recommended

	Answers to some exercises
	Answers to labworks 1
	Answers to recommended labworks 2
	Answers to labworks 3
	Answers to labworks 4
	Answers to labworks 5
	Labworks 7: Bottom-up problem solving

