
Lecture 12: Working with lists
Deep lists. Difference lists. Applications.

The maze problem

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

May 17, 2021

M. Marin LFP

mailto:mmarin@info.uvt.ro

Outline of this lecture

1 Review of Prolog datatypes and type recognizers
Special datatypes

lists
tuples

2 Lists
Working with deep lists
An alternative representation of lists: Difference lists

Efficiency issues
Applications of difference lists

3 The maze problem

M. Marin LFP

Data structures in Prolog
Recap: In Prolog, terms are the only datatype

Prolog has only one datatype: terms (see Lecture 8).
A term is either:

an atomic term. There are 3 kinds of atomic terms:
atom (or function name): a name which starts with
lowercase letter, or is delimited by quotes.
Exemples: car, ’I am Sam’
number: 1.23 (floating point),
-283416043388 (arbitrary-size integer)
string: "Mary had a little lamb"
the symbol [] for the empty list.

variable: name which begins with uppercase letter or with
_. Variables are placeholders for terms. Examples: X, _X
compound term: f (term1, . . . , termn) where f is an atom
and term1, . . . , termn are terms.

term ::= atomic | variable | f(term1, . . . , termn)

M. Marin LFP

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Curs-08.pdf

Term recognizers
Recap

The following term recognizers are predefined:
atomic(t): holds if t is an atomic term.
atom(t): holds if t is atom.
number(t): holds if t is number: floating-point or integer.
float(t): holds if t is a floating-point number.
integer(t): holds if t is an integer.
string(t): holds if t is a string.
compound(t): holds if t is a compound term.
var(t): true if t is currently a free variable.
nonvar(t): true if t is currently not a free variable.

M. Marin LFP

Remarks
Atoms in Prolog

In Prolog, atom has three meanings: it can be
1 a function symbol
2 a predicate symbol, or
3 an atomic formula p(t1, . . . , tn) where p is a predicate

symbol and t1, . . . , tn are terms.

Example
snowman(olaf).
melts(X) :- snowman(X).

This program contains
function symbol olaf
predicate symbols snowman and melts

atomic formulas snowman(X) and melts(X)

All these things are atoms.

M. Marin LFP

Terms with special syntax (recap)
Arithmetic expressions, lists and tuples

Arithmetic expressions: t1 op t2 instead of ’op’(t1, t2). We can
write X+3*4 instead of ’+’(X,’*’(3,4))

The arithmetic operations are predefined: +, ∗, /,−, etc.
We can evaluate an arithmetic expression expr with X is expr .

Lists are terms defined by grammar

list ::= [] | ’[|]’(term, list)

The list constructor ’[|]’ is a predefined function symbol.
We can write [a,b,c] instead of ’[|]’(a,’[|]’(b,’[|]’(c,[]))).

Tuples are terms defined by grammar:

tuple ::= ’,’(term1, term2) | ’,’(term,tuple)

The pair constructor ’,’ is a predefined function symbol.
We can write (a,b,c) instead of ’,’(a,’,’(b,c))

M. Marin LFP

Working with lists and tuples
Both lists and tuples can be taken apart by unification.

Splitting a non-empty list into head(s) and tail:

?- [H|T]=[a,b,c]. ?- [H1,H2|T]=[a,b,c].
H=a, H1=a,
T=[b,c]. H2=b,

T=[c].

Splitting a tuple into first component(s) and rest.

?- (F,R)=(a,b,c). ?- (F1,F2,R)=(a,b,c).
F=a, F1=a.
R=(b,c). F2=b,

R=c.

?- a = (a). ?- (a,(b))=(a,b).
true. true.

Remark: There are no tuples with one component: (term) coincides
with term.

M. Marin LFP

Working with lists and tuples
Both lists and tuples can be taken apart by unification.

Splitting a non-empty list into head(s) and tail:

?- [H|T]=[a,b,c]. ?- [H1,H2|T]=[a,b,c].
H=a, H1=a,
T=[b,c]. H2=b,

T=[c].

Splitting a tuple into first component(s) and rest.

?- (F,R)=(a,b,c). ?- (F1,F2,R)=(a,b,c).
F=a, F1=a.
R=(b,c). F2=b,

R=c.

?- a = (a). ?- (a,(b))=(a,b).
true. true.

Remark: There are no tuples with one component: (term) coincides
with term.

