
Lecture 11: Efficiency issues in Prolog
Declarative and procedural thinking.

Controlling the search for answers with cut (!) and fail.
Tail recursion. Techniques to write efficient code

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

May 10, 2021

M. Marin LFP

mailto:mmarin@info.uvt.ro

Recap: The computational model of Prolog

Computation in Prolog = finding answers to queries, by building
a search tree using SLDNF-resolution.

Example
father(mary,george). % (1)
father(john,george). % (2)
father(helen,eric). % (3)

father(_,X)

�
{X → george} {X → george} {X → eric}

� �
(1) (2) (3)

Prolog returns the same answer (X=george) twice because it
finds two facts which confirm the quality of george to be father.

We wish to avoid getting the same answer repeatedly.

M. Marin LFP

Getting multiple answers

Example
nat(0). % (1)
nat(X) :- nat(Y),X is Y+1. % (2)

nat(X)

�
{X → 0}

(1)

nat(Y1),X is Y1 + 1

(2)

X is 0+ 1

(1)

�
{X → 1}

?- nat(X).
X = 0 ;
X = 1 ;
...

. . .
(2)

This behavior is desirable!

M. Marin LFP

Getting multiple answers

Example
nat(0). % (1)
nat(X) :- nat(Y),X is Y+1. % (2)

nat(X)

�
{X → 0}

(1)

nat(Y1),X is Y1 + 1

(2)

X is 0+ 1

(1)

�
{X → 1}

?- nat(X).
X = 0 ;

X = 1 ;
...

. . .
(2)

This behavior is desirable!

M. Marin LFP

Getting multiple answers

Example
nat(0). % (1)
nat(X) :- nat(Y),X is Y+1. % (2)

nat(X)

�
{X → 0}

(1)

nat(Y1),X is Y1 + 1

(2)

X is 0+ 1

(1)

�
{X → 1}

?- nat(X).
X = 0 ;
X = 1 ;

...

. . .
(2)

This behavior is desirable!

M. Marin LFP

Getting multiple answers

Example
nat(0). % (1)
nat(X) :- nat(Y),X is Y+1. % (2)

nat(X)

�
{X → 0}

(1)

nat(Y1),X is Y1 + 1

(2)

X is 0+ 1

(1)

�
{X → 1}

?- nat(X).
X = 0 ;
X = 1 ;
...

. . .
(2)

This behavior is desirable!

M. Marin LFP

Finding answers by backtracking
What is backtracking?

Backtracking = returning to the first ancestor node where another rule
is applicable, in order to find another answer.

Such an ancestor node is called backtrack point.

In Prolog, backtracking happens in two situations:

1 when the attempt to answer the selected sub-query fails

2 when we ask Prolog to compute another answer, by pressing ’;’

Example

% fact (1)
member(X,[X|_]).
% rule (2)
member(X,[_|T]):-member(X,T).

?-member(X,[a,b].

member(X,[a,b])

�
{X → a}

(1)

X=a ;

member(X,[b])

(2)

backtrack

�
{X → b}

(1)

X=b ;

false.

member(X,[])
fail

(2)

backtrack

M. Marin LFP

Finding answers by backtracking
What is backtracking?

Backtracking = returning to the first ancestor node where another rule
is applicable, in order to find another answer.

Such an ancestor node is called backtrack point.

In Prolog, backtracking happens in two situations:

1 when the attempt to answer the selected sub-query fails

2 when we ask Prolog to compute another answer, by pressing ’;’

Example

% fact (1)
member(X,[X|_]).
% rule (2)
member(X,[_|T]):-member(X,T).

?-member(X,[a,b].

member(X,[a,b])

�
{X → a}

(1)

X=a

;

member(X,[b])

(2)

backtrack

�
{X → b}

(1)

X=b ;

false.

member(X,[])
fail

(2)

backtrack

M. Marin LFP

Finding answers by backtracking
What is backtracking?

Backtracking = returning to the first ancestor node where another rule
is applicable, in order to find another answer.

Such an ancestor node is called backtrack point.

In Prolog, backtracking happens in two situations:

1 when the attempt to answer the selected sub-query fails

2 when we ask Prolog to compute another answer, by pressing ’;’

Example

% fact (1)
member(X,[X|_]).
% rule (2)
member(X,[_|T]):-member(X,T).

