
FLP

Lecture 4: Advanced uses of functions

March 2021

Remember that . . .

In functional programming, functions are values:

• The evaluation of a definition

(define (f x1 . . . xn) block)

in an environment

E
. . .

. . .

extends the top frame of E with the binding f 7→ 〈code,E〉, where
code is (lambda (x1 . . . xn) block). The new environment E is

E . . .
. . .

f (lambda (x1 . . . xn) block) |

The internal representation of the function is a pair 〈code,E〉, called
closure. The pair stores the textual definition of the function together
with a reference to the environment E where the function was created.

• The evaluation of a function call (f expr1 . . . exprn) in an environ-
ment E proceeds as follows:

1. First, the arguments expr1, . . . , exprn are reduced to values v1,
. . . , vn in E.

1

2. Next, we look up the value v of f in E. If

E(f) = 〈(lambda (x1 . . . xn) block), E′〉.

we compute the value of block (the body of function f) in the
environment

E′′
E′

x1

x2
...
xn

v1
v2

vn

The top frame of this environment binds the formal parameters
x1, . . . , xn of f to the input values v1, . . . , vn.

3. After v is computed:

– the top frame of E′′ is garbage collected,

– the evaluation environment is restored to be E, and

– v is returned as value of the function call.

See Lecture 3 about how tail call optimization works.

1 Local definitions

An important programming principle is to avoid cluttering the global envi-
ronment with useless or auxiliary definitions.

• In functional programming, we can make definitions local to the place
where they are needed.

• We will illustrate how to apply this principle by improving Newton’s
method to compute numeric approximations of

√
a for a number a ∈ R,

a > 0.

Newton noticed that, if a is a positive real number then
√
a is the limit of

the sequence (xn)n∈N where

x0 = 1.0 and xn+1 = (xn + a/xn)/2 for all n ∈ N.

2

1.1 Newton’s method: version 1

Let’s assume that x ∈ R is a good approximation of
√
a if |x2−a| < 0.000001.

For this purpose we define the auxiliary function

(define (good? x a) (< (abs (- (* x x) a)) 0.000001))

Also, if the approximation x is not good enough for
√
a, we define the

following function to compute an improved approximation:

(define (improve x a) (/ (+ x (/ a x)) 2))

The following is a recursive implementation of Newton’s method, starting
from the initial approximation x = 1.0:

(define (newtonV1 a [x 1.0])

(if (good? x a)

x

(newtonV1 a (improve x a))))

If we define functions good?, improve and newtonV1 in a global environment
E, the top frame of E is extended with 3 bindings:

E
good?
improve

newtonV1

(lambda (x a) ...)

(lambda (x a) ...)

(lambda (a [x 1.0]) ...)

The disadvantage of this implementation is that the auxiliary functions
good? and improve are globally visible. We wish to make them local to the
body of Newton’s method.

1.2 Newton’s method: version 2

We can move the definitions of good? and improve in the body of function
newton2:

(define (newtonV2 a [x 1.0])

(define (good? x a) (< (abs (- (* x x) a)) 0.000001))

(define (improve x a) (/ (+ x (/ a x)) 2))

(if (good? x a) x (newtonV2 a (improve x a))))

This definition can be improved if we notice that (newtonV2 a x) calls
itself recursively as (newtonV2 a y) where y is some new input argument.
Thus, the first argument of newtonV2 is invariant and need not be passed
as argument to the local functions good? and improve:

3

(define (newtonV2 a [x 1.0])

(define (good? x) (< (abs (- (* x x) a)) 0.000001))

(define (improve x) (/ (+ x (/ a x)) 2))

(if (good? x) x (newtonV2 a (improve x))))

This version adds a single binding to the top frame of E:

E

...
newtonV2 (lambda (a [x 1.0]) ...)

but has another disadvantage, which becomes visible when we call function
newtonV2. For example, the evaluation of (newtonV2 6) is reduced to the
evaluation of the body of newtonV2 in the extension of E with the temporary
frame depicted below:

E

a
x

6

3.5
...
newtonV2 (lambda (a [x 1.0]) ...)

