Lecture 10: Recursion in Prolog

Recursive data structures and relations. Applications

Mircea Marin

West University of Timişoara mircea.marin@e-uvt.ro

April 26, 2021

Recursion

A notion is recursive if it is defined in terms of itself.

- We can define recursive data types, recursive functions, or recursive relations.
- In general, a recursive definition consists of
- 0 or more base cases
- 1 or more recursive cases

In Prolog

- we can work with recursive data: trees, lists, etc.
- we can define recursive relations

Recursive datatypes and predicates

Lists

List $=$ predefined datatype of Prolog. A list is either

- The empty list [] (base case)
- [term | list] (recursive case)

Some definitions of predicates and relations for lists

```
% isList(lst) holds if lst is a list
isList([]).
isList([_| T]) :-isList(T) . % recursive case
```

\% member (term, lst) holds if term is in list lst
 member ($\mathrm{X},\left[_\mid \mathrm{T}\right]$) : -member (X, T) . \% recursive case

Remarks

(1) All variables must start with _ or with an uppercase letter.
(2) Like in Haskell, we can use the anonymous variable \qquad which matches every term.
(3) Variables can occur many times, both in the head and in the body of a clause. We could have written

$$
\text { member }\left(X,\left[Y \mid _\right]\right):-X=Y \text {. }
$$

but Prolog allows to be more concise, and write

```
member(X,[X|_]).
```

(4) member is predefined in Prolog.

Remarks

More about list membership tests

Prolog tries to find if a term is in a list by applying the rules in the order from the program:
(1) member $(X,[X \mid T])$. (base case)
(2) member $\left(X,\left[_\mid T\right]\right):-$ member (X, T). (recursive case)

In the recursive case, the list gets shorter and shorter.

- The list can not be shortened indefinitely \Rightarrow computation will terminate.
Prolog stops computation in 2 situations:
(1) when it encounters a list for which base case holds \Rightarrow it returns true.
(2) when it reaches the empty list \Rightarrow no more rules are applicable \Rightarrow it returns false.

Quiz

What happens when Prolog is asked to answer the following queries:
?- member ($\mathrm{X},[\mathrm{a}, \mathrm{b}, \mathrm{c}]$).
?- member (a, X).
?- member (X, Y).
? - member (X, _).
?- member (_, Y).
?- member (_, _).
Note that some queries have multiple answers.

Quiz

What happens when Prolog is asked to answer the following queries:

```
?- member(X,[a,b,c]).
?- member(a,X).
?- member(X,Y).
?- member(X,_).
?- member (_,Y).
?- member(_,_).
```

Note that some queries have multiple answers.

Recursive datatypes and predicates

Binary trees

We can work with binary trees defined by the grammar btree : := null | bt(string,btree,btree)

Some definitions of predicates and relations for binary trees

\% isBT (bt) holds if bt is a binary tree isBT (null).
isBT (bt (S, T1, T2)) :-string(S), isBT(T1),isBT(T2).
\% toList (bt, lst) holds if lst is the list of strings from bt toList (null, []).
toList (bt (S, T1, T2), Lst):-
toList(T1,L1),
toList(T1,L2),
append (L1, [S|L2],Lst).

Recursion

Termination problems

Termination $=$ property of a program to stop after a finite number of computational steps.

- Some programs do not terminate

```
parent (X,Y):-son(Y,X).
son(Y,X):-parent (X,Y).
```

Reason: these definitions are circular.
\Rightarrow avoid circular definitions!

- The following program does not terminate because it is is left-recursive:
man (X) :-man (Y), parent (X,Y).
man (adam).
\Rightarrow left-recursion should be used with care!

Recursion

Termination problems

Program clauses (=rules and facts) are applied in the order in which they are written in the program.

- Intuitive criterion: facts should appear before rules.

Sometimes, rules ordered in a particular way work well only for a particular kind of queries.

Example

```
isList([_|T]):-isList(T).
```

isList([]).
is adequate to answer the queries

```
?-isList([1,2,3]).
?-isList([]).
?-isList(f(1,2)).
```

but inadequate for ?-isList (X).

Recursion

Termination problems

Program clauses (=rules and facts) are applied in the order in which they are written in the program.