?-member(X,[a,b].

member(X,[a,b])

�
{X → a}

(1)

X=a ;

member(X,[b])

(2)

backtrack

�
{X → b}

(1)

X=b

;

false.

member(X,[])
fail

(2)

backtrack

M. Marin LFP

Finding answers by backtracking
What is backtracking?

Backtracking = returning to the first ancestor node where another rule
is applicable, in order to find another answer.

Such an ancestor node is called backtrack point.

In Prolog, backtracking happens in two situations:

1 when the attempt to answer the selected sub-query fails

2 when we ask Prolog to compute another answer, by pressing ’;’

Example

% fact (1)
member(X,[X|_]).
% rule (2)
member(X,[_|T]):-member(X,T).

?-member(X,[a,b].

member(X,[a,b])

�
{X → a}

(1)

X=a ;

member(X,[b])

(2)

backtrack

�
{X → b}

(1)

X=b ;

false.

member(X,[])
fail

(2)

backtrack

M. Marin LFP

Finding answers by backtracking
More examples

member(X,[X|_]).
member(X,[_|T]):-member(X,T).

?-member(a,[b,a,d,a,c]).
true ;
true ;
false .

Finding answers by backtracking confirms the answer as many
times as it occurs in the list.

It is sufficient to get a single confirmation.

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

Finding answers by backtracking

member(X,[X|_]). % (1)
member(X,[_|T]):-member(X,T). % (2)

member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

(2)

�
(1)

member(a,[d,a,c]).

(2)

member(a,[a,c]).

(2)

�

(1)

member(a,[c]).

(2)

member(a,[])

fail

(2)

M. Marin LFP

The cut operator !

The cut operator ! is a predefined predicate, without arguments,
which is always immediately satisfied.

The cut operator has the following side effects:
1 When ! is selected, we eliminate all backtracking points for

the atoms that were introduced in the query together with !.
2 If the clause who introduced ! succeeds, all clauses with

same head as this clause will be ignored. In this case, they
will not be used to find more answers to the given query.

In general, the usage of the cut operator ! can have the
following benefits:

B programs will run faster.
B programs will occupy less memory space because fewer

backtrack points must be memorized.

M. Marin LFP

The cut operator !

Example (member defined with !)
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

member(a,[b,a,d,a,c])

member(a,[a,d,a,c])

(2)

!

(1)(1)

�

REMARK. Arrows of the form

Q1

Q2 indicate that Q1 is no more a
backtrack point.

M. Marin LFP

The cut operator !

Example (member defined with !)
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

member(a,[b,a,d,a,c])

member(a,[a,d,a,c])

(2)

!

(1)(1)

�

REMARK. Arrows of the form

Q1

Q2 indicate that Q1 is no more a
backtrack point.

M. Marin LFP

The cut operator !

Example (member defined with !)
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

member(a,[b,a,d,a,c])

member(a,[a,d,a,c])

(2)

!

(1)

(1)

�

REMARK. Arrows of the form

Q1

Q2 indicate that Q1 is no more a
backtrack point.

M. Marin LFP

The cut operator !

Example (member defined with !)
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

member(a,[b,a,d,a,c])

member(a,[a,d,a,c])

(2)

!

(1)

(1)

�

REMARK. Arrows of the form

Q1

Q2 indicate that Q1 is no more a
backtrack point.

M. Marin LFP

The cut operator (!)
Case study

Suppose an atom H is defined by three clauses in the following
order:

(C1) H:-D1,D2,...,Dm,!,Dm+1,...,Dn.
(C2) H:-A1,...,Ap.
(C3) H.
If D1,D2,...,Dm are satisfied, they will not be resatisfied
because of !.
If D1,D2,...,Dn are satisfied, (C2) and (C3) will not be
used again to resatisfy H.
Resatisfying H can happen only by resatisfying one of the
subqueries Dm+1,...,Dn, if it has more answers.

REMARK. Satisfying an atom means to find an answer for it.

