Lecture 12: Working with lists
 Deep lists. Difference lists. Applications. The maze problem

Mircea Marin
West University of Timişoara mircea.marin@e-uvt.ro

May 17, 2021

Outline of this lecture

(1) Review of Prolog datatypes and type recognizers

- Special datatypes
- lists
- tuples
(2) Lists
- Working with deep lists
- An alternative representation of lists: Difference lists
- Efficiency issues
- Applications of difference lists
(3) The maze problem

Data structures in Prolog

Recap: In Prolog, terms are the only datatype

Prolog has only one datatype: terms (see Lecture 8).

- A term is either:
- an atomic term. There are 3 kinds of atomic terms:
- atom (or function name): a name which starts with lowercase letter, or is delimited by quotes.
Exemples: car,' I am Sam'
- number: 1.23 (floating point),
-283416043388 (arbitrary-size integer)
- string: "Mary had a little lamb"
- the symbol [] for the empty list.
- variable: name which begins with uppercase letter or with _. Variables are placeholders for terms. Examples: X,_X
- compound term: $f\left(\right.$ term $_{1}, \ldots$, term $\left.n\right)$ where f is an atom and term $_{1}, \ldots$, term $_{n}$ are terms.

$$
\text { term }::=\text { atomic } \mid \text { variable } \mid f\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

Term recognizers

Recap

The following term recognizers are predefined:
atomic (t) : holds if t is an atomic term.
atom (t) : holds if t is atom.
number (t) : holds if t is number: floating-point or integer.
float (t) : holds if t is a floating-point number.
integer (t) : holds if t is an integer.
string (t) : holds if t is a string.
compound (t) : holds if t is a compound term.
$\operatorname{var}(t)$: true if t is currently a free variable.
nonvar (t) : true if t is currently not a free variable.

Remarks

Atoms in Prolog

In Prolog, atom has three meanings: it can be
(1) a function symbol
(2) a predicate symbol, or
(3) an atomic formula $p\left(t_{1}, \ldots, t_{n}\right)$ where p is a predicate symbol and t_{1}, \ldots, t_{n} are terms.

Example

```
snowman(olaf).
melts(X) :- snowman(X).
```

This program contains
function symbol olaf
predicate symbols snowman and melts atomic formulas snowman(X) and melts (X)
All these things are atoms.

Terms with special syntax (recap)

Arithmetic expressions, lists and tuples

- Arithmetic expressions: t_{1} op t_{2} instead of 'op' $\left(t_{1}, t_{2}\right)$. We can write $\mathrm{X}+3 * 4$ instead of ${ }^{\prime}+{ }^{\prime}\left(\mathrm{X},{ }^{\prime}\right.$ *' $\left.^{\prime}(3,4)\right)$

The arithmetic operations are predefined: $+, *, /,-$, etc.
We can evaluate an arithmetic expression expr with x is expr.

- Lists are terms defined by grammar

$$
\text { list }::=[] \text { | '[|]' (term, list) }
$$

The list constructor ' [1]' is a predefined function symbol. We can write [a,b,c] instead of ${ }^{\prime}[1]^{\prime}\left(a,^{\prime}[1]^{\prime}\left(b,{ }^{\prime}[1]^{\prime}(c,[])\right)\right.$).

- Tuples are terms defined by grammar:

$$
\text { tuple : := ',' (term } 1, \text { term }_{2} \text {) | ','(term, tuple) }
$$

The pair constructor ' ,' is a predefined function symbol. We can write (a, b, c) instead of ${ }^{\prime},^{\prime}\left(a,^{\prime},^{\prime}(b, c)\right)$

Working with lists and tuples

Both lists and tuples can be taken apart by unification.

