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Recursion
Recap

A notion is recursive if it is defined in terms of itself.
We can define recursive data types, recursive functions, or
recursive relations.
In general, a recursive definition consists of

0 or more base cases
1 or more recursive cases

In Prolog
we can work with recursive data: trees, lists, etc.
we can define recursive relations
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Recursive datatypes and predicates
Lists

List = predefined datatype of Prolog. A list is either
The empty list [] (base case)
[term| list] (recursive case)

Some definitions of predicates and relations for lists
% isList(lst) holds if lst is a list
isList([]). % base case
isList([_|T]):-isList(T). % recursive case

% member(term,lst) holds if term is in list lst
member(X,[X|_]). % base case: term is the head of the list
member(X,[_|T]):-member(X,T). % recursive case
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Remarks

1 All variables must start with _ or with an uppercase letter.
2 Like in Haskell, we can use the anonymous variable _

which matches every term.
3 Variables can occur many times, both in the head and in

the body of a clause. We could have written

member(X,[Y|_]):-X=Y.

but Prolog allows to be more concise, and write

member(X,[X|_]).

4 member is predefined in Prolog.
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Remarks
More about list membership tests

Prolog tries to find if a term is in a list by applying the rules in
the order from the program:

1 member(X,[X|T]). (base case)
2 member(X,[_|T]):-member(X,T). (recursive case)

In the recursive case, the list gets shorter and shorter.
The list can not be shortened indefinitely ⇒ computation
will terminate.

Prolog stops computation in 2 situations:
1 when it encounters a list for which base case holds ⇒ it

returns true.
2 when it reaches the empty list ⇒ no more rules are

applicable ⇒ it returns false.
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Quiz

What happens when Prolog is asked to answer the following queries:

?- member(X,[a,b,c]).
?- member(a,X).
?- member(X,Y).
?- member(X,_).
?- member(_,Y).
?- member(_,_).

Note that some queries have multiple answers.

member(X,[a,b,c])

� member(X,[b,c])

member(X,[c])

member(X,[])
fail

{X → a}

(c1) (c2)

(c2)

(c2)

�

(c1)

{X → b}

�

(c1)

{X → c}
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Recursive datatypes and predicates
Binary trees

We can work with binary trees defined by the grammar

btree ::= null | bt(string,btree,btree)

Some definitions of predicates and relations for binary trees
% isBT(bt) holds if bt is a binary tree
isBT(null).
isBT(bt(S,T1,T2)):-string(S),isBT(T1),isBT(T2).

% toList(bt,lst) holds if lst is the list of strings from bt
toList(null,[]).
toList(bt(S,T1,T2),Lst):-

toList(T1,L1),
toList(T1,L2),
append(L1,[S|L2],Lst).

M. Marin LFP



Recursion
Termination problems

Termination = property of a program to stop after a finite
number of computational steps.

Some programs do not terminate
parent(X,Y):-son(Y,X).
son(Y,X):-parent(X,Y).

Reason: these definitions are circular.
⇒ avoid circular definitions!
The following program does not terminate because it is is
left-recursive:
man(X):-man(Y),parent(X,Y).
man(adam).

⇒ left-recursion should be used with care!
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Recursion
Termination problems

Program clauses (=rules and facts) are applied in the order in which
they are written in the program.

Intuitive criterion: facts should appear before rules.

Sometimes, rules ordered in a particular way work well only for a
particular kind of queries.

Example
isList([_|T]):-isList(T).
isList([]).

is adequate to answer the queries

?-isList([1,2,3]).
?-isList([]).
?-isList(f(1,2)).

but inadequate for ?-isList(X).

Question: What answer do you get to ?-isList(X) if you change the order of
clauses in the program?
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Recursion
The order of building solutions

Many predefined predicates of Prolog make distinction between

Input parameters (-): they should have concrete values when
the predicate is called.

Output parameters (+): their values are computed as answers
to the query.

Arbitrary parameters (?): can be both input and output.
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Recursion
Example

% listLen(+List,-N) computes the number N of elements of List.
% List is an input parameter, and N is output parameter.
listLen([],0). % (1)
listLen([_|T],N):-listLen(T,N1), N is N1+1. % (2)

listLen([a,b],N)

listLen([b],N1), N is N1+1

listLen([],N2), N1 is N2+1.

�

(2)

(2)

(1)
{N2→0}

{N1→1}

{N→2}

Remarks:

The answer to the number N of elements is built on the branch of return from
recursion

We wish to build the value of N on the branch which advances through recursion,
to avoid the creation of temporary variables on the call stack.
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Recursion
Counting the number of elements in a list with an accumulator

listLen1(List,N) computes the number of elements in List on the branch which
advances through recursion by using the auxiliary predicate
listLenAux(List,A,N) where:

A is a new argument, called accumulator.
A accumulates the number of elements in the list while it advances through
recursion.

listLen1(List,N):-listLenAux(List,0,N). %1
listLenAux([],N,N). %2
listLenAux([_|T],M,N):-P is M+1,listLenAux(T,P,N). %3

elemLst1([a,b],N).

elemLstAux([a,b],0,N).

(1)

elemLstAux([b],1,N).

(3)

elemLstAux([],2,N).