M. Marin LFP

The cut operator (!)
Example: Defining a function by cases

How can we describe in Prolog the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 An implementation without using the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 An implementation with the cut operator (more efficient):
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

M. Marin LFP

The cut operator (!)
Example: Defining a function by cases

How can we describe in Prolog the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 An implementation without using the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 An implementation with the cut operator (more efficient):
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

M. Marin LFP

The cut operator (!)
Example: Defining a function by cases

How can we describe in Prolog the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 An implementation without using the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 An implementation with the cut operator (more efficient):
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

M. Marin LFP

Typical uses of the cut operator

1 To confirm the choice of a rule: to signal the fact that the
right rule was found, and we are not interested to try other
rules.

2 Cut-fail: combination: to signal that the proof attempt
should fail without trying to find other answers.

3 To stop a “generate and test” process: to signal the
termination of generating more solutions by backtracking.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Example (Computing the sum of numbers from 1 to N)
sum_to(1,1). %1
sum_to(N,Res):-N1 is N-1, %2

sum_to(N1,Res1),
Res is Res1+N.

This definiton has a flaw:

If we ask for a second answer, we get an error (infinite loop –
why?):

?-sum_to(5,X).
X=15;
ERROR: Out of local stack

B Prolog must be instructed not to apply rule 2 if rule 1 is
applicable.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Example (Computing the sum of numbers from 1 to N)
sum_to(1,1). %1
sum_to(N,Res):-N1 is N-1, %2

sum_to(N1,Res1),
Res is Res1+N.

This definiton has a flaw:

If we ask for a second answer, we get an error (infinite loop –
why?):

?-sum_to(5,X).
X=15;
ERROR: Out of local stack

B Prolog must be instructed not to apply rule 2 if rule 1 is
applicable.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Example (Sum of numbers from 1 to N – version with !)
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

This program is designed to stop looking for other answers as soon
as is reaches the base case.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Example (Sum of numbers from 1 to N – version with !)
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

This program is designed to stop looking for other answers as soon
as is reaches the base case.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Example (Sum of numbers from 1 to N – version with !)
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

This program is designed to stop looking for other answers as soon
as is reaches the base case.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Q: How can we avoid the previous nonterminating
case to compute the sum?

A: By adding the condition N =< 1 to the base case,
the nonterminating problem is eliminated.
ssum_to(N,1):-N =< 1,!.
ssum_to(N,Res):-N1 is N-1,

ssum_to(N1,Res1),
Res is Res1+N.

M. Marin LFP

Typical uses of the cut operator
1. To confirm the choice of a rule

Q: How can we avoid the previous nonterminating
case to compute the sum?

A: By adding the condition N =< 1 to the base case,
the nonterminating problem is eliminated.
ssum_to(N,1):-N =< 1,!.
ssum_to(N,Res):-N1 is N-1,

ssum_to(N1,Res1),
Res is Res1+N.

M. Marin LFP

Alternatives to the cut operator
The connection between ! and not

When ’!’ is used to confirm the choice of a rule, it can be
replaced with not.
not(Fact) is satisfied when când Fact fails.
The usage of not is considered a good programming style,
but

programs can become less efficient
we make a compromise between readability and efficiency

M. Marin LFP

Alternatives to the cut operator
Adding the first N positive integers: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

When we use not, there is the possibility to double the
effort to compute an answer:
A:-B,C.
A:-not(B),D.

In this example, B must be satisfied twice (during
backtracking).

M. Marin LFP

Alternatives to the cut operator
Adding the first N positive integers: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

When we use not, there is the possibility to double the
effort to compute an answer:
A:-B,C.
A:-not(B),D.

In this example, B must be satisfied twice (during
backtracking).

M. Marin LFP

Alternatives to the cut operator
Adding the first N positive integers: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

When we use not, there is the possibility to double the
effort to compute an answer:
A:-B,C.
A:-not(B),D.

In this example, B must be satisfied twice (during
backtracking).

M. Marin LFP

Predicate fail
The cut-fail combination

fail is a predefined predicate.

When it is selected in a query, fail fails and triggers
backtracking.

If fail is selected after !, there is no backtracking.

Example
The rule „A person is bad if that person is not good” can be formalized as follows:

% Facts which characterize good people
good(ray).
good(alice).
good(mike).
% The rules that define bad people
bad(X):-good(X),!,fail.
bad(X).