- Splitting a non-empty list into head(s) and tail:

$$
\begin{array}{ll}
?-\quad[\mathrm{H} \mid \mathrm{T}]=[\mathrm{a}, \mathrm{~b}, \mathrm{c}] . & ?-[\mathrm{H} 1, \mathrm{H} 2 \mid \mathrm{T}]=[\mathrm{a}, \mathrm{~b}, \mathrm{c}] . \\
\mathrm{H}=\mathrm{a}, & \mathrm{H} 1=\mathrm{a}, \\
\mathrm{~T}=[\mathrm{b}, \mathrm{c}] . & \mathrm{H} 2=\mathrm{b}, \\
& \mathrm{~T}=[\mathrm{c}] .
\end{array}
$$

- Splitting a tuple into first component(s) and rest.

$$
\begin{array}{ll}
?-(F, R)=(a, b, c) . & ?-(F 1, F 2, R)=(a, b, c) . \\
F=a, & F 1=a . \\
R=(b, c) . & F 2=b, \\
& R=c . \\
?-a=(a) . & ?-(a,(b))=(a, b) . \\
\text { true. } & \text { true. }
\end{array}
$$

Working with lists and tuples

Both lists and tuples can be taken apart by unification.

- Splitting a non-empty list into head(s) and tail:

$$
\begin{array}{ll}
?-\quad[\mathrm{H} \mid \mathrm{T}]=[\mathrm{a}, \mathrm{~b}, \mathrm{c}] . & ?-[\mathrm{H} 1, \mathrm{H} 2 \mid \mathrm{T}]=[\mathrm{a}, \mathrm{~b}, \mathrm{c}] . \\
\mathrm{H}=\mathrm{a}, & \mathrm{H} 1=\mathrm{a}, \\
\mathrm{~T}=[\mathrm{b}, \mathrm{c}] . & \mathrm{H} 2=\mathrm{b}, \\
& \mathrm{~T}=[\mathrm{c}] .
\end{array}
$$

- Splitting a tuple into first component(s) and rest.

$$
\begin{array}{ll}
?-(F, R)=(a, b, c) . & ?-(F 1, F 2, R)=(a, b, c) . \\
F=a, & F 1=a . \\
R=(b, c) . & F 2=b, \\
& R=c . \\
?-a=(a) . & ?-(a,(b))=(a, b) . \\
\text { true. } & \text { true. }
\end{array}
$$

Remark: There are no tuples with one component: (term) coincides with term.

Special lists

Deep lists

In Prolog, lists can be nested one into another.

- A deep list is a list whose elements are either deep lists, or atomic terms. Formally:

$$
\begin{aligned}
& \text { dlist }::=[] \text { | }[h \mid \text { dlist }] \text { where } \\
& h::=\text { atom | number | string | dlist }
\end{aligned}
$$

- A deep list which does not contain another list as an element is called simple, or shallow. Formally:

$$
\text { shlist }::=[] \quad \mid \quad[\text { at | shlist }] \text { where }
$$

$$
\text { at }::=\text { atom | number | string }
$$

Examples of deep lists

```
L1 = [1,2,3,[4]]
L2 = [[1],[2],[3],[4,5]]
L3 = [[],2,3,4,[5,[6]],[7]]
L4= [alpha,2,[beta],[gamma,[8]]]
```


Operations on deep lists

depth, flatten, heads, member1, member2

Deep lists are special lists \Rightarrow all operations on lists work on deep lists too: member, length, reverse
We wish to add the following operations which are specific to deep lists:
(1) depth (L, R) binds R to the depth of deep list L :
(2) flatten (DL,FL) flattens deep list DL into a shallow list FL.
(3) heads (DL, Hs) returns all elements which are at the head of a shallow list in DL.
(4) member1 (X, DL) holds if X occurs, at any depth, as an element of $D L$.
(5) member2 (X, DL) holds if X is non-list which occurs, at any depth, as an element of DL.

Operations on deep lists

Implementation of depth, flatten

```
depth([],1).
depth([[]|T],R):-!, depth(T,R1),R is max(2,R1).
depth([H|T],R):-atomic(H),!, depth(T,R).
depth([H|T],R):-depth(H,R1),
    depth(T,R2),
    R is max(R1+1,R2).
flatten([],[]).
flatten([[]|T],FL):-!,flatten(T,FL).
flatten([H|T],[H|FL]):- atomic(H),!,
                        flatten(T,FL).
flatten([H|T],FL):- flatten(H,FL1),
    flatten(T,FL2),
    append (FL1,FL2,FL).
```

Note the usage of the cut operator (!) to simplify the implementation and make it more efficient.

