L6: Functional Programming Haskell: Type Checking and Type Inference. Racket: Simulating lazy evaluation

> Mircea Marin West University of Timişoara mircea.marin@e-uvt.ro

In Haskell, every expression has a type, which might be monomorphic (without type variables), polymorphic, or with one or more type class constraints in a context.

Examples
'w' :: Char
<pre>map :: (a->b) ->[a] ->[b]</pre>
elem :: (Foldable t,Eq a)=>a->t a->Bool
• Char are monomorphic types
• (a->b)->[a]->[b] and
(Foldable t,Eq a)=>a->t a->Bool are polymorphic
types
• a, b are type variables
• Eq and Foldable are type classes

< □ > < 同 > < 注 > <

Strong typing

Strong typing = a way to check if an expression is well typed, without any evaluation taking place.

Haskell is strongly typed. Racket is not strongly typed.

Remark

The benefit of strong typing is obvious: we can catch a lot of type errors before we run a program.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Type inference

Type inference = a way to compute types from expressions and definitions.

 Haskell has a built-in type inference system ⇒ it is possible never to write a type declaration.

Example

- > prodFun f g = $x \rightarrow (f x, g x)$
- > :type prodFun
- prodFun :: $(t \rightarrow a) \rightarrow (t \rightarrow b) \rightarrow t \rightarrow (a, b)$

イロト イポト イヨト イヨト

Type inference

Type inference = a way to compute types from expressions and definitions.

 Haskell has a built-in type inference system ⇒ it is possible never to write a type declaration.

Example

> prodFun f g = $x \rightarrow (f x, g x)$

```
> :type prodFun
```

```
prodFun :: (t - a) - (t - b) - t - (a, b)
```

Remarks

- Haskell programmers almost never write type declarations.
- Writing type declarations is a good idea: it is the most important single piece of documentation of an object, since it tells us how it can be used
 - what arguments need to be passed
 - what type of result do we get

• prodFun::(Int->Bool)->(Int->Char)->Int->(Bool,Char)
prodFun f g = \x -> (f x,g x)

The most general type of prodFun is $(t-a) \rightarrow (t-b) \rightarrow t-a$ (a, b), but we made it more specific, for t = Int, a = Bool, b = Char.

 Type declarations indicate what type we think a function has. If we got it wrong, the type inference system will detect this. For example

```
fun::Int->Bool->Int
fun True 0 = 0
fun True n = n+1
fun _ n = n
```

gives rise to this error in ghci:

Couldn't match expected type 'Int' against inferred type 'Bool' \cdots

An expression is either

- a literal or variable of a known type,
- a function call, or
- a lambda abstraction.

Remark: operators and the if ... then ... else ... construct act like functions, but with a different syntax.

- Type checking a function call (f e)
 - f must have a type a->b
 - e must have type a, and (f e) must have type b
- Type checking an abstraction (\x->e)
 - x must have a type a
 - e must have type b, and $(x \rightarrow e)$ must have type $a \rightarrow b$

・ロト ・四ト ・ヨト・

Monomorphic type checking Examples

Monomorphic type checking

Messages for type errors

The error message of GHCi indicates the cause of the problem:

Couldn't match expected type 'Bool' against inferred type 'Char' In the first argument of 'not', namely 'c' In the first argument of '(&&)', namely '(not 'c')' In the expression (not 'c') && True

イロン イボン イヨン イヨン

Monomorphic type checking

A monomorphic type definition

```
f :: t_1 \rightarrow t_1 \rightarrow \dots \rightarrow t_n \rightarrow t
f p_1 p_2 \dots p_k
| guard_1 = e_1
\dots
| guard_{\ell} = e_{\ell}
```

is type-checked as follows:

- each of the guards guars, must be of type Bool
- each e_i must be of type t
- each pattern p_j must be consistent with the type t_j of its argument.
 - Pattern consistency is explained on the next slide.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A pattern p is consistent with a type if it will match (some) elements of the type.

Examples

- A variable is consistent with any type
- A literal is consistent with its type
- A pattern (p:q) is consistent with a type [t] if p is consistent with t and q is consistent with [t].
 For example, (0:xs) is consistent with the type [Int], and (x:xs) is consistent with any type of lists.

ヘロト ヘアト ヘヨト ヘ

Monomorphic type checking Exercises

Predict the type errors you would obtain by defining the following functions:

```
f n = 37+n
f True = 34
g 0 = 37
g n = True
h x
| x>0 = True
| otherwise = 37
```

Check your answers by typing each definition in a Haskell script, and loading the script into the ghci. Remember that you can use :type to get the type of an expression.

표· · · 표· · · 표

Polymorphic type checking Preliminary remarks

- In a monomorphic language, an expression is either well typed and has a single type, or it is ill-typed (it has no type).
- In a polymorphic language like Haskell, an object has exactly one polymorphic type, which can be instantiated with many types.