M. Marin LFP

The cut-fail combination

good(ray). % (1)
bad(X):-good(X),!,fail. % (2)
bad(X). % (3)

?- bad(ray). ?- bad(bob).
false. true.

bad(ray)

good(ray),!,fail

!,fail

(2)

(1)

fail

(2)

(1)

x

bad(bob)

good(bob),!,fail �
x

(2) (3)

M. Marin LFP

The cut-fail combination

good(ray). % (1)
bad(X):-good(X),!,fail. % (2)
bad(X). % (3)

?- bad(ray). ?- bad(bob).
false. true.

bad(ray)

good(ray),!,fail

!,fail

fail

(2)

(1)

x

bad(bob)

good(bob),!,fail �
x

(2) (3)

M. Marin LFP

The cut-fail combination

good(ray). % (1)
bad(X):-good(X),!,fail. % (2)
bad(X). % (3)

?- bad(ray). ?- bad(bob).
false. true.

bad(ray)

good(ray),!,fail

!,fail

fail

(2)

(1)

x

bad(bob)

good(bob),!,fail �
x

(2) (3)

M. Marin LFP

The cut-fail combination
Predicate call. Other aplications

not could be implemented with a cut-fail combination, as follows:
not(P):-call(P),!,fail.
not(_).

call is a predefined predicate which takes as argument an atom, and tries to
satisfy the atom argument.

call(P) succeeds if predicate P succeeds; otherwise, it fails.
In Prolog, not and call are called predicates of order II, because they
take other predicates as arguments .

A Prolog implementation of if_then_else:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-call(Act2).

How can we express in Prolog the statement “Mike likes all sports, except
boxing.”?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

A slightly more efficient version is produced if we define the auxiliary predicate
not_box:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

M. Marin LFP

The cut-fail combination
Predicate call. Other aplications

not could be implemented with a cut-fail combination, as follows:
not(P):-call(P),!,fail.
not(_).

call is a predefined predicate which takes as argument an atom, and tries to
satisfy the atom argument.

call(P) succeeds if predicate P succeeds; otherwise, it fails.
In Prolog, not and call are called predicates of order II, because they
take other predicates as arguments .

A Prolog implementation of if_then_else:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-call(Act2).

How can we express in Prolog the statement “Mike likes all sports, except
boxing.”?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

A slightly more efficient version is produced if we define the auxiliary predicate
not_box:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

M. Marin LFP

The cut-fail combination
Predicate call. Other aplications

not could be implemented with a cut-fail combination, as follows:
not(P):-call(P),!,fail.
not(_).

call is a predefined predicate which takes as argument an atom, and tries to
satisfy the atom argument.

call(P) succeeds if predicate P succeeds; otherwise, it fails.
In Prolog, not and call are called predicates of order II, because they
take other predicates as arguments .

A Prolog implementation of if_then_else:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-call(Act2).

How can we express in Prolog the statement “Mike likes all sports, except
boxing.”?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

A slightly more efficient version is produced if we define the auxiliary predicate
not_box:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

M. Marin LFP

The cut-fail combination
Predicate call. Other aplications

not could be implemented with a cut-fail combination, as follows:
not(P):-call(P),!,fail.
not(_).

call is a predefined predicate which takes as argument an atom, and tries to
satisfy the atom argument.

call(P) succeeds if predicate P succeeds; otherwise, it fails.
In Prolog, not and call are called predicates of order II, because they
take other predicates as arguments .

A Prolog implementation of if_then_else:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-call(Act2).

How can we express in Prolog the statement “Mike likes all sports, except
boxing.”?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

A slightly more efficient version is produced if we define the auxiliary predicate
not_box:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

M. Marin LFP

Other applications of fail

fail can be used intentionally to produce complete backtracking an
the atoms that precede it.

This process could be interesting because of the side effects of
backtracking, like printing something at the terminal.

Example

Print all objects with a certain property

red(apple).
red(cube).
red(sun).
show(X):-red(X),writeln(X),fail.
show(_).

?-show(X).
apple
cube
sun
true.

M. Marin LFP

Other uses of the cut operator
3. Stopping a “generate and test" process

Integer division:
% Predicate to generate all non-negative
% integers
nat(0).
nat(N) :- nat(N1), N is N1+1.

divide(N1,N2,Result) :-
nat(Result),
Product1 is Result * N2,
Product2 is (Result + 1)*N2,
Product1 =< N1, N1 < Product2, !.

