
L6: Functional Programming
Haskell: Type Checking and Type Inference.

Racket: Simulating lazy evaluation

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin FLP

mailto:mmarin@info.uvt.ro

Preliminary remarks

In Haskell, every expression has a type, which might be
monomorphic (without type variables), polymorphic, or with one or
more type class constraints in a context.

Examples
’w’ :: Char
map :: (a->b)->[a]->[b]
elem :: (Foldable t,Eq a)=>a->t a->Bool

Char are monomorphic types

(a->b)->[a]->[b] and
(Foldable t,Eq a)=>a->t a->Bool are polymorphic
types

a,b are type variables
Eq and Foldable are type classes

M. Marin FLP

Strong typing

Strong typing = a way to check if an expression is well typed, without
any evaluation taking place.

Haskell is strongly typed. Racket is not strongly typed.

> :type map (\x -> x+1) [1,2,3]
map (\x -> x+1) [1,2,3]::Num b=>[b]

> :type [("abc",True),("bob",False)]
[("abc",True),("bob",False)]::[([Char],Bool)]

> :type 1+’2’
<interactive>:1:1: error:

• No instance for (Num Char) arising from a use of ‘+’
• In the expression: 1 + ’2’

Remark
The benefit of strong typing is obvious: we can catch a lot of type
errors before we run a program.

M. Marin FLP

Type inference

Type inference = a way to compute types from expressions
and definitions.

Haskell has a built-in type inference system⇒ it is possible
never to write a type declaration.

Example
> prodFun f g = \x -> (f x,g x)
> :type prodFun
prodFun :: (t->a)->(t->b)->t->(a,b)

Remarks
1 Haskell programmers almost never write type declarations.
2 Writing type declarations is a good idea: it is the most

important single piece of documentation of an object, since
it tells us how it can be used
I what arguments need to be passed
I what type of result do we get

M. Marin FLP

Type inference

Type inference = a way to compute types from expressions
and definitions.

Haskell has a built-in type inference system⇒ it is possible
never to write a type declaration.

Example
> prodFun f g = \x -> (f x,g x)
> :type prodFun
prodFun :: (t->a)->(t->b)->t->(a,b)

Remarks
1 Haskell programmers almost never write type declarations.
2 Writing type declarations is a good idea: it is the most

important single piece of documentation of an object, since
it tells us how it can be used
I what arguments need to be passed
I what type of result do we get

M. Marin FLP

Type inference
Giving more specific type definitions

prodFun::(Int->Bool)->(Int->Char)->Int->(Bool,Char)
prodFun f g = \x -> (f x,g x)

The most general type of prodFun is
(t->a)->(t->b)->t->(a,b), but we made it more specific,
for t = Int,a = Bool,b = Char.

Type declarations indicate what type we think a function has. If
we got it wrong, the type inference system will detect this. For
example

fun::Int->Bool->Int
fun True 0 = 0
fun True n = n+1
fun _ n = n

gives rise to this error in ghci:

Couldn’t match expected type ’Int’ against inferred type ’Bool’
...

M. Marin FLP

Monomorphic type checking
Type checking an expression

An expression is either
1 a literal or variable of a known type,
2 a function call, or
3 a lambda abstraction.

Remark: operators and the if ... then ... else ...
construct act like functions, but with a different syntax.

Type checking a function call (f e)
f must have a type a->b
e must have type a, and (f e) must have type b

Type checking an abstraction (\x->e)
x must have a type a
e must have type b, and (\x->e) must have type a->b

M. Marin FLP

Monomorphic type checking
Examples

1 A well typed expression:

2 An ill-typed expression:

M. Marin FLP

Monomorphic type checking
Messages for type errors

The error message of GHCi indicates the cause of the problem:

Couldn’t match expected type ’Bool’ against inferred type ’Char’
In the first argument of ’not’, namely ’c’
In the first argument of ’(&&)’, namely ’(not ’c’)’
In the expression (not ’c’) && True

M. Marin FLP

Monomorphic type checking
Function definitions

A monomorphic type definition

f :: t1->t1->...->tn->t
f p1 p2 ... pk
| guard1 = e1
...
| guard` = e`

is type-checked as follows:
1 each of the guards guarsi must be of type Bool

2 each ei must be of type t
3 each pattern pj must be consistent with the type tj of its

argument.
Pattern consistency is explained on the next slide.

