Lecture 10: Recursion in Prolog

Recursive data structures and relations. Applications

Mircea Marin
West University of Timigoara
mircea.marin@e-uvt.ro

April 26, 2021

mailto:mmarin@info.uvt.ro

Recursion
Recap

A notion is recursive if it is defined in terms of itself.

@ We can define recursive data types, recursive functions, or
recursive relations.
@ In general, a recursive definition consists of

@ 0 or more base cases
@ 1 or more recursive cases

In Prolog
@ we can work with recursive data: trees, lists, etc.
@ we can define recursive relations

M. Marin

Recursive datatypes and predicates
Lists

List = predefined datatype of Prolog. A list is either
@ The empty list [] (base case)
@ [term | list] (recursive case)

Some definitions of predicates and relations for lists

% isList (1st) holdsif 1st is alist

isList ([]) . % base case
isList ([_|T]):—-isList (T). % recursive case

% member (term, 1st) holdsif termisinlist 1st
member (X, [X]|_1) . % base case: term is the head of the list
member (X, [_|T]) : —-member (X, T) . % recursive case

M. Marin LFP

@ All variables must start with _ or with an uppercase letter.

@ Like in Haskell, we can use the anonymous variable _
which matches every term.

© Variables can occur many times, both in the head and in
the body of a clause. We could have written

member (X, [Y|_]) : —X=Y.

but Prolog allows to be more concise, and write

member (X, [X]|_1).

©Q nember is predefined in Prolog.

M. Marin LFP

Remarks
More about list membership tests

Prolog tries to find if a term is in a list by applying the rules in
the order from the program:

@ nember (X, [X|T]) . (base case)
@ member (X, [_|T]) :—-member (X, T). (recursive case)
In the recursive case, the list gets shorter and shorter.

@ The list can not be shortened indefinitely = computation
will terminate.

Prolog stops computation in 2 situations:

@ when it encounters a list for which base case holds = it
returns true.

© when it reaches the empty list = no more rules are
applicable = it returns false.

M. Marin LFP

What happens when Prolog is asked to answer the following queries:

?- member (X, [a,b,c]) .
?- member (a, X) .
?- member (X,Y) .
?— member (X,_) .
?- member (_,Y) .
?— member (_,_).

Note that some queries have multiple answers.

M. Marin

What happens when Prolog is asked to answer the following queries:

?- member (X, [a,b,c]) .
?- member (a, X) .
?- member (X,Y) .
?— member (X,_) .
?- member (_,Y) .
?— member (_,_).

Note that some queries have multiple answers.

member (X, [a,b,c])

M)

member (X, [b,c])

{x E at / \Cz

member (X, [c])

{x 5 b} M \‘02)

member (X, [])
{x—=c} fail

M. Marin

Recursive datatypes and predicates
Binary trees

We can work with binary trees defined by the grammar

btree ::= null | bt (string,btree,btree)

Some definitions of predicates and relations for binary trees

% 1sBT (bt) holds if bt is a binary tree

isBT (null) .

isBT (bt (S, T1,T2)) :—string(S),isBT (T1), 1sBT(T2) .

% toList (bt, lst) holdsif 1st is the list of strings from bt
toList (null, []) .
toList (bt (S,T1,T2),Lst) :—

toList (T1,L1),

toList (T1,L2),

append (L1, [S|L2],Lst) .

M. Marin LFP

Recursion
Termination problems

Termination = property of a program to stop after a finite
number of computational steps.

@ Some programs do not terminate
parent (X,Y) :—son (Y, X) .
son (Y, X) :—parent (X, Y) .
Reason: these definitions are circular.
= avoid circular definitions!

@ The following program does not terminate because it is is
left-recursive:

man (X) :—man (Y) ,parent (X,Y) .
man (adam) .

= left-recursion should be used with care!

M. Marin LFP

Recursion

Termination problems

Program clauses (=rules and facts) are applied in the order in which
they are written in the program.

@ Intuitive criterion: facts should appear before rules.

Sometimes, rules ordered in a particular way work well only for a
particular kind of queries.

Example
isList ([_IT]):-isList (T) .
isList ([]) .

is adequate to answer the queries
?-isList ([1,2,3]).
?-isList ([]) .

?-isList (£(1,2)).

but inadequate for ?-isList (X).

M. Marin

Recursion

Termination problems

Program clauses (=rules and facts) are applied in the order in which
they are written in the program.