?-divide(81,7,X).
X=11.

M. Marin LFP

Problems with the cut operator

Consider the following definition of the concatenation predicate:

conccut([],X,X):-!.
conccut([A|B],C,[A|D]):-

conccut(B,C,D).

?-conccut([1,2,3],[a,b,c],X).
X = [1,2,3,a,b,c].
?-conccut([1,2,3],X,[1,2,3,a,b,c]).
X=[a,b,c].
?-conccut(X,Y,[1,2,3,a,b,c]).
X=[],
Y=[1,2,3,a,b,c].

The behaviour for the first two queries is as expected.
For the third query, Prolog produces just one answer – for
the base case, where cut occurs. The other solutions are
cut out.

M. Marin LFP

Problems with the cut operator

number_parents(adam,0):-!.
number_parents(eve,0): -!.
number_parents(X,2).
?- number_parents(eve,X).
X=0.
?-number_parents(john,X).
X=2.
?-number_parents(eve,2).
true.

The first 2 queries are satisfied, as expected.

The third query has an unexpected answer. This happens
because the particular instantiation of the arguments does not fit
with the special condition where cut was used.

M. Marin LFP

Problems with the cut operator

number_parents(adam,0):-!.
number_parents(eve,0): -!.
number_parents(X,2).
?- number_parents(eve,X).
X=0.
?-number_parents(john,X).
X=2.
?-number_parents(eve,2).
true.

The first 2 queries are satisfied, as expected.

The third query has an unexpected answer. This happens
because the particular instantiation of the arguments does not fit
with the special condition where cut was used.

M. Marin LFP

Problems with the cut operator

number_parents(adam,0):-!.
number_parents(eve,0): -!.
number_parents(X,2).
?- number_parents(eve,X).
X=0.
?-number_parents(john,X).
X=2.
?-number_parents(eve,2).
true.

The first 2 queries are satisfied, as expected.

The third query has an unexpected answer. This happens
because the particular instantiation of the arguments does not fit
with the special condition where cut was used.

M. Marin LFP

The cut operator
Problems and ways to fix them

The unexpected behavior of the predicate number_parents
can be corrected in at least two ways:

1 number_parents_1(adam, N):-!, N=0.
number_parents_1(eve, N):-!, N=0.
number_parents_1(X, 2).

2 number_parents_2(adam, 0):-!.
number_parents_2(eve, 0):-!.
number_parents_2(X, 2):-

X \= adam,
X \= eve.

M. Marin LFP

The cut operator
Conclusions

The cut operator is very powerful and must be used with care.
It can improve efficiency of computaiton, but it can easily
introduce unexpected behavior
There are two kinds of cuts:

Green cuts: no potential solutions are lost
Red cuts: the search space which is cut out contains
potential solutions.

Green cuts are harmless, but red cuts must be used with
great care.

M. Marin LFP

The cut operator
Examples of green cuts and red cuts

Green cuts: solutions are not lost

min1(X,Y,X):-X=<Y,!.
min1(X,Y,Y):-X>Y.

Red cuts: some solutions are lost

member(X,[X|_]):-!.
member(X[_|T]):-member(X,T).

?-member(X,[a,b]). % X=b is not found
X=a.

or

min2(X,Y,X):-X=<Y,!.
min2(X,Y,Y).

?-min2(2,3,X). % X=3 is not found
X=2.

M. Marin LFP

Prolog programming styles

Consider the rule
/* in(X,Y) means ca X este in Y */

in(X,romania) :- in(X,timis).

This rule can be interpreted in two ways:
Declarative: "X is in Romania if X is in Timiş."
Procedural: "To prove that X is in Romania it is enough to

prove that X is in Timiş."

Logic programming encourages the declarative
interpretation:

The programmer is advised to wrote rules and facts about
what he knows, without caring too much how Prolog
answers to these questions.

The efficiency of logic programs can be improved
dramatically if we take into account the procedural
interpretation: How does Prolog answer the questions?

M. Marin LFP

Declarative versus procedural thinking

The purpose of this lecture is to encourage combining
declarative with procedural thinking
⇒ more efficient programs

and to learn some general techniques to program efficiently in
Prolog, based on procedural thinking.

