
Lecture 8: Introduction to Logic Programming
Logic, Logic Programming, and Prolog

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin LFP

mailto:mmarin@info.uvt.ro


What is logic?

Logic = systematic study of rules to draw conclusions from
given assumptions.
Types of logic

Propositional logic
First-order logic (FOL): the most popular type of logic.

FOL allows to do the following:
1 to represent the objects of interest with terms.
2 to represent the properties of objects and the relations

between them with formulas.
3 to draw conclusions (theorems) from given assumptions

according to a set of rules of deduction.

M. Marin LFP



What is logic?

Logic = systematic study of rules to draw conclusions from
given assumptions.
Types of logic

Propositional logic
First-order logic (FOL): the most popular type of logic.

FOL allows to do the following:
1 to represent the objects of interest with terms.
2 to represent the properties of objects and the relations

between them with formulas.
3 to draw conclusions (theorems) from given assumptions

according to a set of rules of deduction.

M. Marin LFP



The language of FOL: Terms and formulas
Terms

Terms describe objects of interest. They are built with
function symbols f ,g,h, . . . from a set F . Every f ∈ F has
an arity arity(f ) ∈ N, and represents either

a data constructor, or
an operation that produces an object.

variables X ,Y ,Z , . . . from a set of variables X .
using the grammar

term ::= X | f (term1, . . . , termn) where X ∈ X and n =
arity(f )

I We write T (F ,X ) for the set of these terms.
I Terms of the form f () for f ∈ F with arity(f ) = 0 are

called constants. It is customary to write f instead of
f ()

M. Marin LFP



The language of FOL: Terms and formulas
Examples of terms

car(dacia,color(red),2018)
is a term that can describe a Dacia red car built in 2018. It
contains the function symbols car,dacia,color,red,
2018 with arities 3,0,1,0,0.
I All these function symbols represent data constructors.

dacia,red,2018 are constants.

+(1,2)
is a term that describes the result of adding numbers 1 and
2. The numbers are represented by constants, and + is a
function symbol with arity 2 that represents the operation
of addition.
I For some terms, we are allowed to use a more

human-readable notation. For example, we prefer to use
the infix notation 1+2 instead of +(1,2).

M. Marin LFP



The language of FOL: Terms and formulas
Formulas

Formulas describe possible relations among objects. They are built
with

terms t1, . . . , tn ∈ T (F ,X ) that describe the objects of interest.

predictate symbols p, r from a set Π. Every p ∈ Π has an arity
arity(p) ∈ N and is the name of a relation among objects.

The logical connectives ∨ (for disjunction), ∧ (for conjunction),
¬ (for negation),→ (for implication), and↔ (for equivalence).

The quantifiers ∀ and ∃

using the grammar

formula ::= p(term1, . . . , termn)
| ¬formula1 | formula1 ∨ formula2 | formula1 ∧ formula2
| formula1 → formula2 | formula1 ↔ formula2
| ∀X .formula1 | ∃X .formula1

M. Marin LFP



The language of FOL: Terms and formulas
More about formulas

Formulas p(t1, . . . , tn) are called atomic formulas, or just atoms. If
arity(p) = 0, we write p instead of p().

A formula p is an atomic constant.

The atomic constants true and false are predefined. true
represents the always-true formula, and false represents the
always-false formula.

If F1, . . . ,Fn are formulas, we write∨n
i=1 Fi instead of (· · · (F1 ∨ F2) ∨ . . .) ∨ Fn∧n
i=1 Fi instead of (· · · (F1 ∧ F2) ∧ . . .) ∧ Fn

For n = 1 it is assumed that
∨n

i=1 Fi =
∧n

i=1 Fi = F1.

For n = 0 it is assumed that
∨n

i=1 Fi = false and∧n
i=1 Fi = true.

A literal is either an atom or the negation of an atom:

literal ::= p(term1, . . . , termn) | ¬p(term1, . . . , termn)

M. Marin LFP



The language FOL logic: terms and formulas
Examples: Translating sentences into formulas of FOL

1 “John is a bright student who likes astronomy.”
student(john)∧bright(john)∧likes(john,astronomy)

predicate symbols: student,bright,likes
function symbols: john,astronomy

2 “Every human is mortal.”
This sentence has the same meaning as “for all X , if X is a
human then X is mortal”, and can be translated into
∀X.(human(X)→ mortal(X))

3 “Some birds can not fly.”
This sentence has the same meaning as “There is an X
such that X is a bird and X can not fly”. and can be
translated into
∃X.(bird(X) ∧ ¬flies(X))

M. Marin LFP



Characteristics of first-order logic (I)

First-order logic is also known as Predicate logic or First-order
predicate logic. FOL is used often to represent knowledge in
AI. It consists of two parts:

1 The language, which provides terms to represent objects,
and formulas to represent knowledge about their
properties and the relations that hold among them.