@ Intuitive criterion: facts should appear before rules.

Sometimes, rules ordered in a particular way work well only for a
particular kind of queries.

Example
isList ([_IT]):-isList (T) .
isList ([]) .

is adequate to answer the queries

?-isList ([1,2,3]).
?-isList ([]) .
?-isList (£(1,2)).

but inadequate for ?-isList (X).

Question: What answer do you get to 2-isList (X) if you change the order of
clauses in the program?

M. Marin

Recursion
The order of building solutions

Many predefined predicates of Prolog make distinction between

Input parameters (-): they should have concrete values when
the predicate is called.

Output parameters (+): their values are computed as answers
to the query.

Arbitrary parameters (?): can be both input and output.

M. Marin LFP

Recursion

Example

% listLen(+List,-N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). S (1)
listLen([_|T],N):-1listLen(T,N1), N is N1+1. % (2)

listLen([a,b],N)

@]

listLen([b],N1), N is N1+1

@)

listLen([],N2), N1 is N2+1.

(1)/
{N2—0}

O

Recursion

Example

% listLen(+List,-N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). S (1)
listLen([_|T],N):-1listLen(T,N1), N is N1+1. % (2)

listLen([a,b],N)

@] f2)

listLen([b],N1), N is N1+1

Q)& N{xl;»l}

listLen (listLen([],N2), NI is N2+1.
{2ac}£iiﬁ¢¢4¢44¢¢4y
Remarks:

Recursion

Example

% listLen(+List,-N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). S (1)
listLen([_|T],N):-1listLen(T,N1), N is N1+1. % (2)

listLen([a,b],N)

@] f2)

listLen([b],N1), N is N1+1

Q)& N{xl;»l}

listLen (listLen([],N2), NI is N2+1.

T Hc},//

Remarks:

@ The answer to the number N of elements is built on the branch of return from
recursion

Recursion

Example

% listLen(+List,-N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). S (1)
listLen([_|T],N):-1listLen(T,N1), N is N1+1. % (2)

listLen([a,b],N)

@] f2)

listLen([b],N1), N is N1+1

Q)& N{xl;»l}

listLen (listLen([],N2), NI is N2+1.

T Hc},//

Remarks:
@ The answer to the number N of elements is built on the branch of return from
recursion

@ We wish to build the value of N on the branch which advances through recursion,
to avoid the creation of temporary variables on the call stack.

M. Marin LFP

Recursion

Counting the number of elements in a list with an accumulator

listLenl (List, N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux (List, 2, N) where:

@ 2 is a new argument, called accumulator.

@ 2 accumulates the number of elements in the list while it advances through

recursion.
listLenl (List,N):-listLenAux (List,0,N). $1
listLenAux([],N,N). %2
listLenAux ([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLstl ([a,b],N).

Recursion

Counting the number of elements in a list with an accumulator

listLenl (List, N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux (List, 2, N) where:

@ 2 is a new argument, called accumulator.

@ 2 accumulates the number of elements in the list while it advances through

recursion.
listLenl (List,N):-listLenAux (List,0,N). $1
listLenAux([],N,N). %2
listLenAux ([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLstl ([a,b],N).

ﬁ(ﬂ

elemLstAux([a,b],0,N).

Recursion

Counting the number of elements in a list with an accumulator

listLenl (List, N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux (List, 2, N) where:

@ 2 is a new argument, called accumulator.

@ 2 accumulates the number of elements in the list while it advances through

recursion.
listLenl (List,N):-listLenAux (List,0,N). $1
listLenAux([],N,N). %2
listLenAux ([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLstl ([a,b],N).

ﬁ(ﬂ

elemLstAux([a,b],0,N).

ﬁ(3)

elemLstAux ([b],1,N).

M. Marin

Recursion

Counting the number of elements in a list with an accumulator

listLenl (List, N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux (List, 2, N) where:

@ 2 is a new argument, called accumulator.

@ 2 accumulates the number of elements in the list while it advances through

recursion.
listLenl (List,N):-listLenAux (List,0,N). $1
listLenAux([],N,N). %2
listLenAux ([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLstl ([a,b],N).

ﬁ(ﬂ

elemLstAux([a,b],0,N).

ﬁ(3)

elemLstAux ([b],1,N).

ﬂ(?’)

elemLstAux ([],2,N).