M. Marin LFP

Differences between declarative and procedural
programming

These two ways of thinking can produce different results⇒ it is
important to understand the cause of these differences.

Example
ancestor(A,C):-parent(A,C).
ancestor(A,C):-parent(A,B),ancestor(B,C).
progenitor(A,C):-progenitor(B,C),parent(A,B).
progenitor(A,C):-parent(A,C).

ancestor(A,C) and progenitor(A,C) have the same
logical meaning: "C descends from A." but these two predicates
have different procedural interpretations:

?-ancestor(ion,X). will do progress to find an answer.
?-progenitor(ion,X). will produce an infinite loop to
search for an answer.

M. Marin LFP

Techniques to reduce the search space

Search for answers is time consuming: an efficient program
must find fast the answers to a query.

Example
If a database contains a list of 1000 gray entities (gray(...)) and
only 10 entities which are horses (horse(...)), then the question

?-horse(X),gray(X).

checks from the very beginning 10 possible answers for X, whereas

?-gray(X),horse(X).

checks 1000 de possible answers for X.

These two questions have the same logical meaning, but the
answers to the first questions are found 100 times faster.

M. Marin LFP

Techniques to reduce the search space

There are more subtle techniques to reduce the search space.

How can we define a predicate set_echiv(L1,L2) to decide if two
lists L1 and L2 represent the same set of objects?

A very inefficient version: We check if L1 is a permutation
of L2:
set_echiv(L1,L2):-permute(L1,L2).

% permute(L1,L2) for given L1, instantiates, by backtracking,
% L2 to every possible permutation of L1
permute([],[]).
permute([X|Y],Z):-permute(Y,W),insert(X,W,Z).
insert(X,T,[X|T]).
insert(X,[H|T1],[H|T2]):-insert(X,T1,T2).

A list with n elements has n! permutations.
For 20 elements⇒ 20! ≈ 2.4× 1018 possible comparisons
to check equivalence with L1.

M. Marin LFP

Techniques to reduce the search space

How can we define a predicate set_echiv(L1,L2) to decide if two
lists L1 and L2 represent the same set of objects?

A reasonable version: Check if the result of sorting L1 and
L2 is the same:
set_echiv(L2,L2):-sort(L1,L),sort(L2,L).
sort([],[]). /* base case */
sort([A],[A]).
sort([A,B|R],S):-split([A,B|R],L1,L2),

sort(L1,S1), sort(L2,S2),
merge(S1,S2,S).

split([],[],[]).
split([A],[A],[]).
split([A,B|R],[A|Ra],[B|Rb]):-split(R,Ra,Rb).
merge(A,[],A).
merge([],B,B).
merge([A|Ra],[B|Rb],[A|M]) :- A =< B, merge(Ra,[B|Rb],M).
merge([A|Ra],[B|Rb],[B|M]) :- A > B, merge([A|Ra],Rb,M).

Sorting a list with n elements can be done in în n log2(n) steps
⇒ 20 elements can be sorted in 20 log2 20 ≈ 86 steps
Performance ≈ 1016 times faster that the permutation method,
for 20-element lists.

M. Marin LFP

Efficient techniques based on unification

Some predicates can be defined elegantly using some patterns.
In these situations, the programmer can use those patterns to
avoid writing programs with complicated operations.

The comparison with a pattern is performed efficiently with the
unification algorithm.

Example (Recognizing 3-element lists)
1 An inefficient version with arithmetic operations:

length_3(L):- length(L,N),N=3.
length([],0).
length([H|T],N):-length(T,N1), N2 is N1+1, N2 = N.

2 An efficient version based on unification:
length_3([_,_,_]).

M. Marin LFP

Memory overheads of SLDNF-resolution

In general, when we consider the program
a:-b,c.
a:-d.

and look for an answer to the query ?-a. by resolution
with the first rule, Prolog must satisfy first the sub-query b.
At this stage, Prolog saves in memory the following data:

the continuation: what must be done (that is, c) after we
compute an answer to query b.
the backtrack point: where to find an alternative (that is, d)
if the attempt to prove b fails.

For recursive procedures, the continuation and the
backtrack point must be memorized for every recursive call.

This phenomenon can cause high memory overhead!