M. Marin LFP

Special lists
Deep lists

In Prolog, lists can be nested one into another.
A deep list is a list whose elements are either deep lists, or
atomic terms. Formally:
dlist ::= [] | [h|dlist] where
h ::= atom | number | string | dlist
A deep list which does not contain another list as an
element is called simple, or shallow. Formally:
shlist ::= [] | [at|shlist] where
at ::= atom | number | string

Examples of deep lists
L1 = [1,2,3,[4]]
L2 = [[1],[2],[3],[4,5]]
L3 = [[],2,3,4,[5,[6]],[7]]
L4= [alpha,2,[beta],[gamma,[8]]]

M. Marin LFP

Operations on deep lists
depth,flatten,heads,member1,member2

Deep lists are special lists⇒ all operations on lists work on deep lists
too: member,length,reverse

We wish to add the following operations which are specific to deep
lists:

1 depth(L,R) binds R to the depth of deep list L:

2 flatten(DL,FL) flattens deep list DL into a shallow list FL.

3 heads(DL,Hs) returns all elements which are at the head of a
shallow list in DL.

4 member1(X,DL) holds if X occurs, at any depth, as an element
of DL.

5 member2(X,DL) holds if X is non-list which occurs, at any
depth, as an element of DL.

M. Marin LFP

Operations on deep lists
Implementation of depth,flatten

depth([],1).
depth([[]|T],R):-!,depth(T,R1),R is max(2,R1).
depth([H|T],R):-atomic(H),!,depth(T,R).
depth([H|T],R):-depth(H,R1),

depth(T,R2),
R is max(R1+1,R2).

flatten([],[]).
flatten([[]|T],FL):-!,flatten(T,FL).
flatten([H|T],[H|FL]):- atomic(H),!,

flatten(T,FL).
flatten([H|T],FL):- flatten(H,FL1),

flatten(T,FL2),
append(FL1,FL2,FL).

Note the usage of the cut operator (!) to simplify the implemen-
tation and make it more efficient.

M. Marin LFP

Operations on deep lists
Quiz

Implement the predicates heads,member1 and member2:

?- heads([[1,[2,3]],[[],[[4,5],6,[7]]]],L).
L = [1,2,4,7].

?- member1([2,3],[1,[2,3],4]).
true.

?- member2(3,[1,[2,[[],3,[4,5]]],6]).
true.

?- member2([4,5],[1,[2,[[],3,[4,5]]],6]).
false.

M. Marin LFP

Other representations of lists in Prolog
Open lists

A list is accessed through its head and tail⇒ accessing the
n-th element is slow (n steps): we must access all its elements
before the n-th

Open list = alternative way to represent a list in Prolog, that
lets us access the end of a list easier.

openList ::= [term1, . . . , termn|H]

where H is a free variable, and term1, . . . , termn are terms.
I H acts like a pointer to the end of the list.
I by instantiating X with a list, we extend the open list to a

true list.

?- L=[1,2,3|H],H=[4,5].
L=[1,2,3,4,5].

M. Marin LFP

Difference lists
1. Appending difference lists

diffList ::= dList(openList,H)

where openList is an open list [term1, . . . , termn|H] with free variable
H. diffList represents the list [term1, . . . , termn] as a difference.

Appending difference lists

dAdd(dList(OL1,H1),dList(OL2,H2),dList(OL1,H2)):-
H1=OL2.

Runtime complexity: O(1). Note that append(L1,L2,L) has
runtime complexity O(n) where n is the length of list L1.

Example

?- dAdd(dList([1,2|H1],H1),dList([3,4|H2],H2),DL).
H1 = [3,4|H2],
DL = dList([1,2,3,4|H2],H2).

M. Marin LFP

Difference lists
2. Adding an element to the end of a difference list

addToEnd(dList(OL,H),E,OL):-H=[E].

Runtime complexity: O(1).

Example
?- addToEnd(dList([1,2,3,4,5,6|H],H),7,R).
H = [7],
R = [1,2,3,4,5,6,7].

M. Marin LFP

Difference lists
3. Membership test

member_open(_,dList(OL,H)):-
unify_with_occurs_check(OL,H),!,fail.

member_open(X,dList([X|_],_)).
member_open(X,dList([_|OL],H)):-

member_open(X,dList(OL,H)).

Example
?- member_open(X,dList([1,2|H],H)).
X=1 ;
X=2 ;
false.

Remark
By instantiating the free variable of an difference list, we
destroy it: the open list becomes an ordinary list.

M. Marin LFP

Remarks about unification in SWI-Prolog

In logic programming, the attempt to unify X with a non-variable term
t which contains X fails – because of the variable-occur check test.
We can check this fact with the built-in predicate
unify_with_occurs_check:

?- unify_with_occurs_check(X,f(X)).
false.

SWI-Prolog allows to unify X with a non-variable term t which
contains X. For example:

?- X = f(1,X),writeln(X).
@(S_1,[S_1=f(1,S_1)])
X = f(1, X).

is a weird notation to indicate that the result of unifying X with f(1,X)

is the infinite term f(1,f(1,f(1,...)))

