L6: Functional Programming
 Haskell: Type Checking and Type Inference.
 Racket: Simulating lazy evaluation

Mircea Marin
West University of Timişoara
mircea.marin@e-uvt.ro

Preliminary remarks

In Haskell, every expression has a type, which might be monomorphic (without type variables), polymorphic, or with one or more type class constraints in a context.

Examples

'w' : : Char
map :: (a->b)->[a]->[b]
elem :: (Foldable t,Eq a) =>a->t a->Bool

- Char are monomorphic types
- (a->b) -> [a]-> [b] and
(Foldable t,Eq a) =>a->t a->Bool are polymorphic types
- a, b are type variables
- Eq and Foldable are type classes

Strong typing

Strong typing = a way to check if an expression is well typed, without any evaluation taking place.

- Haskell is strongly typed. Racket is not strongly typed.

```
> :type map (\x -> x+1) [1,2,3]
map (\x -> x+1) [1,2,3]::Num b=> [b]
> :type [("abc",True),("bob",False)]
[("abc",True),("bob",False)]::[([Char],Bool)]
> :type 1+'2'
<interactive>:1:1: error:
    - No instance for (Num Char) arising from a use of '+'
    - In the expression: 1 + '2'
```


Remark

The benefit of strong typing is obvious: we can catch a lot of type errors before we run a program.

Type inference

Type inference = a way to compute types from expressions and definitions.

- Haskell has a built-in type inference system \Rightarrow it is possible never to write a type declaration.

Example

```
> prodFun f g = \x -> (f x,g x)
> :type prodFun
prodFun :: (t->a) -> (t->b) ->t-> (a,b)
```


Type inference

Type inference = a way to compute types from expressions and definitions.

- Haskell has a built-in type inference system \Rightarrow it is possible never to write a type declaration.

Example

$>$ prodFun f g $=$ lx $->(f x, g$ $)$
> :type prodFun
prodFun : : ($t->a$) -> ($t->b$) ->t-> (a, b)

Remarks

(1) Haskell programmers almost never write type declarations.
(2) Writing type declarations is a good idea: it is the most important single piece of documentation of an object, since it tells us how it can be used

- what arguments need to be passed
- what type of result do we get

Type inference

Giving more specific type definitions

- prodFun: :(Int->Bool) -> (Int->Char) ->Int-> (Bool, Char) prodFun $f g=\backslash x \rightarrow(f x, g x)$
The most general type of prodFun is (t->a) $->(t->b)->t->(a, b)$, but we made it more specific, for $t=$ Int, $a=$ Bool, $b=$ Char.
- Type declarations indicate what type we think a function has. If we got it wrong, the type inference system will detect this. For example

```
fun::Int->Bool->Int
fun True 0 = 0
fun True n = n+1
fun _ n = n
```

gives rise to this error in ghci:

```
Couldn't match expected type 'Int' against inferred type 'Bool'
```


Monomorphic type checking

Type checking an expression

An expression is either
(1) a literal or variable of a known type,
(2) a function call, or
(3) a lambda abstraction.

Remark: operators and the if . . . then ... else ... construct act like functions, but with a different syntax.

- Type checking a function call (f e)
- f must have a type a->b
- e must have type a, and (f e) must have type b
- Type checking an abstraction ($\backslash \mathrm{x}->\mathrm{e}$)
- x must have a type a
- e must have type b, and ($\backslash x->e$) must have type a->b

Monomorphic type checking

Examples

(1) A well typed expression:

(2) An ill-typed expression:

Monomorphic type checking

Messages for type errors

The error message of GHCi indicates the cause of the problem:

```
Couldn't match expected type 'Bool' against inferred type 'Char'
In the first argument of 'not', namely 'c'
In the first argument of '(&&)', namely '(not 'c')'
In the expression (not 'c') && True
```


Monomorphic type checking

Function definitions

A monomorphic type definition

```
f :: t. 
f p1 p2 ... pk
    | guard
```

| guard $_{\ell}=e_{\ell}$
is type-checked as follows:
(1) each of the guards guars s must be of type Bool $^{\text {m }}$
(2) each e_{i} must be of type t
(3) each pattern p_{j} must be consistent with the type t_{j} of its argument.