- Intuitive criterion: facts should appear before rules.

Sometimes, rules ordered in a particular way work well only for a particular kind of queries.

Example

```
isList([_| T]):-isList(T).
```

isList([]).
is adequate to answer the queries

```
?-isList([1,2,3]).
?-isList([]).
?-isList(f(1,2)).
```

but inadequate for ?-isList (X).
Question: What answer do you get to ?-isList (X) if you change the order of clauses in the program?

Recursion

The order of building solutions

Many predefined predicates of Prolog make distinction between
Input parameters (-): they should have concrete values when the predicate is called.
Output parameters (+): their values are computed as answers to the query.
Arbitrary parameters (?): can be both input and output.

Recursion

Example

\% listLen (+List, -N) computes the number N of elements of List.
\% List is an input parameter, and N is output parameter.
listLen ([],0).
\% (1)
listLen([_|T],N):-listLen(T,N1), N is N1+1.
\% (2)

Recursion

Example

```
% listLen(+List, -N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0).
% (1)
listLen([_|T],N):-listLen(T,N1), N is N1+1. % (2)
```


Remarks:

Recursion

Example

```
% listLen(+List, -N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). % (1)
listLen([_|T],N):-listLen(T,N1), N is N1+1. % (2)
```


Remarks:

- The answer to the number N of elements is built on the branch of return from recursion

Recursion

Example

```
% listLen(+List, -N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). % (1)
listLen([_|T],N):-listLen(T,N1), N is N1+1. % (2)
\(\frac{\operatorname{listLen}([\mathrm{a}, \mathrm{b}], \mathrm{N})}{(2) \|}\)
\(\frac{\text { listLen }([\mathrm{b}], \mathrm{N} 1)}{(2) \|}, \mathrm{N}\) is \(\mathrm{N} 1+1\)
listLen \(([], \mathrm{N} 2), \mathrm{N} 1\) is \(\mathrm{N} 2+1\).
```


Remarks:

- The answer to the number N of elements is built on the branch of return from recursion
- We wish to build the value of N on the branch which advances through recursion, to avoid the creation of temporary variables on the call stack.

Recursion

Counting the number of elements in a list with an accumulator
listLen1 (List, N) computes the number of elements in List on the branch which advances through recursion by using the auxiliary predicate listLenAux (List, A, N) where:

- A is a new argument, called accumulator.
- A accumulates the number of elements in the list while it advances through recursion.

```
listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3
    elemLst1([a,b],N).
```


Recursion

Counting the number of elements in a list with an accumulator
listLen1 (List, N) computes the number of elements in List on the branch which advances through recursion by using the auxiliary predicate listLenAux (List, A, N) where:

- A is a new argument, called accumulator.
- A accumulates the number of elements in the list while it advances through recursion.

```
listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3
    elemLst1([a,b],N).
        (1)
elemLstAux([a,b],0,N).
```


Recursion

Counting the number of elements in a list with an accumulator

listLen1 (List, N) computes the number of elements in List on the branch which advances through recursion by using the auxiliary predicate listLenAux (List, A, N) where:

- A is a new argument, called accumulator.
- A accumulates the number of elements in the list while it advances through recursion.

```
listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3
    elemLst1([a,b],N).
        |(1)
elemLstAux([a,b],0,N).
        (3)
    elemLstAux([b],1,N).
```


Recursion

Counting the number of elements in a list with an accumulator

listLen1 (List, N) computes the number of elements in List on the branch which advances through recursion by using the auxiliary predicate listLenAux (List, A, N) where:

- A is a new argument, called accumulator.
- A accumulates the number of elements in the list while it advances through recursion.

```
listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3
    elemLst1([a,b],N).
        |(1)
elemLstAux([a,b],0,N).
        (3)
    elemLstAux([b],1,N).
        (3)
    elemLstAux([],2,N).
```


Recursion

Counting the number of elements in a list with an accumulator

listLen1 (List, N) computes the number of elements in List on the branch which advances through recursion by using the auxiliary predicate listLenAux (List, A, N) where:

- A is a new argument, called accumulator.
- A accumulates the number of elements in the list while it advances through recursion.

```
listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3
    elemLst1([a,b],N).
        |(1)
elemLstAux([a,b],0,N).
    (3)
    elemLstAux([b],1,N).
        (3)
    elemLstAux([],2,N).
        (2)
```


Applications of accumulators

List reversal

Define the relation revList (L, R) to hold if R is the reverse of list L.