Operations on deep lists

Quiz

Implement the predicates heads, member1 and member2:
?- heads([[1, [2, 3]],[[],[[4,5],6,[7]]]],L).
$\mathrm{L}=[1,2,4,7]$.
?- member1 ([2,3], [1,[2,3],4]).
true.
?- member2(3,[1,[2,[[],3,[4,5]]],6]). true.
?- member2([4,5],[1,[2,[[],3,[4,5]]],6]). false.

Other representations of lists in Prolog

Open lists

A list is accessed through its head and tail \Rightarrow accessing the n-th element is slow (n steps): we must access all its elements before the n-th

- Open list = alternative way to represent a list in Prolog, that lets us access the end of a list easier.
openList $::=\left[\right.$ term $_{1}, \ldots$, term $\left._{n} \mid H\right]$
where H is a free variable, and term ${ }_{1}, \ldots$, term $_{n}$ are terms.
- H acts like a pointer to the end of the list.
- by instantiating x with a list, we extend the open list to a true list.
?- $\mathrm{L}=[1,2,3 \mid \mathrm{H}], \mathrm{H}=[4,5]$.
$\mathrm{L}=[1,2,3,4,5]$.

Difference lists

1. Appending difference lists
diffList : := dList (openList,H)
where openList is an open list $\left[\right.$ term ${ }_{1}, \ldots$, term $\left._{n} \mid H\right]$ with free variable H. diffList represents the list $\left[\right.$ term,\ldots, term $\left._{n}\right]$ as a difference.
Appending difference lists
```
dAdd(dList(OL1,H1), dList(OL2,H2),dList(OL1,H2)) :-
    H1=OL2.
```

Runtime complexity: $O(1)$. Note that append (L1, L2 , L) has runtime complexity $O(n)$ where n is the length of list L1.

Example

```
?- dAdd(dList([1,2|H1],H1),dList([3,4|H2],H2),DL).
H1 = [3,4|H2],
DL = dList([1, 2, 3,4|H2],H2).
```


Difference lists

2. Adding an element to the end of a difference list
```
addToEnd(dList(OL,H), E,OL):-H=[E].
```

Runtime complexity: $O(1)$.

Example

$$
\begin{aligned}
& ?-\operatorname{addToEnd}(\operatorname{dList}([1,2,3,4,5,6 \mid \mathrm{H}], \mathrm{H}), 7, \mathrm{R}) . \\
& \mathrm{H}=[7], \\
& \mathrm{R}=[1,2,3,4,5,6,7] .
\end{aligned}
$$

Difference lists

3. Membership test

```
member_open(_,dList (OL,H) ) :-
    unify_with_occurs_check(OL,H),!,fail.
member_open(X,dList([X|_],_)).
member_open(X,dList ([_|OL],H)) :-
    member_open(X,dList (OL,H)).
```


Example

?- member_open (X,dList $([1,2 \mid H], H))$.
$\mathrm{X}=1$;
$\mathrm{X}=2$;
false.

Remark

By instantiating the free variable of an difference list, we destroy it: the open list becomes an ordinary list.

Remarks about unification in SWI-Prolog

In logic programming, the attempt to unify x with a non-variable term t which contains x fails - because of the variable-occur check test. We can check this fact with the built-in predicate
unify_with_occurs_check:

```
?- unify_with_occurs_check(X,f(X)).
false.
```

SWI-Prolog allows to unify x with a non-variable term t which contains X . For example:

$$
\begin{aligned}
& ?-X=f(1, X), \text { writeln }(X) . \\
& @\left(S _1,\left[S _1=f\left(1, S _1\right)\right]\right) \\
& X=f(1, X)
\end{aligned}
$$

is a weird notation to indicate that the result of unifying X with $\mathrm{f}(1, \mathrm{X})$ is the infinite term $f(1, f(1, f(1, \ldots)))$

Applications of difference lists

Fast traversal of binary trees in inorder

btree ::= nil | bt (integer, btree, btree)

Main idea: use difference lists for fast concatenation of traversals of left- and right subtree.
inorder (BT,L) :- dInorder(BT,dList(L, H)), H=[]. dInorder(nil, dList (H,H)).
dInorder (bt (N, BT1, BT2), DL) :-
dInorder (BT1,DL1),
dInorder (BT2,DL2),
dAdd (DL1, dList([N|H],H), DL3), dAdd (DL3, DL2, DL) .
?- inorder(bt(2,bt(1,nil,nil),bt(3,nil,nil)),L).
$\mathrm{L}=[1,2,3]$.