Example (Predefined function length has a polymorphic type)

```
length::[a]->Int
```

This type is a shorthand for saying that length has the set of all types [t]->Int where t is a monotype, that is, a type without type variables.

For example, length has types

```
[Int]->Int and [(Bool, Char)]->Int
```

э

ヘロン 人間 とくほ とくほ とう

We can apply a polymorphic function to some arguments only if some type constraints are satisfied.

⇒ type checking = checking if we can find types which meet the constraints.

ヘロト ヘ戸ト ヘヨト ヘヨト

We can apply a polymorphic function to some arguments only if some type constraints are satisfied.

⇒ type checking = checking if we can find types which meet the constraints.

Polymorphic type checking is based on two notions:

- Unification: Finding a type description which meets two or more type constraints
- Instantiation: Obtaining a new type from a polymorphic type, by replacing (some of) its type variables with type expressions.

・ロン・西方・ ・ ヨン・ ヨン・

Polymorphic type checking Unification

Unification computes the **most general common instance** of two type expressions.

Examples

- Q1: Which types meet the two descriptions (a, [Char]) and (Int, [b])?
- A1: (Int, [Char]). We find this type by unification = solving the type constraint

 $(a, [Char]) = (Int, [b]) \Rightarrow a=Int, [Char]=[b]$ $\Rightarrow a=Int, b=Char$

Q2: Which types meet the two descriptions (a, [a]) and (b, [c])?

A2: (b, [b]). We find this type by solving the type constraint (a, [a]) = (b, [c]) \Rightarrow a=b, [a] = [c] \Rightarrow a=b, c=b

Polymorphic type checking

Polymorphic function application

・ロト ・聞ト ・ヨト ・ヨト

Polymorphic type checking

Polymorphic function application

Example 1

```
Type-check map Circle where
map::(a->b)->[a]->[b]
Circle::Int->Shape
unifies a->b with Float->Shape ⇒ a = Float, b = Shape.
Thus
```

```
map Circle::[Float]->[Shape]
```

Q: Find the most general general type of the function foldr defined by

foldr f s [] = s
foldr f s (x:xs) = f x (foldr f s xs)

- A: f takes 3 input arguments \Rightarrow it has type a1->a2->a3->c. Let a be type of s.
 - From the first equation we get the type constraints a2 = a, a2 = c, a3 = [b] because [] has a type [b] for some type b ⇒ a2 = a, a3 = [b], c = a, thus foldr::a1->a->[b]->a
 From the second equation we get that x::b, xs::[b], f::c1->c2->c3, and the type constraints c1 = b, c2 = a, c3 = a, thus a1=b->a->a and

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

foldr:: $(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow a$

Polymorphic type checking Polymorphic definitions and variables

Q1: Find the most general general type of ${\tt expr}$ where

```
expr=length ([]++[True]) + length ([]++[2,3,4])
```


イロト イポト イヨト イヨト

E DQC

Q1: Find the most general general type of ${\tt expr}$ where

```
expr=length ([]++[True]) + length ([]++[2,3,4])
```

- A2: Functions and constants can be used with different types in the same expression.
 - ► First occurrence of [] has type [Bool], and second occurrence of [] has type Integer ⇒ expr::Int.

ヘロン 人間 とくほ とくほ とう

∃ \0<</p>\0

Q1: Find the most general general type of ${\tt expr}$ where

```
expr=length ([]++[True]) + length ([]++[2,3,4])
```

- A2: Functions and constants can be used with different types in the same expression.
 - ► First occurrence of [] has type [Bool], and second occurrence of [] has type Integer ⇒ expr::Int.
- Q2: What should be the type of funny defined below?

```
funny xs=length (xs++[True]) + length (xs++[2,3,4])
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Q1: Find the most general general type of expr where

```
expr=length ([]++[True]) + length ([]++[2,3,4])
```

- A2: Functions and constants can be used with different types in the same expression.
 - ► First occurrence of [] has type [Bool], and second occurrence of [] has type Integer ⇒ expr::Int.
- Q2: What should be the type of funny defined below?