2 Rules of inference, that allow us to derive new knowledge
from the knowledge we know. A rule of inference has the
form

H1 . . . Hn

C
where H1, . . . ,Hn,C are formulas

with the intended reading “C is a logical consequence
(conclusion) of the hypotheses H1, . . . ,Hn”.

M. Marin LFP



Characteristics of first-order logic (II)

The language of FOL is an artificial language that can be used to
express only sentences to which we can assign a value of truth.

Sentences like "Who am I?" or “Follow the rules!” can not be
expressed in the language of FOL.

Some inference rules specific to FOL

Expansion rule:
A

B ∨ A

Cut rule:
A ∨ B ¬A ∨ C

B ∨ C

∃-introduction rule:
A→ B

(∃X .A)→ B
if variable X has no free occurrences in formula B.

M. Marin LFP



First-order logic for Logic Programming

In this course, we are interested in the use of FOL formulas to rep-
resent knowledge in Logic Programming with Prolog. The only
formulas used in Prolog to represent knowledge are the Horn
clauses, that is, formulas of the form

∀X1. · · · ∀Xr .

n∨
i=1

literali

where at most one literal is an atom, and X1, . . . ,Xr are all vari-
ables that occur in the formula.

There are two kinds of Horn clauses:

Rules: contain one positive literal: ∀X1. · · · .∀Xr .(A ∨
∨n

i=1 ¬Bi )

Goals: all literals are negative: ∀X1. · · · .∀Xr .
∨n

i=1 ¬Bi

where A,B1, . . . ,Bn are atoms.

M. Marin LFP



Rules

Rule = Horn clause with one positive literal:
∀X1. · · · .∀Xn.

(
A ∨

∨n
i=1 ¬Bi

)
where A,B1, . . . ,Bn are atoms. This is logically equivalent with

∀X1. · · · .∀Xr .
(∧n

i=1 Bi → A
)

A is the head, and B1 ∧ . . . ∧ Bn is the body of the clause.
A rule whose body is empty (that is, n = 0) is a fact.

Interpretations of a rule
Declarative: A holds if B1 and . . . and Bn hold.
Procedural (Kowalski): To solve A, we must solve B1 and . . .

and Bn. In this way, the goal of solving A is
reduced to the goals of solving B1 and . . . and Bn.

M. Marin LFP



Rules

Rule = Horn clause with one positive literal:
∀X1. · · · .∀Xn.

(
A ∨

∨n
i=1 ¬Bi

)
where A,B1, . . . ,Bn are atoms. This is logically equivalent with

∀X1. · · · .∀Xr .
(∧n

i=1 Bi → A
)

A is the head, and B1 ∧ . . . ∧ Bn is the body of the clause.
A rule whose body is empty (that is, n = 0) is a fact.

Interpretations of a rule
Declarative: A holds if B1 and . . . and Bn hold.
Procedural (Kowalski): To solve A, we must solve B1 and . . .

and Bn. In this way, the goal of solving A is
reduced to the goals of solving B1 and . . . and Bn.

M. Marin LFP



Queries and goals

Query = formula ∃X1. · · · .∃Xr .
∧n

i=1 Bi where B1, . . . ,Bn are
atoms. Intended reading: “Find X1, . . . ,Xr such that the formula
B1 ∧ . . . . . . ∧ Bn can be deduced from what we know.”

A ground query is a query without variables. The intended
reading of

∧n
i=1 Bi is: “Check if the formula B1 ∧ . . . . . . ∧ Bn

can be deduced from what we know.”
Goal = negation of a query: ¬∃X1. · · · .∃Xr .

∧n
i=1 Bi .

Remark

A goal is logically equivalent with ∀X1. · · · .∀Xn.
∨n

i=1 ¬Bi .
This is a Horn clause there all literals are negative.

M. Marin LFP



What is Logic Programming?