Applications of difference lists

 Quiz(1) Define the predicate preorder $(B T, L)$ that binds L to the list of values in the nodes of the binary tree $B T$, by preorder traversal.
(2) Define the predicate postorder $(B T, L)$ that binds L to the list of values in the nodes of the binary tree BT, by postorder traversal.
(3) Define the flattening predicate flatten (DL,FL) with difference lists.

Difference lists

Concluding remarks

Difference lists are an alternative representation of lists in Prolog:
diffList : : = dList ([term,\ldots, term $\left._{n} \mid H\right], H$)

- Represents the list $\left[\right.$ term $_{1}, \ldots$, term $\left._{n}\right]$. For example: dList ([a,b, c|H],H) represents the list $[a, b, c]$ dList (H,H) represents the empty list []
- The free variable H is like a pointer to the end of the list.

The following operations with difference lists take constant time:

- append difference lists (predicate dAdd): $O(1)$ built-in append (L, L2,R): O(n)
- adding an element to end of difference list (addToEnd): $O(1)$ adding an element to end of list $\mathrm{L}: ~ O(n)$
where n is length of L.

The maze problem

Scenario

A person x is placed in a building with many rooms, connected by doors. One room has an exit door from the building.
Q1: How can x find a way out from the building?
Q2: How can x find the shortest way out from the building?

Example


```
door1(b, out).
door1(b, c).
door1(c,d).
door1(d,e).
door1(e,f).
doorl(e,g).
door1(d,f).
```

Possible answer 1: [g, e, f, d, c, b, out]
Possible answer 2: [g, e, d, c, b, out]

The maze problem

This is a typical search problem.

- We must find a trail, which is a list $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ from the point of departure a_{1} to the destination a_{n}, such that, every two consecutive rooms a_{i}, a_{i+1} are connected by a door.
- In our scenario: $a_{1}=g, a_{n}=$ out
- Nontermination (cycles) can be avoided by keeping track ot the rooms already visited, to avoid visiting them again.
- Shortest way out = shortest trail from location of x to out.
- can be found by breadth-first search:

The maze problem

A Prolog implementation for Q1: version 1

To answer the first question (finding a way out from the building), we can define a predicate go (X,Y,Trail) which binds Trail to a trail from the location x to location Y :

- We use an accumulator A to accumulate in a list the rooms visited so far.
\% initially, the only visited room is the initial room X

```
go(X,Y,Trail) :- goAcc(X,Y,Trail,[X]).
```

$\%$ we stop when we reach destination, that is, $X=Y$
goAcc (X,X,Trail,Acc) :- reverse(Acc,Trail).
\% we move from X to Z if Z was not visited
$\%$ and if there is a door from X to Z
goAcc (X,Y,Trail,Acc) :-
(door1 (X, Z); door1 (Z, X)),
not (member (Z,Acc)),
goAcc (Z,Y,Trail,[Z|Acc]).

The maze problem

Remarks about the implementation for Q1

The existence of a door from X to Y is represented be the fact door1 (X,Y).

- We want this relation to be symmetric: if there is a door from X to Y, there is also a door from Y to X
- To avoid nontermination of computing with symmetric relations, (see Lecture 10), we can define

```
door(X,Y):- door1(X,Y).
door(X,Y):- doorl(Y,X).
goAcc(X,Y,Trail,Acc) :-
    door(X,Z),
    not(member(Z,Acc)),
    goAcc(Z,Y,Trail,[Z|Acc]).
```


The maze problem

Remarks about the implementation for Q1

The existence of a door from X to Y is represented be the fact door1 (X,Y).

- We want this relation to be symmetric: if there is a door from X to Y, there is also a door from Y to X
- To avoid nontermination of computing with symmetric relations, (see Lecture 10), we can define

```
door(X,Y):- door1(X,Y).
door(X,Y):- door1(Y,X).
goAcc(X,Y,Trail,Acc) :-
    door(X,Z),
    not(member(Z,Acc)),
    goAcc(Z,Y,Trail,[Z|Acc]).
```

SWI-Prolog allows to write (door1 (X, Z) ; door1 (Z, X))
instead of door (X, Z) .