Main idea: Use an accumulator which acts like a stack where we push recursively all elements of L, starting with its head.
Initially, the accumulator is empty.

```
revList(L,R):-revListAux(L,R,[]).
% base case
revListAux([],R,R) .
% recursive case
revListAux([H|T],R,A):-
    revListAux(T,R,[H|A]). revListAux (T, R, [H|A]).
```


List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
```


List reversal with accumulators

Illustrated example

?- revList([a,b,c],R).
revList ([a,b,c],R).

List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
```

```
    revList([a,b,c],R).
    |(1)
revListAux([a,b,c],R,[]).
```


List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
```

$\operatorname{revList}([a, b, c], R)$.
$\forall(1)$
$\operatorname{revListAux}([a, b, c], R,[])$.
$\operatorname{revListAux}([b, c], R,[a])$.

List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
```


List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
```


List reversal with accumulators

Illustrated example

```
?- revList([a,b,c],R).
R = [c,b,a].
```

revList ([a,b,c],R) $\downarrow(1)$
revListAux ([a,b, c], R, []) (2)
$\begin{gathered} \text { revListAux }([b, c], R,[a]) . \\ \Downarrow(2) \end{gathered}$
$\begin{gathered} ([c], R,[b, a]) . \\ \forall(2) \end{gathered}$

Neighbors problem

Quiz

Formalize the following knowledge in Prolog:
(1) Stephen is neighbor of Peter.
(2) Stephen is married with a doctor who works at emergency hospital.
(3) Peter is married with an actress who works at the national theatre.

4 Stephen is melomaniac and Peter is hunter.
(5) All melomaniacs are sentimental.
(6) All hunters are liars.
(7) Actresses like sentimental people.
(8) Married people have same neighbors.
(9) The relations of being married and being neighbors are symmetric.

Then, use Prolog to find the answer to the following question: Does Peter's wife like Stephen?

Neighbors problem

Knowledge representation in Prolog

neighbor1 (stephen, peter). \%1
married1 (stephen, wife_stephen). $\% 2$
doctor(wife_stephen). $\% 2$
works (wife_stephen, emergencyHospital). $\div 2$
married1 (peter,wife_peter). $\div 3$
actress (wife_peter). $\% 3$
works(wife_peter, nationalTheatre). \%3
melomaniac (stephen). $\% 4$
hunter (peter). $\div 4$
sentimental (X) :-melomaniac (X). \% 5
liar (X) : -hunter (X). $\div 6$
likes (X,Y):-actress (X), sentimental(Y). $\% 7$
neighbor (X, Y) : -married (X, Z), neighbor (Z, Y). $\div 8$
neighbor (X,Y) : -neighbor1 (X,Y). $\div 9$
neighbor (X,Y) : -neighbor1 (Y, X) \%9
married (X,Y) :-married1 (X,Y). \%9
married (X,Y) :-married1 (Y, X). \%9conclusion:-married(peter,Wife), likes(Wife, stephen).
?-conclusion.

Remark: This program is recursive.

Remarks about symmetric relations

A binary relation r is symmetric if
r (term ${ }_{1}$, term $)_{2}$ holds if and only if r (term ${ }_{2}$, term ${ }_{1}$) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?

Remarks about symmetric relations

A binary relation r is symmetric if
r (term ${ }_{1}$, term ${ }_{2}$) holds if and only if r (term ${ }_{2}$, term ${ }_{1}$) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?

- Version 1 - Example
$r(a, b) . r(a, c)$.
$r(X, Y):-r(Y, X)$.
Remark: It is essential to place the facts for r before the rule for r. Problem:
?-r (b, c).
\Rightarrow this query will never be answered (infinite computation).
How can we avoid these infinite computations?

Remarks about symmetric relations

A binary relation r is symmetric if
r (term ${ }_{1}$, term ${ }_{2}$) holds if and only if r (term 2, term $_{1}$) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?

- Version 1 - Example