- Pattern consistency is explained on the next slide.

Monomorphic type checking

Pattern consistency

A pattern p is consistent with a type if it will match (some) elements of the type.

Examples

- A variable is consistent with any type
- A literal is consistent with its type
- A pattern ($p: q$) is consistent with a type [t] if p is consistent with t and q is consistent with [t]. For example, ($0: \mathrm{xs}$) is consistent with the type [Int], and ($\mathrm{x}: \mathrm{xs}$) is consistent with any type of lists.

Monomorphic type checking

Exercises

(1) Predict the type errors you would obtain by defining the following functions:

```
f n = 37+n
f True = 34
g 0 = 37
g n = True
h x
    | x>0 = True
    | otherwise = 37
```

Check your answers by typing each definition in a Haskell script, and loading the script into the ghci. Remember that you can use : type to get the type of an expression.

Polymorphic type checking

Preliminary remarks

- In a monomorphic language, an expression is either well typed and has a single type, or it is ill-typed (it has no type).
- In a polymorphic language like Haskell, an object has exactly one polymorphic type, which can be instantiated with many types.

Example (Predefined function length has a polymorphic type)
length: : [a]->Int
This type is a shorthand for saying that length has the set of all types [t] -> Int where t is a monotype, that is, a type without type variables.
For example, length has types
[Int]->Int and [(Bool,Char)]->Int

Polymorphic type checking

Constraints

We can apply a polymorphic function to some arguments only if some type constraints are satisfied.
\Rightarrow type checking $=$ checking if we can find types which meet the constraints.

Polymorphic type checking

Constraints

We can apply a polymorphic function to some arguments only if some type constraints are satisfied.
\Rightarrow type checking = checking if we can find types which meet the constraints.

Polymorphic type checking is based on two notions:
Unification: Finding a type description which meets two or more type constraints
Instantiation: Obtaining a new type from a polymorphic type, by replacing (some of) its type variables with type expressions.

Polymorphic type checking

Unification

Unification computes the most general common instance of two type expressions.

Examples

Q1: Which types meet the two descriptions (a, [Char]) and (Int, [b])?
A1: (Int, [Char]). We find this type by
unification = solving the type constraint
(a, [Char] $)=($ Int, $[b]) \Rightarrow a=$ Int, $[$ Char $]=[b]$
\Rightarrow a=Int, b=Char
Q2: Which types meet the two descriptions (a, a]) and (b, [c])?
A2: $(b,[b])$. We find this type by solving the type constraint $(a,[a])=(b,[c]) \Rightarrow a=b,[a]=[c]$ $\Rightarrow a=b, c=b$

Polymorphic type checking

Polymorphic function application

Polymorphic type checking

Polymorphic function application

Example 1

Type-check map Circle where
$\operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]->[\mathrm{b}]$
Circle::Int->Shape
unifies $a->b$ with Float $->$ Shape $\Rightarrow a=$ Float, $b=$ Shape . Thus
map Circle:: [Float]->[Shape]

Polymorphic type checking

Polymorphic function application

Q: Find the most general general type of the function foldr defined by

```
foldr f s [] = s
foldr f s (x:xs) = f x (foldr f s xs)
```

A: f takes 3 input arguments \Rightarrow it has type a1->a2->a3->c. Let a be type of s.

- From the first equation we get the type constraints

$$
a 2=a, a 2=c, a 3=[b]
$$

because [] has a type [b] for some type b
$\Rightarrow a 2=a, a 3=[b], c=a$, thus foldr: : a1->a-> [b] ->a

- From the second equation we get that $\mathrm{x}:: \mathrm{b}, \mathrm{xs}::[\mathrm{b}]$, $\mathrm{f}:$:c1->c2->c3, and the type constraints $c 1=b, c 2=a, c 3=a$, thus a1=b->a->a and foldr:: (b->a->a)->a->[b]->a

Polymorphic type checking

Polymorphic definitions and variables
Q1: Find the most general general type of expr where

$$
\text { expr=length }([]++[\text { True }])+\text { length }([]++[2,3,4])
$$

Polymorphic type checking

Polymorphic definitions and variables

Q1: Find the most general general type of expr where

$$
\text { expr=length }([]++[\text { True }])+\text { length }([]++[2,3,4])
$$

A2: Functions and constants can be used with different types in the same expression.