M. Marin LFP

Applications of difference lists
Fast traversal of binary trees in inorder

btree ::= nil | bt(integer ,btree,btree)

Main idea: use difference lists for fast concatenation of
traversals of left- and right subtree.

inorder(BT,L) :- dInorder(BT,dList(L,H)),H=[].
dInorder(nil,dList(H,H)).
dInorder(bt(N,BT1,BT2),DL) :-

dInorder(BT1,DL1),
dInorder(BT2,DL2),
dAdd(DL1,dList([N|H],H),DL3),
dAdd(DL3,DL2,DL).

?- inorder(bt(2,bt(1,nil,nil),bt(3,nil,nil)),L).
L = [1,2,3].

M. Marin LFP

Applications of difference lists
Quiz

1 Define the predicate preorder(BT,L) that binds L to the
list of values in the nodes of the binary tree BT, by preorder
traversal.

2 Define the predicate postorder(BT,L) that binds L to
the list of values in the nodes of the binary tree BT, by
postorder traversal.

3 Define the flattening predicate flatten(DL,FL) with
difference lists.

M. Marin LFP

Difference lists
Concluding remarks

Difference lists are an alternative representation of lists in Prolog:

diffList ::= dList([term1, . . . , termn|H],H)

Represents the list [term1, . . . , termn]. For example:
dList([a,b,c|H],H) represents the list [a,b,c]
dList(H,H) represents the empty list []

The free variable H is like a pointer to the end of the list.

The following operations with difference lists take constant time:

I append difference lists (predicate dAdd): O(1)
built-in append(L,L2,R): O(n)

I adding an element to end of difference list (addToEnd): O(1)
adding an element to end of list L: O(n)

where n is length of L.

M. Marin LFP

The maze problem
Scenario

A person X is placed in a building with many rooms, connected
by doors. One room has an exit door from the building.
Q1: How can X find a way out from the building?
Q2: How can X find the shortest way out from the building?

Example

g

out

X

d c

bf e

door1(b,out).
door1(b,c).
door1(c,d).
door1(d,e).
door1(e,f).
door1(e,g).
door1(d,f).

Possible answer 1: [g,e,f,d,c,b,out]
Possible answer 2: [g,e,d,c,b,out]

M. Marin LFP

The maze problem

This is a typical search problem.

We must find a trail, which is a list [a1,a2, . . . ,an] from the point
of departure a1 to the destination an, such that, every two
consecutive rooms ai ,ai+1 are connected by a door.

In our scenario: a1 = g, an = out
Nontermination (cycles) can be avoided by keeping track ot
the rooms already visited, to avoid visiting them again.

Shortest way out = shortest trail from location of X to out.

can be found by breadth-first search:

g

out

X

d c

bf e

g

e

f d

c

b

out

M. Marin LFP

The maze problem
A Prolog implementation for Q1: version 1

To answer the first question (finding a way out from the
building), we can define a predicate go(X,Y,Trail) which
binds Trail to a trail from the location X to location Y:

We use an accumulator A to accumulate in a list the rooms
visited so far.

% initially, the only visited room is the initial room X
go(X,Y,Trail) :- goAcc(X,Y,Trail,[X]).
% we stop when we reach destination, that is, X=Y
goAcc(X,X,Trail,Acc) :- reverse(Acc,Trail).
% we move from X to Z if Z was not visited
% and if there is a door from X to Z
goAcc(X,Y,Trail,Acc) :-

(door1(X,Z);door1(Z,X)),
not(member(Z,Acc)),
goAcc(Z,Y,Trail,[Z|Acc]).

M. Marin LFP

The maze problem
Remarks about the implementation for Q1

The existence of a door from X to Y is represented be the fact
door1(X,Y).

We want this relation to be symmetric: if there is a door
from X to Y, there is also a door from Y to X

To avoid nontermination of computing with symmetric
relations, (see Lecture 10), we can define
door(X,Y):- door1(X,Y).
door(X,Y):- door1(Y,X).
...
goAcc(X,Y,Trail,Acc) :-

door(X,Z),
not(member(Z,Acc)),
goAcc(Z,Y,Trail,[Z|Acc]).

SWI-Prolog allows to write (door1(X,Z);door1(Z,X))
instead of door(X,Z).

The intended reading of “;” is “or”.

M. Marin LFP

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Curs-10.pdf

The maze problem
Remarks about the implementation for Q1

The existence of a door from X to Y is represented be the fact
door1(X,Y).