M. Marin

Recursion

Counting the number of elements in a list with an accumulator

listLenl (List, N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux (List, 2, N) where:

@ 2 is a new argument, called accumulator.

@ 2 accumulates the number of elements in the list while it advances through

recursion.
listLenl (List,N):-listLenAux (List,0,N). $1
listLenAux([],N,N). %2
listLenAux ([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLstl ([a,b],N).

ﬁ(ﬂ

elemLstAux([a,b],0,N).

ﬁ(3)

elemLstAux ([b],1,N).

ﬂ(?’)

elemLstAux ([],2,N).
l(2)
O{n — 2}

M. Marin

Applications of accumulators
List reversal

Define the relation revList (L, R) to hold if R is the reverse of
list L.

Main idea: Use an accumulator which acts like a stack where
we push recursively all elements of 1, starting with
its head.

Initially, the accumulator is empty.

revList (L,R) :—revListAux (L,R, []1) . $ (1)
% base case

revListAux([],R,R). % (2)
% recursive case

revListAux ([H|T],R,A) :— % (3)

revListAux (T,R, [H|A]) .

M. Marin LFP

List reversal with accumulators
lllustrated example

?- revlist([a,b,c],R).

M. Marin LFP

List reversal with accumulators
lllustrated example

?- revlist([a,b,c],R).

revlList ([a,b,c],R).

M. Marin LFP

List reversal with accumulators
lllustrated example

?- revlist([a,b,c],R).

revlList ([a,b,c],R).

lo

revListAux([a,b,c],R, []).

M. Marin

List reversal with accumulators

lllustrated example

?- revlist([a,b,c],R).

revlList ([a,b,c],R).

lo

revListAux([a,b,c],R, []).
(2)

revListAux ([b,c],R, [a]) .

M. Marin

List reversal with accumulators

lllustrated example

?- revlist([a,b,c],R).

revlList ([a,b,c],R).

lo

revListAux([a,b,c],R, []).
(2)

revListAux ([b,c],R, [a]) .

l@

revListAux ([c],R, [b,al).

M. Marin

List reversal with accumulators

lllustrated example

?- revlList([a,b,c],R).

revlList ([a,b,c],R).

lo

revListAux([a,b,c],R, []).
(2)

revListAux ([b,c],R, [a]) .

l@

revListAux ([c],R, [b,al).
l@

revListAux ([],R, [c,b,a]).

M. Marin

List reversal with accumulators

lllustrated example

?- revlist([a,b,c],R).
R = [c,b,a].

revlList ([a,b,c],R).

lo

revListAux([a,b,c],R, []).

(2)
revListAux ([b,c],R, [a]) .
revListAux ([c] , [b,al) .
revListAux ([],R, [c,b,al).

ﬂ

{R— k,b,ﬂ}

M. Marin

Neighbors problem

Quiz

Formalize the following knowledge in Prolog:
@ Stephen is neighbor of Peter.
e Stephen is married with a doctor who works at emergency hospital.
© Peter is married with an actress who works at the national theatre.
@ Stephen is melomaniac and Peter is hunter.
© Al melomaniacs are sentimental.
@ Allhunters are liars.
0 Actresses like sentimental people.
Q Married people have same neighbors.
Q The relations of being married and being neighbors are symmetric.

Then, use Prolog to find the answer to the following question: Does Peter’s wife like
Stephen?

M. Marin

Neighbors problem

Knowledge representation in Prolog

o\

neighborl (stephen, peter) .

marriedl (stephen,wife_stephen).

doctor (wife_stephen) .

works (wife_stephen, emergencyHospital) .
marriedl (peter,wife_peter).

actress (wife_peter).

works (wife_peter,nationalTheatre) .
melomaniac (stephen) .

hunter (peter) .
sentimental (X) :—-melomaniac (X) .

liar (X) :—hunter (X) .

likes (X,Y) :—actress (X), sentimental (Y) .
neighbor (X, Y) :—-married (X, Z),neighbor(z,Y).
neighbor (X, Y) :—-neighborl (X, Y) .
neighbor (X,Y) :-neighborl (Y, X) .
married(X,Y) :-marriedl (X,Y) .

married(X,Y) :—-marriedl (Y, X) .
conclusion:-married(peter,Wife), likes (Wife, stephen).

o o o o o

o o

oo

o

o° o o
O O W WO T U BB WWwwNdDNDDN

o o

o

o

?-conclusion.