- First occurrence of [] has type [Bool], and second occurrence of [] has type Integer \Rightarrow expr: : Int.

Polymorphic type checking

Polymorphic definitions and variables

Q1: Find the most general general type of expr where

$$
\text { expr=length }([]++[\text { True }])+\text { length }([]++[2,3,4])
$$

A2: Functions and constants can be used with different types in the same expression.

- First occurrence of [] has type [Bool], and second occurrence of [] has type Integer \Rightarrow expr: : Int.
Q2: What should be the type of funny defined below?
funny xs=length (xs++[True]) + length (xs++[2,3,4])

Polymorphic type checking

Polymorphic definitions and variables

Q1: Find the most general general type of expr where
expr=length ([]++[True]) + length ([]++[2,3,4])

A2: Functions and constants can be used with different types in the same expression.

- First occurrence of [] has type [Bool], and second occurrence of [] has type Integer \Rightarrow expr: : Int.
Q2: What should be the type of funny defined below?

$$
\text { funny xs=length (xs++[True]) }+ \text { length (xs++[2, 3, 4]) }
$$

A2: A variable must used with the same type in the same expression. But

- First occurrence of x s should have type [Bool], and second occurrence of xs should have type [Integer].
- [Bool] and [Integer] are not unifiable \Rightarrow funny is ill-typed.

Type checking and type classes

Haskell classes restrict the use of some functions, such as ++, to types in the class over which they are defined.

- These restrictions are apparent in the contexts which appear in some types.

Example

If we define
$\begin{array}{ll}\text { member }[] & -=\text { False } \\ \text { member }(x: x s) & y=(x==y) \quad| | \text { member } x s \\ y\end{array}$
then the inferred type of member will be
Eq a => [a] -> a -> Bool
because x, y of type a are compared for equality in the definition, thus forcing the type a to belong to equality class Eq.

Lazy evaluation in strict programming languages

Case study: lazy evaluation in Racket

Lazy evaluation allows us to define and compute with infinite data structures
\Rightarrow highly efficient and elegant implementations
Most programming languages are strict, without built-in support for call-by-need evaluation.
Q: Can be simulate call-by-need evaluation în a strict programming language, e.g., in Racket?
A: Yes, by checking explicitly when a computation is needed, and writing code which to do the needed computation.

Lazy evaluation in Racket

Main idea: Encapsulate the computation that will be needed in the body of a nullary function, and call the function whenever we need to produce some result.

- A nullary function is a function with 0 arguments. Nullary functions act like factories for delayed work.
> (define delayedwork (lambda () body))
When we wish to perform the computation of body, we call the nullary function
> (delayedwork)

Remark

With this technique, we have full control of the evaluation process:

- We can delay computations and execute them only when really needed.

Applications of lazy evaluation

Infinite lists (a.k.a. streams)

Stream: a finite representation of an infinite list, where we know how to generate new elements from previous elements.
Examples of streams:
All ones: (1 1 1 ...)
Next element is always 1 .
Natural numbers: (0123 ...)
Next element is successor of previous element.
Fibonacci numbers: ($1 \begin{array}{llllll}1 & 2 & 3 & 5 & 8 & 13\end{array}$...)
Every element, except first two, is sum of previous two elements.
Prime numbers: ($23 \begin{array}{lllll}2 & 7 & 11 & 13 & \text {...) }\end{array}$
Every next element is the first natural number different from 1, which is not a multiple of previous elements.