Logic Programming = declarative programming style where
Knowledge is encoded as a collection of rules and facts
collected in a program P.
Computation is triggered by running a query

∃X1. · · · .∃Xr .

n∧
i=1

Bi

and is solved by a fixed and predictable strategy, called
SLDNF-resolution. An answer is a substitution
θ = [term1/X1, . . . , termr/Xr ] such that, if B′

i = θBi for

1 ≤ i ≤ r then
n∧

i=1

B′
i can be deduced logically from P.

We write P ` formula to indicate that a formula formula can
be deduced logically from program P

M. Marin LFP



What is Prolog?

Prolog: the main language for Logic Programming.
Developed and implemented by A. Colmerauer and P.
Rousell, in 1972. It is based on the procedural
interpretation of Horn clauses.

Applications:
theorem proving, expert systems, term rewriting, type
systems, automated planning, natural language
processing.

Implementations: SICStus Prolog, Ciao, Visual Prolog,
SWI-Prolog

We will practice logic programming with SWI-Prolog.
Cross-platform, freely available from here.

M. Marin LFP

https://sicstus.sics.se
http://ciao-lang.org
https://www.visual-prolog.com/vip/company.htm
https://www.swi-prolog.org
https://www.swi-prolog.org


Syntax of Prolog
Terms

There is only one data type in Prolog: terms. Terms describe
objects, and are either

Atoms: general-purpose names without inherent meaning:
x, red, and ’some atom’. They should start with
lowercase letter, or be delimited by quotes.
Numbers, which can be can be floats or integers.
SWI-Prolog supports working arbitrary-length integers.
Strings: "to be, or not to be", ""
Variables are placeholders for arbitrary terms. They are
represented by strings made of letters, numbers and
underscore characters, and beginning with an uppercase
letter or underscore. Examples: X, Y, _X
Compound terms of the form f (term1, . . . , termn) where f
is an atom with arity n > 0. f is called a functor.

M. Marin LFP



Syntax of Prolog
Special cases of compound terms

A list is an ordered collection of terms [term1,. . . ,termn].
Examples: [] (empty list), [red,green,blue]
Other notations for [term1,. . . ,termn] are:

[term1︸ ︷︷ ︸
head

| [term2, . . . , termn]︸ ︷︷ ︸
tail

] or

[term1, . . . , termk︸ ︷︷ ︸
first k terms

| [termk+1, . . . , termn]]

The following predicates are predefined for type-checking:
atom
number
string
integer
float

M. Marin LFP



Syntax of Prolog
Program = collection of rules and facts

In Prolog, a rule ∀X1. · · · .∀Xr .(
∧n

i=1 Bi → A) is written as

A :- B1, . . . ,Bn.

with the intended reading “A if B1 and . . . and Bn”.
A fact ∀X1. · · · .∀Xr .A is written as

A.

with the intended reading “A holds”.

Remarks

1 Note the mandatory parts in the syntax of rules: ’:-’, ’,’ and ’.’.

2 The universal quantifiers for all variables are implicit.

3 The head A of a rule is always an atom p(term1, . . . , termk )
where p is a predicate symbol: A rule with such a head is a
defining rule for the predicate p.

M. Marin LFP



Syntax of Prolog programs
Prolog programs

Program (Prolog) = text file with defining rules and facts. It
should have extension .pl
For example:

% father(X,Y) means that X is the father of Y.
% mother(X,Y) means that X is the mother of Y.
father(john,jack). % John is father of Jack (fact)
father(john,bob). % John is father of Bob (fact)
mother(mary,jack). % Mary is mother of Jack (fact)
mother(ana,ray). % Ana is mother of Bob (fact)
% parent(X,Y) holds if X is a parent of Y.
parent(X,Y):-father(X,Y). % defining rule 1 for parent
parent(X,Y):-mother(X,Y). % defining rule 2 for parent
% siblings(X,Y) holds if X and Y are different terms and have a common parent Z.
siblings(X,Y):- % defining rule for siblings
parent(Z,X),
parent(Z,Y),
X\=Y.

REMARK: the text after % is comment for humans to read. It is ignored by Prolog.

M. Marin LFP



Syntax of Prolog programs
Prolog programs

Program (Prolog) = text file with defining rules and facts. It
should have extension .pl
For example:

% father(X,Y) means that X is the father of Y.
% mother(X,Y) means that X is the mother of Y.
father(john,jack). % John is father of Jack (fact)
father(john,bob). % John is father of Bob (fact)
mother(mary,jack). % Mary is mother of Jack (fact)
mother(ana,ray). % Ana is mother of Bob (fact)
% parent(X,Y) holds if X is a parent of Y.
parent(X,Y):-father(X,Y). % defining rule 1 for parent
parent(X,Y):-mother(X,Y). % defining rule 2 for parent
% siblings(X,Y) holds if X and Y are different terms and have a common parent Z.
siblings(X,Y):- % defining rule for siblings
parent(Z,X),
parent(Z,Y),
X\=Y.