Remark: This program is recursive.

Remarks about symmetric relations

A binary relation r is symmetric if
r (termy, termp) holds if and only if r (termp, termy) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?

M. Marin

Remarks about symmetric relations

A binary relation r is symmetric if
r (termy, termp) holds if and only if r (termp, termy) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?
@ \Version 1 - Example

r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark: It is essential to place the facts for r before the rule for r.
Problem:

?-r(b,c).

= this query will never be answered (infinite computation).
How can we avoid these infinite computations?

M. Marin

Remarks about symmetric relations

A binary relation r is symmetric if
r (termy, termp) holds if and only if r (termp, termy) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?
@ \Version 1 - Example

r(a,b). r(a,c).
r(X,Y):-r(Y,X).
Remark: It is essential to place the facts for r before the rule for r.
Problem:
?-r(b,c).
= this query will never be answered (infinite computation).
How can we avoid these infinite computations?
@ \Version 2: by using an asymmetric binary relation r1. For example:

rl(a,b). rl(a,c).
r(X,Y):-rl1(X,Y).
r(X,Y):-rl(Y,X).

M. Marin

Remarks about symmetric relations

A binary relation r is symmetric if
r (termy, termp) holds if and only if r (termp, termy) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?
@ \Version 1 - Example

r(a,b). r(a,c).
r(X,Y):-r(Y,X).
Remark: It is essential to place the facts for r before the rule for r.
Problem:
?-r(b,c).
= this query will never be answered (infinite computation).
How can we avoid these infinite computations?
@ \Version 2: by using an asymmetric binary relation r1. For example:
rl(a,b). rl(a,c).
r(X,Y):-rl1(X,Y).
r(X,Y):-rl(Y,X).

This version was used to define the symmetric relations neighbor and
married.

M. Marin

Representation of sets in Prolog

A set can be represented as a list in which every element occurs only
once.

@ Define recursively the property isSet (1) to hold if L is a list in
which every element occurs only once. For example:

?—-isSet ([a,b,d,c]).
true

?-isSet ([a,b,a]) .
false

@ Define the relation toset (1, M) which takes as input argument
a list 1. and uses M as output parameter for the rest of elements
that occur in L.

?-toSet ([a,b,a,c],M).
M=[a,b,c]

M. Marin

Representation of sets in Prolog

@ isSet (L)
> Base case: [] is set.
> Recursive case: [H|T] is set if Hdoes not occurin T and T
is set.
Q tosSet (L,M)
> Basecase: If L=[] then M=[].
> Recursive case: If L=[H|T] then M=[H|R] where R is the
list produced in 2 steps:
@ First, find list R1 produced from T by removing all
occurrences of H.
To compute R1, we can define relation del (H, T,R1) to
hold if R1 is the list produced from T by removing all
occurrences of H.
@ R is produced recursively, as answer to the query
toSet (R1,R) .

M. Marin

Representation of sets in Prolog

isSet ([]).
isSet ([H|T]) : —not (member (H,T)), 1isSet (T).

toSet ([],[]) .
toSet ([H|T], [HIR]) :-del (H,T,R1),toSet (R1,R).

del(H, [1,I[]).
del (H, [H|T],R):—-del (4, T,R).
del (H, [H1|T], [HL|R]) : —H\=H1,

del (H, T,R) .

M. Marin LFP

Peano arithmetic in Prolog
Quiz

In Peano arithmetic, natural numbers are represented by terms
defined by

nat ::= 0 | s(nat)

For example, s (s (0)) represents number 2. Define the
following relations on numbers represented in Peano arithmetic:

o

add (+X,+Y,-Z) holds if Z is the sum of X and Y
mul (+X,+Y,-Z) holds if Z is the product of X and Y
gt (+X,+Y) holds if X is strictly greater than Y.

o\

o

M. Marin

Recursive relations
Quiz

Consider the relation next (x, Y, L) defined by:
next (X,Y, [X,Y|_1).

next (X,Y, [Z|T]) :—-next (X,Y,T).

@ What is the meaning of next (X, Y, z) ?

@ What is the meaning of z_u (x, Y) defined by the rule

z_u(X,Y) :—next (X,Y, [monday, tuesday, wednesday,
thursday, friday,
saturday, sunday,monday]) .

© What is the meaning of z_u (x, Y) defined by the rule

z_p(X,Y):—z_u(Y,X).

M. Marin