Applications of lazy evaluation

Infinite lists (a.k.a. streams)

Q: How to represent in a finite way a stream ($a_{1} a_{2} a_{3} \ldots$? A: As an "incomplete" list

with printed form ${ }^{\prime}\left(\begin{array}{llll}a_{1} & \ldots & a_{k} & \text {. gen }\end{array}\right)$
where gen is a nullary function that can generate more elements on demand:

- (gen) computes ($a_{k+1} \ldots a_{k+\ell}$. gen') with $\ell \geq 1$
- gen is called the stream generator.
- A generator is just a function, and function gen is recognised with (procedure? gen)

Streams

```
Examples
(define gen-ones
    (lambda () (cons 1 gen-ones)))
; stream of all ones
(define all-ones (gen-ones))
(define (gen-nats n)
                        (cons n (lambda () (gen-nats (+ n 1)))))
; stream of all naturals
(define nats (gen-nats 0))
> all-ones
'(1 . #<procedure:gen-ones>)
> nats
'(0 . #<procedure>)
```


Working with streams

Utility functions:

and

; list of first n elements from stream s
(define (s-take n s)
(cond [($\left.=\mathrm{n} 0)^{\prime}(\mathrm{l})\right]$
[(procedure? s) ; s is the stream generator (s-take n (s))]
[\#t (cons (car s) (s-take (- n 1) (cdr s)))]))
; stream of all elements of s which satisfy predicate p (define (s-filter p s)
(cond [(procedure? s) ; s is the stream generator (s-filter p (s))]
[(p (car s))
(cons (car s)
(lambda () (s-filter p (cdr s))))]
[\#t (s-filter p (cdr s))]))
> (s-take 5 (s-filter even? nats))
' (0 2468)

Working with streams

Utility functions:

$$
(s-m a p f s)
$$

- takes as inputs a stream s and a function that computes a value for any element of s
- returns the stream obtained by applying function f to all elements of s

```
(define (s-map f s)
    (if (procedure? s) (s-map f (s))
        (cons (f (car s))
    (lambda () (s-map f (cdr s))))))
> (define cubes
    (s-map (lambda (x) (* x x x)) nats))
> (s-take 7 cubes)
'(0 1 8 27 64 125 216)
```


Utility functions on streams of numbers

(s-adds1 s2)

- takes as inputs two streams of numbers

$$
\begin{aligned}
& s 1=\left(\begin{array}{lll}
a_{1} & a_{2} & \ldots
\end{array}\right) \\
& s 2=\left(\begin{array}{lll}
b_{1} & b_{2} & \ldots
\end{array}\right)
\end{aligned}
$$

- returns the stream ($\left.a_{1}+b_{1} a_{2}+b_{2} \ldots\right)$
(define (s-add s1 s2)
(cond [(procedure? s1) (s-add (s1) s2)]
[(procedure? s2) (s-add s1 (s2))]
[\#t (cons (+ (car s1) (car s2)) (lambda () (s-add (cdr s1) (cdr s2))))]))
> ; stream of numbers $n^{2}+n$ for all n
(define ns (s-add (s-map (lambda (x) (* x x)) nats) nats))
> (s-take 6 ns)
' (0 26122030)

Stream of Fibonacci numbers

Useful observation: the stream fib of Fibonacci numbers has the following useful property:

- Adding streams fib and (cdr fib) yields (cddr fib)

$$
\begin{array}{rllllll}
\text { fib } & = & f_{0} & f_{1} & f_{2} & \ldots & + \\
\text { (cdrfib) } & = & f_{1} & f_{2} & f_{3} & \ldots & \\
\hline f_{0} f_{1} & f_{2} & f_{3} & f_{4} & \ldots
\end{array}
$$

- Once we know the first two elements f_{0} and f_{1}, we can start generating the rest of the stream:

```
(define fib
    (cons 1
        (cons 1
```

 (lambda () (s-add fib (cdr fib))))))
 > (s-take 10 fib)

References

Chapter 13: Overloading, type classes and type checking, sections 13.5-13.8 from

Simon Thompson: Haskell: The Craft of Functional Programming. Third edition. Pearson Addison Wesley. 2011.