M. Marin FLP

Monomorphic type checking
Pattern consistency

A pattern p is consistent with a type if it will match (some)
elements of the type.

Examples
A variable is consistent with any type
A literal is consistent with its type
A pattern (p:q) is consistent with a type [t] if p is
consistent with t and q is consistent with [t].
For example, (0:xs) is consistent with the type [Int],
and (x:xs) is consistent with any type of lists.

M. Marin FLP

Monomorphic type checking
Exercises

1 Predict the type errors you would obtain by defining the
following functions:
f n = 37+n
f True = 34

g 0 = 37
g n = True

h x
| x>0 = True
| otherwise = 37

Check your answers by typing each definition in a Haskell
script, and loading the script into the ghci. Remember
that you can use :type to get the type of an expression.

M. Marin FLP

Polymorphic type checking
Preliminary remarks

In a monomorphic language, an expression is either well
typed and has a single type, or it is ill-typed (it has no type).
In a polymorphic language like Haskell, an object has
exactly one polymorphic type, which can be instantiated
with many types.

Example (Predefined function length has a polymorphic type)
length::[a]->Int

This type is a shorthand for saying that length has the set of
all types [t]->Int where t is a monotype, that is, a type
without type variables.
For example, length has types

[Int]->Int and [(Bool,Char)]->Int

M. Marin FLP

Polymorphic type checking
Constraints

We can apply a polymorphic function to some arguments only if
some type constraints are satisfied.
⇒ type checking = checking if we can find types which meet

the constraints.

Polymorphic type checking is based on two notions:
Unification: Finding a type description which meets two or

more type constraints
Instantiation: Obtaining a new type from a polymorphic type, by

replacing (some of) its type variables with type
expressions.

M. Marin FLP

Polymorphic type checking
Constraints

We can apply a polymorphic function to some arguments only if
some type constraints are satisfied.
⇒ type checking = checking if we can find types which meet

the constraints.
Polymorphic type checking is based on two notions:
Unification: Finding a type description which meets two or

more type constraints
Instantiation: Obtaining a new type from a polymorphic type, by

replacing (some of) its type variables with type
expressions.

M. Marin FLP

Polymorphic type checking
Unification

Unification computes the most general common instance of
two type expressions.

Examples
Q1: Which types meet the two descriptions (a,[Char]) and

(Int,[b])?
A1: (Int,[Char]). We find this type by

unification = solving the type constraint
(a,[Char])=(Int,[b]) ⇒ a=Int, [Char]=[b]
⇒ a=Int, b=Char

Q2: Which types meet the two descriptions (a,[a]) and
(b,[c])?

A2: (b,[b]). We find this type by solving the type constraint
(a,[a])=(b,[c]) ⇒ a=b, [a]=[c]
⇒ a=b, c=b

M. Marin FLP

Polymorphic type checking
Polymorphic function application

Example 1
Type-check map Circle where

map::(a->b)->[a]->[b]
Circle::Int->Shape

unifies a->b with Float->Shape⇒ a = Float,b = Shape.
Thus

map Circle::[Float]->[Shape]

M. Marin FLP

Polymorphic type checking
Polymorphic function application

Example 1
Type-check map Circle where

map::(a->b)->[a]->[b]
Circle::Int->Shape

unifies a->b with Float->Shape⇒ a = Float,b = Shape.
Thus

map Circle::[Float]->[Shape]

M. Marin FLP

Polymorphic type checking
Polymorphic function application

Q: Find the most general general type of the function foldr
defined by
foldr f s [] = s
foldr f s (x:xs) = f x (foldr f s xs)

A: f takes 3 input arguments⇒ it has type a1->a2->a3->c.
Let a be type of s.

From the first equation we get the type constraints
a2 = a,a2 = c,a3 = [b]
because [] has a type [b] for some type b
⇒ a2 = a,a3 = [b],c = a, thus foldr::a1->a->[b]->a
From the second equation we get that x::b, xs::[b],
f::c1->c2->c3, and the type constraints
c1 = b,c2 = a,c3 = a, thus a1=b->a->a and
foldr::(b->a->a)->a->[b]->a

M. Marin FLP

Polymorphic type checking
Polymorphic definitions and variables

Q1: Find the most general general type of expr where

expr=length ([]++[True]) + length ([]++[2,3,4])

A2: Functions and constants can be used with different types in
the same expression.
I First occurrence of [] has type [Bool], and second

occurrence of [] has type Integer⇒ expr::Int.