We want this relation to be symmetric: if there is a door
from X to Y, there is also a door from Y to X

To avoid nontermination of computing with symmetric
relations, (see Lecture 10), we can define
door(X,Y):- door1(X,Y).
door(X,Y):- door1(Y,X).
...
goAcc(X,Y,Trail,Acc) :-

door(X,Z),
not(member(Z,Acc)),
goAcc(Z,Y,Trail,[Z|Acc]).

SWI-Prolog allows to write (door1(X,Z);door1(Z,X))
instead of door(X,Z).

The intended reading of “;” is “or”.

M. Marin LFP

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Curs-10.pdf

The maze problem
Remarks about the implementation

The trail is accumulated in reverse order in Acc⇒ when we reach
destination, we must instantiate Trail with the reverse of Acc

reversing Acc with n elements takes O(n) time

We can avoid this problem if, instead of an accumulator, we use
a difference list⇒ a more efficient version of predicate go:

goV2(X,Y,Trail):-
goDiffList(X,Y,Trail,dList(H,H)).

goDiffList(Y,Y,Trail,DL):-
addToEnd(DL,Y,Trail).

goDiffList(X,Y,Trail,DL):-
(door1(X,Z);door1(Z,X)),
not(member_open(Z,DL)),
dAdd(DL,dList([X|H],H),DL1),
goDiffList(Z,Y,Trail,DL1).

M. Marin LFP

The maze problem Q2
A Prolog implementation based on the findall operator

findAll(Term,+Query,-L)

is a predefined second-order predicate of SWI-Prolog: It binds the
free variable L to the list of all terms Term θ where θ is a computed
answer of Query.

Examples
% find all rooms connected by a door with room g
?- findall(X,(door1(f,X);door1(X,f)),L).
L = [d,e].
% find all rooms connected by a trail of length 3 with room f
?- findall(X,(goV2(f,X,Trail),length(Trail,3)))
L = [e,c,g,d].

We will use findall to implement predicate goBF(X,Y,Trail)

that binds Trail to a shortest trail from X to Y, using breadth-first
search.

M. Marin LFP

The maze problem Q2
Main idea

To find a shortest trail (or path) from X to Y we proceed as follows:

Starting from X, we generate all paths of length 0, then all paths
of length 1, and so on.

The paths of length n > 0 are produced by extending those
of length n − 1 with one more element. We will see how to
do so with the findall operator.

We stop as soon as we find a path from X to Y.

goBF(X,Y,Trail) :- goBFAux([[X]],Y,R),reverse(R,Trail).
goBFAux([[Y|Xs]|_],Y,[Y|Xs]):-!.
goBFAux([[Lf|Xs]|Rs],Y,Trail):-

findall([Z,Lf|Xs],
((door1(Lf,Z);door1(Z,Lf)),
not(member(Z,[Lf|Xs]))),

ZRs),
append(Rs,ZRs,NewRs),
goBFAux(NewRs,Y,Trail).

M. Marin LFP

Notes on the implementation of goBF(X,Y,Trail)

goBF(X,Y,Trail) has input arguments X (the start of search) and
Y (the destination), and binds Trail to a shortest trail form X to Y:

if such a trail does not exist, the predicate returns false.

The trail is computed by breadth-first search, implemented by the
auxiliary predicate goBFAux(Rs,Y,Trail) which takes as inputs

Rs: the list of branches of the breadth-first traversal tree with
root X. In Rs, every branch is represented by the list of nodes
from a leaf node to the root.

Y: the destination node.

and binds Trail to a shortest trail from X to Y. This is obtained by
reversing the first branch added to Rs, which ends with Y.

Every recursive call of goBFAux(Rs,X,Trail) removes the first
branch Br, from Rs, computes the list of ZRs of all branches
produces by extending Br with a room Z not visited before, and
append ZRs to the end of list Rs.

M. Marin LFP

Notes on the implementation of goBF(X,Y,Trail)

goBF(X,Y,Trail) has input arguments X (the start of search) and
Y (the destination), and binds Trail to a shortest trail form X to Y:

if such a trail does not exist, the predicate returns false.

The trail is computed by breadth-first search, implemented by the
auxiliary predicate goBFAux(Rs,Y,Trail) which takes as inputs

Rs: the list of branches of the breadth-first traversal tree with
root X. In Rs, every branch is represented by the list of nodes
from a leaf node to the root.

Y: the destination node.

and binds Trail to a shortest trail from X to Y. This is obtained by
reversing the first branch added to Rs, which ends with Y.

Every recursive call of goBFAux(Rs,X,Trail) removes the first
branch Br, from Rs, computes the list of ZRs of all branches
produces by extending Br with a room Z not visited before, and
append ZRs to the end of list Rs.

M. Marin LFP