(3)

�{N → 2}

(2)
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Applications of accumulators
List reversal

Define the relation revList(L,R) to hold if R is the reverse of
list L.

Main idea: Use an accumulator which acts like a stack where
we push recursively all elements of L, starting with
its head.
Initially, the accumulator is empty.

revList(L,R):-revListAux(L,R,[]). % (1)
% base case
revListAux([],R,R). % (2)
% recursive case
revListAux([H|T],R,A):- % (3)

revListAux(T,R,[H|A]).
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List reversal with accumulators
Illustrated example

?- revList([a,b,c],R).

R = [c,b,a].

revList([a,b,c],R).

revListAux([a,b,c],R,[]).

(1)

revListAux([b,c],R,[a]).

(2)

revListAux([c],R,[b,a]).

(2)

revListAux([],R,[c,b,a]).

(2)

�
{R → [c,b,a]}

(3)
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Neighbors problem
Quiz

Formalize the following knowledge in Prolog:
1 Stephen is neighbor of Peter.
2 Stephen is married with a doctor who works at emergency hospital.
3 Peter is married with an actress who works at the national theatre.
4 Stephen is melomaniac and Peter is hunter.
5 All melomaniacs are sentimental.
6 All hunters are liars.
7 Actresses like sentimental people.
8 Married people have same neighbors.
9 The relations of being married and being neighbors are symmetric.

Then, use Prolog to find the answer to the following question: Does Peter’s wife like

Stephen?
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Neighbors problem
Knowledge representation in Prolog

neighbor1(stephen,peter). %1
married1(stephen,wife_stephen). %2
doctor(wife_stephen). %2
works(wife_stephen,emergencyHospital). %2
married1(peter,wife_peter). %3
actress(wife_peter). %3
works(wife_peter,nationalTheatre). %3
melomaniac(stephen). %4
hunter(peter). %4
sentimental(X):-melomaniac(X). %5
liar(X):-hunter(X). %6
likes(X,Y):-actress(X),sentimental(Y). %7
neighbor(X,Y):-married(X,Z),neighbor(Z,Y). %8
neighbor(X,Y):-neighbor1(X,Y). %9
neighbor(X,Y):-neighbor1(Y,X). %9
married(X,Y):-married1(X,Y). %9
married(X,Y):-married1(Y,X). %9
conclusion:-married(peter,Wife),likes(Wife,stephen).

?-conclusion.

Remark: This program is recursive.
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Remarks about symmetric relations

A binary relation r is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The relations neighbor and married from the previous example are symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark: It is essential to place the facts for r before the rule for r.
Problem:

?-r(b,c).

⇒ this query will never be answered (infinite computation).
How can we avoid these infinite computations?

Version 2: by using an asymmetric binary relation r1. For example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.
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Representation of sets in Prolog

A set can be represented as a list in which every element occurs only
once.

Define recursively the property isSet(L) to hold if L is a list in
which every element occurs only once. For example:

?-isSet([a,b,d,c]).
true .
?-isSet([a,b,a]).
false .

Define the relation toSet(L,M) which takes as input argument
a list L and uses M as output parameter for the rest of elements
that occur in L.

?-toSet([a,b,a,c],M).
M=[a,b,c]
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Representation of sets in Prolog

1 isSet(L)
B Base case: [] is set.
B Recursive case: [H|T] is set if H does not occur in T and T

is set.
2 toSet(L,M)

B Base case: If L=[] then M=[].
B Recursive case: If L=[H|T] then M=[H|R] where R is the

list produced in 2 steps:
1 First, find list R1 produced from T by removing all

occurrences of H.
To compute R1, we can define relation del(H,T,R1) to
hold if R1 is the list produced from T by removing all
occurrences of H.

2 R is produced recursively, as answer to the query
toSet(R1,R).
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Representation of sets in Prolog

isSet([]).
isSet([H|T]):-not(member(H,T)), isSet(T).

toSet([],[]).
toSet([H|T],[H|R]):-del(H,T,R1),toSet(R1,R).

del(H,[],[]).
del(H,[H|T],R):-del(H,T,R).
del(H,[H1|T],[H1|R]):-H\=H1,

del(H,T,R).
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Peano arithmetic in Prolog
Quiz

In Peano arithmetic, natural numbers are represented by terms
defined by

nat ::= 0 | s(nat)

For example, s(s(0)) represents number 2. Define the
following relations on numbers represented in Peano arithmetic:

% add(+X,+Y,-Z) holds if Z is the sum of X and Y
% mul(+X,+Y,-Z) holds if Z is the product of X and Y
% gt(+X,+Y) holds if X is strictly greater than Y.
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Recursive relations
Quiz

Consider the relation next(X,Y,L) defined by:

next(X,Y,[X,Y|_]).
next(X,Y,[Z|T]):-next(X,Y,T).

1 What is the meaning of next(X,Y,Z)?

2 What is the meaning of z_u(X,Y) defined by the rule

z_u(X,Y):-next(X,Y,[monday,tuesday,wednesday,
thursday,friday,
saturday,sunday,monday]).

3 What is the meaning of z_u(X,Y) defined by the rule

z_p(X,Y):-z_u(Y,X).
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