```
r(a,b). r(a,c).
r(X,Y) :-r(Y,X).
```

Remark: It is essential to place the facts for r before the rule for r. Problem:
? $-r(b, c)$.
\Rightarrow this query will never be answered (infinite computation).
How can we avoid these infinite computations?

- Version 2: by using an asymmetric binary relation r1. For example:
r1 $(a, b) . r 1(a, c)$.
$r(X, Y):-r 1(X, Y)$.
$r(X, Y):-r 1(Y, X)$.

Remarks about symmetric relations

A binary relation r is symmetric if
r (term ${ }_{1}$, term ${ }_{2}$) holds if and only if r (term 2, term $_{1}$) holds.
The relations neighbor and married from the previous example are symmetric.
Q: How can we specify a symmetric relation?

- Version 1 - Example

```
r(a,b). r(a,c).
r(X,Y) :-r(Y,X).
```

Remark: It is essential to place the facts for r before the rule for r. Problem:
? $-r(b, c)$.
\Rightarrow this query will never be answered (infinite computation).
How can we avoid these infinite computations?

- Version 2: by using an asymmetric binary relation r1. For example:
$r 1(a, b) . \quad r 1(a, c)$.
$r(X, Y):-r 1(X, Y)$.
$r(X, Y):-r 1(Y, X)$.
This version was used to define the symmetric relations neighbor and married.

Representation of sets in Prolog

A set can be represented as a list in which every element occurs only once.

- Define recursively the property isSet (L) to hold if L is a list in which every element occurs only once. For example:
?-isSet ([a,b,d, c]).
true .
?-isSet ([a,b,a]).
false.
- Define the relation toset (L, M) which takes as input argument a list L and uses M as output parameter for the rest of elements that occur in L .

```
?-toSet([a,b,a,c],M).
M=[a,b,c]
```


Representation of sets in Prolog

(1) isSet (L)
\triangleright Base case: [] is set.
\triangleright Recursive case: [$\mathrm{H} \mid \mathrm{T}$] is set if H does not occur in T and T is set.
(2) toset (L, M)
\triangleright Base case: If $L=[]$ then $M=[]$.
\triangleright Recursive case: If $L=[H \mid T]$ then $M=[H \mid R]$ where R is the list produced in 2 steps:
(1) First, find list R1 produced from T by removing all occurrences of H .
To compute R1, we can define relation del ($\mathrm{H}, \mathrm{T}, \mathrm{R} 1$) to hold if R1 is the list produced from T by removing all occurrences of H .
(2) R is produced recursively, as answer to the query toset (R1,R).

Representation of sets in Prolog

```
isSet([]).
isSet([H|T]):-not(member(H,T)), isSet(T).
toSet([], []).
toSet([H|T],[H|R]):-del(H,T,R1),toSet(R1,R).
del(H, [], []).
del(H,[H|T],R):-del(H,T,R).
del(H,[H1|T],[H1|R]):-H\=H1,
    del(H,T,R).
```


Peano arithmetic in Prolog

Quiz

In Peano arithmetic, natural numbers are represented by terms defined by
nat $::=0 \quad$ | (nat)
For example, s(s (0)) represents number 2. Define the following relations on numbers represented in Peano arithmetic:

```
% add(+X,+Y,-Z) holds if Z is the sum of X and Y
% mul(+X,+Y,-Z) holds if Z is the product of X and Y
% gt(+X,+Y) holds if X is strictly greater than Y.
```


Recursive relations

Quiz

Consider the relation next ($\mathrm{X}, \mathrm{Y}, \mathrm{L}$) defined by:

```
next(X,Y,[X,Y|_]).
next(X,Y,[Z|T]):-next(X,Y,T).
```

(1) What is the meaning of next (X, Y, Z) ?
(2) What is the meaning of $z_{-} u(X, Y)$ defined by the rule

```
z_u(X,Y):-next(X,Y,[monday,tuesday,wednesday,
        thursday,friday,
    saturday,sunday,monday]).
```

(3) What is the meaning of $z_{-} u(X, Y)$ defined by the rule z_p (X,Y):-z_u (Y,X).