```
funny xs=length (xs++[True]) + length (xs++[2,3,4])
```

- A2: A variable must used with the same type in the same expression. But
 - First occurrence of xs should have type [Bool], and second occurrence of xs should have type [Integer].
 - [Bool] and [Integer] are not unifiable ⇒ funny is ill-typed.

Type checking and type classes

Haskell classes restrict the use of some functions, such as ++, to types in the class over which they are defined.

These restrictions are apparent in the contexts which appear in some types.

Example

If we define

member [] _ = False
member (x:xs) y = (x==y) || member xs y

then the inferred type of member will be

 $Eq a \Rightarrow [a] \rightarrow a \rightarrow Bool$

because x, y of type a are compared for equality in the definition, thus forcing the type a to belong to equality class Eq.

Lazy evaluation allows us to define and compute with infinite data structures

 \Rightarrow highly efficient and elegant implementations

Most programming languages are strict, without built-in support for call-by-need evaluation.

- Q: Can be simulate call-by-need evaluation în a strict programming language, e.g., in Racket?
- A: Yes, by checking explicitly when a computation is needed, and writing code which to do the needed computation.

Lazy evaluation in Racket

Main idea: Encapsulate the computation that will be needed in the body of a nullary function, and call the function whenever we need to produce some result.

- A nullary function is a function with 0 arguments. Nullary functions act like factories for delayed work.
- > (define delayed work (lambda () body))

When we wish to perform the computation of *body*, we call the nullary function

> (delayed work)

Remark

With this technique, we have full control of the evaluation process:

• We can delay computations and execute them only when really needed.

Stream: a finite representation of an infinite list, where we know how to generate new elements from previous elements. Examples of streams:

```
All ones: (1 1 1 ...)
Next element is always 1.
```

Natural numbers: (0 1 2 3 ...)

Next element is successor of previous element.

Fibonacci numbers: (1 1 2 3 5 8 13 ...)

Every element, except first two, is sum of previous two elements.

Prime numbers: (2 3 5 7 11 13 ...)

Every next element is the first natural number different from 1, which is not a multiple of previous elements.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Applications of lazy evaluation Infinite lists (a.k.a. streams)

Q: How to represent in a finite way a stream $(a_1 \ a_2 \ a_3 \ \dots)$? **A:** As an "incomplete" list

with printed form $(a_1 \dots a_k \dots g_{k})$

where *gen* is a nullary function that can generate more elements on demand:

- ▶ (*gen*) computes $(a_{k+1} \ldots a_{k+\ell}, gen')$ with $\ell \ge 1$
- gen is called the stream generator.
- A generator is just a function, and function *gen* is recognised with (procedure? *gen*)

・ロト ・四ト ・ヨト ・ヨト

Streams

Examples

```
(define gen-ones
   (lambda () (cons 1 gen-ones)))
; stream of all ones
(define all-ones (gen-ones))
(define (gen-nats n)
      (cons n (lambda () (gen-nats (+ n 1)))))
; stream of all naturals
(define nats (gen-nats 0))
> all-ones
'(1 . #<procedure:gen-ones>)
> nats
'(0 . #<procedure>)
                                    ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで
```

Working with streams

Utility functions: s-take and s-filter

```
: list of first n elements from stream s
(define (s-take n s)
  (cond [(= n 0) '()]
        [(procedure? s) ; s is the stream generator
            (s-take n (s))]
        [#t (cons (car s) (s-take (- n 1) (cdr s)))]))
; stream of all elements of s which satisfy predicate p
(define (s-filter p s)
  (cond [(procedure? s); s is the stream generator
        (s-filter p (s))]
        [(p (car s))]
            (cons (car s)
                   (lambda () (s-filter p (cdr s))))]
        [#t (s-filter p (cdr s))]))
> (s-take 5 (s-filter even? nats))
'(0 2 4 6 8)
                                    ◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで
```

(s-map f s)

- takes as inputs a stream s and a function that computes a value for any element of s
- returns the stream obtained by applying function f to all elements of s

```
> (define cubes
        (s-map (lambda (x) (* x x x)) nats))
> (s-take 7 cubes)
'(0 1 8 27 64 125 216)
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Utility functions on streams of numbers

s-add

```
(s-add s1 s2)
 takes as inputs two streams of numbers
    s1 = (a_1 \ a_2 \ \dots)
    s_2 = (b_1 \ b_2 \ \dots)
 ▶ returns the stream (a_1 + b_1 a_2 + b_2 \dots)
(define (s-add s1 s2)
   (cond [(procedure? s1) (s-add (s1) s2)]
          [(procedure? s2) (s-add s1 (s2))]
          [#t (cons (+ (car s1) (car s2))]
                      (lambda ()
                         (s-add (cdr s1) (cdr s2))))))
>; stream of numbers n^2 + n for all n
  (define ns (s-add (s-map (lambda (x) (* x x)) nats)
                       nats))
> (s-take 6 ns)
'(0 2 6 12 20 30)
                                        ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○
```

Useful observation: the stream fib of Fibonacci numbers has the following useful property:

• Adding streams fib and (cdr fib) yields (cddr fib)

 Once we know the first two elements f₀ and f₁, we can start generating the rest of the stream:

```
(define fib
(cons 1
(cons 1
(lambda () (s-add fib (cdr fib)))))))
> (s-take 10 fib)
'(1 1 2 3 5 8 13 21 34 55)
```

Chapter 13: *Overloading, type classes and type checking,* sections 13.5-13.8 from

Simon Thompson: *Haskell: The Craft of Functional Programming.* Third edition. Pearson Addison Wesley. 2011.

ヘロト ヘアト ヘビト ヘビト

3