M. Marin LFP

Recognizing tail recursion

If a recursive predicate has no continuation and backtrack
point, Prolog can automatically detect this fact, and will not
allocate memory for them.
Such recursive predicates are called final (or tail)
recursive: the recursive call is the last one in the
clause, and there are no alternatives.
Tail recursive predicates are more efficient than the non-tail
recursive versions.
test1 is tail recursive:
test1(N) :- write(N), nl, NewN is N+1, test1(NewN).

In thia program:
write writes its argument at the console, and is satisfied.
nl moves the prompt on a new line, and is satisfied.

the natural numbers will be printed at the console until we
consume all system resources (memory or the upper limit
for the representation of numbers)

M. Marin LFP

Recognizing tail recursion (continued)

test2 is not tail recursive because it has a continuation:
test2(N):-writeln(N),NewN is N+1,test2(NewN).
test2(N):-N<0.

test3 is tail recursive because the alternative clause
occurs before the recursive call, therefore there is no
backtrack point from the recursive call:
test3(N):-N<0.
test3(N):-writeln(N),NewN is N+1,test3(NewN).

test4 is not tail recursive because there are alternatives
for the predicates in the recursive clause which precede
the recursive call, and backtracking to a previously made
choice could be necessary:
test4(N):-writeln(N),m(N, NewN),test4(NewN).
m(N, NewN):-N >= 0, NewN is N + 1.
m(N, NewN):-N < 0, NewN is (-1)*N.

M. Marin LFP

Transforming recursive into tail recursive definitions

If a predicate is not tail recursive because it has backtrack
points, we can make it tail recursive by placing a cut operator
before the recursive call

⇒ The following predicate definitions are tail recursive:

test5(N):-writeln(N),NewN is N+1,!,test5(NewN).
test5(N):-N<0.

test6(N):-writeln(N),m(N, NewN),!,test6(NewN).
m(N, NewN):-N >= 0,NewN is N + 1.
m(N, NewN):-N < 0,NewN is (-1)*N.

Note: tail recursion can be indirect. The following predicate
definitions are mutually tail recursive:

test7(N):-writeln(N),test7a(N).
test7a(N):-NewN is N+1,test7(NewN).

test7a is used just to rename a part of predicate test7.

M. Marin LFP

Tail recursion
Concluding remarks

In Prolog, tail recursion exists when
The recursive call is the last in the clause.
There are no untried clauses.
There are no untried alternatives for the predicates which
precede the recursive call.

M. Marin LFP

Let indexing help

EXAMPLE: To find a clause that matches the query

?-p(a,b). % p is a predicate name, which is an atom

Prolog looks only at the clauses for f
every atom (=name of function or predicate) is associated
with a pointer or hashing function that reduces the search
space to clauses for p. This technique is called indexing.

To save execution type, many implementation of Prolog, in-
cluding SWI-Prolog, index not only the predicate, but also
the atom that is at the root position of its first argument.
This techniques is called first-argument indexing.

M. Marin LFP

Practical consequences of first-argument indexing

Arguments should be ordered so that the first argument is
the one most likely to be known at search time, and prefer-
ably the most diverse.

Example
p(a,x).
p(b,x).
p(c,x).

will be searched in one step, whereas the clauses

p(x,a).
p(x,b).
p(x,c).

will be searched in 3 steps, because first-argument indexing
can not distinguish them.

M. Marin LFP

Practical consequences of first-argument indexing

First-argument indexing can make a predicate tail recursive,
when otherwise it would not be.

1 p(x(A,B)) :- p(A).
p(q).
is tail recursive even though the recursive call is not in the
last clause, because indexing eliminates the last clause
from consideration: any argument that matches x(A,B)
can not match q.

2 The same is true for list-processing predicates of the form
p([H|T],...) :- ...
p([],...).

because first-argument indexing distinguishes non-empty
lists from [].

M. Marin LFP

Bibliographic references

M.A. Covington. Efficient Prolog: A Practical Guide.
research Report AI-1989-08. 1989.
Try the examples in SWI-Prolog.
Points of interest:

Think declaratively as well as procedurally.
Narrow the search.
Let unification do the work.
Understand tokenization.
Recognize tail recursion, ans use it to write efficient
programs.
Let indexing help.
Use mode declarations.

M. Marin LFP

http://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Covington.pdf