Q2: What should be the type of funny defined below?

funny xs=length (xs++[True]) + length (xs++[2,3,4])

A2: A variable must used with the same type in the same
expression. But

First occurrence of xs should have type [Bool], and
second occurrence of xs should have type [Integer].
[Bool] and [Integer] are not unifiable⇒ funny is
ill-typed.

M. Marin FLP

Polymorphic type checking
Polymorphic definitions and variables

Q1: Find the most general general type of expr where

expr=length ([]++[True]) + length ([]++[2,3,4])

A2: Functions and constants can be used with different types in
the same expression.
I First occurrence of [] has type [Bool], and second

occurrence of [] has type Integer⇒ expr::Int.

Q2: What should be the type of funny defined below?

funny xs=length (xs++[True]) + length (xs++[2,3,4])

A2: A variable must used with the same type in the same
expression. But

First occurrence of xs should have type [Bool], and
second occurrence of xs should have type [Integer].
[Bool] and [Integer] are not unifiable⇒ funny is
ill-typed.

M. Marin FLP

Polymorphic type checking
Polymorphic definitions and variables

Q1: Find the most general general type of expr where

expr=length ([]++[True]) + length ([]++[2,3,4])

A2: Functions and constants can be used with different types in
the same expression.
I First occurrence of [] has type [Bool], and second

occurrence of [] has type Integer⇒ expr::Int.

Q2: What should be the type of funny defined below?

funny xs=length (xs++[True]) + length (xs++[2,3,4])

A2: A variable must used with the same type in the same
expression. But

First occurrence of xs should have type [Bool], and
second occurrence of xs should have type [Integer].
[Bool] and [Integer] are not unifiable⇒ funny is
ill-typed.

M. Marin FLP

Polymorphic type checking
Polymorphic definitions and variables

Q1: Find the most general general type of expr where

expr=length ([]++[True]) + length ([]++[2,3,4])

A2: Functions and constants can be used with different types in
the same expression.
I First occurrence of [] has type [Bool], and second

occurrence of [] has type Integer⇒ expr::Int.

Q2: What should be the type of funny defined below?

funny xs=length (xs++[True]) + length (xs++[2,3,4])

A2: A variable must used with the same type in the same
expression. But

First occurrence of xs should have type [Bool], and
second occurrence of xs should have type [Integer].
[Bool] and [Integer] are not unifiable⇒ funny is
ill-typed.

M. Marin FLP

Type checking and type classes

Haskell classes restrict the use of some functions, such as ++,
to types in the class over which they are defined.
I These restrictions are apparent in the contexts which

appear in some types.

Example
If we define

member [] _ = False
member (x:xs) y = (x==y) || member xs y

then the inferred type of member will be

Eq a => [a] -> a -> Bool

because x,y of type a are compared for equality in the
definition, thus forcing the type a to belong to equality class Eq.

M. Marin FLP

Lazy evaluation in strict programming languages
Case study: lazy evaluation in Racket

Lazy evaluation allows us to define and compute with infinite
data structures
⇒ highly efficient and elegant implementations

Most programming languages are strict, without built-in support
for call-by-need evaluation.
Q: Can be simulate call-by-need evaluation în a strict

programming language, e.g., in Racket?
A: Yes, by checking explicitly when a computation is needed,

and writing code which to do the needed computation.

M. Marin FLP

Lazy evaluation in Racket

Main idea: Encapsulate the computation that will be needed in
the body of a nullary function, and call the function whenever
we need to produce some result.

A nullary function is a function with 0 arguments. Nullary
functions act like factories for delayed work.

> (define delayedwork (lambda () body))

When we wish to perform the computation of body , we call the
nullary function

> (delayedwork)

Remark
With this technique, we have full control of the evaluation
process:

We can delay computations and execute them only when
really needed.