REMARK: the text after % is comment for humans to read. It is ignored by Prolog.

M. Marin LFP



Syntax of Prolog
More about predicates

The predicates defined in programs are user-defined predicates:

They are the names p that occur in heads p(term1, . . . , termn) of
rules and facts. Their meaning is defined by the program rules.

Examples: father,mother,parent,sibling in the program
illustrated before.

Prolog also has predefined predicates:

The type-checking predicates atom,number,string,
integer,float

Predicates to test equality: term1 = term2 and
disequality: term1 \= term2

Comparison predicates: <, >, >= and =< (less or equal).

The predicate is which enforces the evaluation of terms with
predefined functions (see next slides).

. . .

M. Marin LFP



Preliminary remarks about Prolog
FP versus LP

In functional programing (FP), programs consist of function
definitions

There are two kinds of functions: user-defined and
predefined
Some functional languages (e.g., Haskell) also allow us to
define type classes and datatypes.

In logic programming (LP), programs consist of predicate
definitions

There are two kinds of predicates: user-defined and
predefined
Prolog recognizes some built-in operations too: arithmetic
operators +,-,*,/, trigonometric functions, etc.

Terms with function calls are not evaluated (in FP they are
evaluated automatically), but Prolog has the built-in
predicate is to enforce the evaluation of terms with
predefined functions (see next slides).

M. Marin LFP



Working with Prolog
The workflow (1)

Start SWI-Prolog by double-clicking its icon
⇒ An interactive window will open, where users can type

queries after the ?- prompt.
Queries are formulas ∃X1. · · · .∃Xr .

∧n
i=1 Ai where Ai are

atoms. Their intended reading is: “Find the values of X1, . . . ,Xr
for which the formula A1 ∧ . . . ∧ An follows from what we know.”
If the formula has no variables, the intended reading is simpler:
“Check if A1 ∧ . . . ∧ An follows from what we know”.

In SWI-Prolog, such a query is written

?- A1, . . . ,An.

after the ?- prompt. All variables (if any) are existentially
quantified by default. Prolog uses a search strategy called
SLDNF-resolution to find the answers to the query.

M. Marin LFP



Working with Prolog
The workflow (2)

The knowledge base used by Prolog to find answers to queries
consists of

1 The predefined predicates.
2 The definitions of predicates defined in the programs

consulted by the user via the File menu.
REMARK. The File menu allows users to create, open,
edit, save and consult program files.

Example (Queries with predefined predicates)

?- f(X,a)=f(b,Y). ?- f(X,a)=f(b,X).
X = b, false.
Y = a.
?- X=1+2*3,Y=f(X). ?- X is 1+2*3,Y=f(X).
X = 1+2*3, X = 7,
Y = f(1+2*3). Y = f(7).
?- [_,Y|Z]=[a,b,c,d]. ?- [X,Y|_]=[1,2,3],X>Y.
Y = b, false.
Z = [c, d].

M. Marin LFP



Working with Prolog
More about predefined predicates

The atom term1 = term2 computes the most general unifier [θ] that
instantiates the variables in term1 and term2 with terms. If θ exists, it
instantiated the variables and the atom holds; otherwise the atom
does not hold.

term1 are term2 are not evaluated.

_ is an anonymous variable (like in Haskell).

The variables used in LP are called logical variables. They can be
uninstantiated or instantiated with a term.

The value of a logical variable can not be changed, but can be
further instantiated.

The atom X is term holds if X is an uninstantiated variable and
term is term for an arithmetic expression whose value is a number. In
this case, Prolog computes the numeric value v of term and X is
instantiated with v .

M. Marin LFP



Working with user-defined predicates

We can use of the knowledge about mother,father,parent
and siblings if we consult the program from file Prog1.pl
with the content illustrated before (download from here):

Examples
?- siblings(X,Y). ?- parent(X,jack).
X = jack, X = john ;
Y = bob ; X = mary.
X = bob,
Y = jack ;
false.

The query “Find X,Y who are siblings” has two answers:
X=jack,Y=bob and X=bob,Y=jack

The query “Find X who is parent of jack” has two answers: X=john
and X=mary

M. Marin LFP

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Prog1.pl