- The intended reading of ";" is "or".

The maze problem

Remarks about the implementation

The trail is accumulated in reverse order in $\operatorname{Acc} \Rightarrow$ when we reach destination, we must instantiate Trail with the reverse of Acc

- reversing Acc with n elements takes $O(n)$ time
- We can avoid this problem if, instead of an accumulator, we use a difference list \Rightarrow a more efficient version of predicate go:

```
goV2(X,Y,Trail):-
    goDiffList(X,Y,Trail,dList(H,H)) .
goDiffList(Y,Y,Trail,DL):-
    addToEnd(DL,Y,Trail).
goDiffList(X,Y,Trail,DL):-
    (door1(X,Z);door1(Z,X)),
    not (member_open(Z,DL)),
    dAdd(DL,dList([X|H],H),DL1),
    goDiffList(Z,Y,Trail,DL1).
```


The maze problem Q2

A Prolog implementation based on the findall operator

```
findAll(Term,+Query,-L)
```

is a predefined second-order predicate of SWI-Prolog: It binds the free variable L to the list of all terms $\operatorname{Term} \theta$ where θ is a computed answer of Query.

Examples

\% find all rooms connected by a door with room g
?- findall(X, (doorl(f,X); door1 (X,f)), L).
$\mathrm{L}=[\mathrm{d}, \mathrm{e}]$.
\% find all rooms connected by a trail of length 3 with room f
?- findall(X, (goV2(f,X,Trail), length(Trail,3)))
$L=[e, c, g, d]$.
We will use findall to implement predicate goBF (X, Y, Trail) that binds Trail to a shortest trail from X to Y , using breadth-first search.

The maze problem Q2

Main idea

To find a shortest trail (or path) from X to Y we proceed as follows:

- Starting from x , we generate all paths of length 0 , then all paths of length 1, and so on.
- The paths of length $n>0$ are produced by extending those of length $n-1$ with one more element. We will see how to do so with the findall operator.
- We stop as soon as we find a path from X to Y .

```
goBF(X,Y,Trail) :- goBFAux([[X]],Y,R),reverse(R,Trail).
goBFAux([[Y|Xs]|_],Y,[Y|Xs]):-!.
goBFAux([[Lf|Xs]|Rs],Y,Trail):-
    findall([Z,Lf|Xs],
    ((door1(Lf,Z);door1(Z,Lf)),
    not(member(Z,[Lf|Xs]))),
    ZRs),
append(Rs,ZRs,NewRs),
goBFAux(NewRs,Y,Trail).
```


Notes on the implementation of goBF (X, Y, Trail)

gobF ($\mathrm{X}, \mathrm{Y}, \mathrm{Trail}$) has input arguments X (the start of search) and Y (the destination), and binds Trail to a shortest trail form X to Y :

- if such a trail does not exist, the predicate returns false.

The trail is computed by breadth-first search, implemented by the auxiliary predicate goBFAux (Rs, Y, Trail) which takes as inputs

- Rs: the list of branches of the breadth-first traversal tree with root X. In Rs, every branch is represented by the list of nodes from a leaf node to the root.
- Y : the destination node.
and binds Trail to a shortest trail from X to Y . This is obtained by reversing the first branch added to Rs, which ends with Y.

Notes on the implementation of goBF (X, Y, Trail)

gobF ($\mathrm{X}, \mathrm{Y}, \mathrm{Trail}$) has input arguments X (the start of search) and Y (the destination), and binds Trail to a shortest trail form X to Y :

- if such a trail does not exist, the predicate returns false.

The trail is computed by breadth-first search, implemented by the auxiliary predicate goBFAux (Rs, Y, Trail) which takes as inputs

- Rs: the list of branches of the breadth-first traversal tree with root X. In Rs, every branch is represented by the list of nodes from a leaf node to the root.
- Y : the destination node.
and binds Trail to a shortest trail from X to Y . This is obtained by reversing the first branch added to Rs, which ends with Y.

Every recursive call of goBFAux (Rs, X, Trail) removes the first branch Br , from Rs, computes the list of ZRs of all branches produces by extending Br with a room z not visited before, and append ZRs to the end of list Rs.