M. Marin FLP

Applications of lazy evaluation
Infinite lists (a.k.a. streams)

Stream: a finite representation of an infinite list, where we know
how to generate new elements from previous elements.
Examples of streams:

All ones: (1 1 1 ...)
Next element is always 1.

Natural numbers: (0 1 2 3 ...)
Next element is successor of previous element.

Fibonacci numbers: (1 1 2 3 5 8 13 ...)
Every element, except first two, is sum of previous
two elements.

Prime numbers: (2 3 5 7 11 13 ...)
Every next element is the first natural number
different from 1, which is not a multiple of previous
elements.

M. Marin FLP

Applications of lazy evaluation
Infinite lists (a.k.a. streams)

Q: How to represent in a finite way a stream (a1 a2 a3 . . .) ?
A: As an “incomplete” list

a1 a2 ak gen

with printed form ’(a1 . . . ak . gen)

where gen is a nullary function that can generate more
elements on demand:
I (gen) computes (ak+1 . . . ak+`. gen′) with ` ≥ 1

gen is called the stream generator.
A generator is just a function, and function gen is
recognised with (procedure? gen)

M. Marin FLP

Streams

Examples
(define gen-ones

(lambda () (cons 1 gen-ones)))
; stream of all ones
(define all-ones (gen-ones))

(define (gen-nats n)
(cons n (lambda () (gen-nats (+ n 1)))))

; stream of all naturals
(define nats (gen-nats 0))

> all-ones
’(1 . #<procedure:gen-ones>)

> nats
’(0 . #<procedure>)

M. Marin FLP

Working with streams
Utility functions: s-take and s-filter

; list of first n elements from stream s
(define (s-take n s)

(cond [(= n 0) ’()]
[(procedure? s) ; s is the stream generator

(s-take n (s))]
[#t (cons (car s) (s-take (- n 1) (cdr s)))]))

; stream of all elements of s which satisfy predicate p
(define (s-filter p s)

(cond [(procedure? s) ; s is the stream generator
(s-filter p (s))]
[(p (car s))

(cons (car s)
(lambda () (s-filter p (cdr s))))]

[#t (s-filter p (cdr s))]))

> (s-take 5 (s-filter even? nats))
’(0 2 4 6 8)

M. Marin FLP

Working with streams
Utility functions: s-map

(s-map f s)

I takes as inputs a stream s and a function that computes a
value for any element of s

I returns the stream obtained by applying function f to all
elements of s

(define (s-map f s)
(if (procedure? s) (s-map f (s))

(cons (f (car s))
(lambda () (s-map f (cdr s))))))

> (define cubes
(s-map (lambda (x) (* x x x)) nats))

> (s-take 7 cubes)
’(0 1 8 27 64 125 216)

M. Marin FLP

Utility functions on streams of numbers
s-add

(s-add s1 s2)
I takes as inputs two streams of numbers

s1 = (a1 a2 . . .)
s2 = (b1 b2 . . .)

I returns the stream (a1 + b1 a2 + b2 . . .)

(define (s-add s1 s2)
(cond [(procedure? s1) (s-add (s1) s2)]

[(procedure? s2) (s-add s1 (s2))]
[#t (cons (+ (car s1) (car s2))

(lambda ()
(s-add (cdr s1) (cdr s2))))]))

> ; stream of numbers n2 + n for all n
(define ns (s-add (s-map (lambda (x) (* x x)) nats)

nats))
> (s-take 6 ns)
’(0 2 6 12 20 30)

M. Marin FLP

Stream of Fibonacci numbers

Useful observation: the stream fib of Fibonacci numbers has
the following useful property:

Adding streams fib and (cdr fib) yields (cddr fib)

fib = f0 f1 f2 . . . +
(cdr fib) = f1 f2 f3 . . .

f0 f1 f2 f3 f4 . . .

Once we know the first two elements f0 and f1, we can start
generating the rest of the stream:
(define fib

(cons 1
(cons 1

(lambda () (s-add fib (cdr fib))))))

> (s-take 10 fib)
’(1 1 2 3 5 8 13 21 34 55)

M. Marin FLP

References

Chapter 13: Overloading, type classes and type checking,
sections 13.5-13.8 from

Simon Thompson: Haskell: The Craft of Functional
Programming. Third edition. Pearson Addison Wesley.
2011.

M. Marin FLP