The body of newtonV2 has two local definitions, and its evaluation is reduced
to that of the recursive call (newtonV2 6 3.5) in the extended environment

E′′ E

good?
improve

. . .

. . .
a
x

6

1.0
...
newtonV2 (lambda (a [x 1.0]) ...)

Because of tail recursion, the first two frames of E′′ are garbage collected
and recreated between recursive calls of newtonV2. For example, the next
recursive call will be (newtonV2 6 2.60714) in the extended environment

E′′ E

good?
improve

. . .

. . .
a
x

6

3.5
...
newtonV2 (lambda (a [x 1.0]) ...)

Note that the only binding that changes from a recursive call to another
is the binding for x. It would be more efficient to keep the bindings for a,
good? and improve, and not recreate them by every recursive call.

4

1.3 Newton’s method: version 3

Version 2 is inefficient because recursive calls recreate invariant bindings for
local variables. We can eliminate this problem as follows:

• We define a “wrapper”, which is a function whose body contains all
definitions which are invariant from one function call to another.

• In the “wrapper”, we define an auxiliary function which performs the
recursive computation, using the definitions in the “wrapper”.

For Newton’s method, we have

(define (newtonV3 a) ; the wrapper
(define (good? x) (< (abs (- (* x x) a)) 0.001))

(define (improve x) (/ (+ x (/ a x)) 2))

(define (sqrtIter x) ; the auxiliary recursive function
(if (good? x) x (sqrtIter (improve x))))

(sqrtIter 1.0))

In this example, the variables with invariant definitions are good?, improve
and a: they do not change from one recursive call to another.

Like version 2, the evaluation of this definition in an environment E adds
a single binding to the top frame of E:

E

...
newtonV3 (lambda (a) ...)

but the evaluation of function calls of newtonV3 is much more efficient. For
example, the evaluation of (newtonV3 6) in E is reduced to the evaluation
of (sqrtIter 1.0) in the environment

EE′

a 6
good?
improve
sqrtIter

. . .

. . .

. . .

...
newtonV3 (lambda (a) ...)

The definitions of good?, improve, sqrtIter and a are invariant and will
persist in the first two frames of E′ during the tail-optimized evaluation of
(sqrt-iter 1.0). The evaluation of (sqrt-iter 1.0) returns the good
approximation 2.4494943 of

√
6 after five recursive calls:

5

(sqrtIter 1.0) in E′

(sqrtIter 3.5) in

(sqrtIter 2.6071428) in

(sqrtIter 2.4542563) in

(sqrtIter 2.4494943) in

2.4494943 in E

x 1.0
E′

x 3.5
E′

x 2.6071428
E′

x 2.4542563
E′

2 Functions with local state

Consider the function definition

(define (f x1 . . . xn)
(lambda (y1 . . . ym) body))

The evaluation of this definition in an environment E adds the binding

f 7→ 〈code,E〉

to the top frame of E. Note that f is a higher-order function because it
returns a function as result. For example, the evaluation of

(define g (f expr1 . . . exprn))

in E has the following effect:

1. the values v1, . . . , vn of expr1, . . . , exprn are computed in E.

2. The body of f , which is (lambda (y1 . . . ym) body), is evaluated
in environment extended with a top frame that contains the bindings
xi 7→ vi for 1 ≤ i ≤ n. This is the environment

E′
Ex1

x2

xn

v1
v2

vn

...

3. The binding g 7→ 〈code,E′〉 is added to the top frame of E. Diagra-
matically, the environment E becomes

6

E

x1

x2

xn

v1
v2

vn

... f (lambda (x1 . . . xn) (lambda (y1 . . . ym) body))|
g (lambda (lambda (y1 . . . ym) body)

...

The top frame of E′, which contains the bindings xi 7→ vi for 1 ≤ i ≤ n
is not garbage collected because there is a reference to it, from the closure
which is the value of g. The bindings xi 7→ vi from this frame are visible only
from the body of g. They represent the local state of function g because g
is the only function which can access them.

Functions as objects

Functions with local state can be used to model objects, like in OOP. Con-
sider the function defined by

(define (make-student name id year study-field)

(lambda (request d)

(cond [(eq? request ′name) name]

[(eq? request ′id) id]

[(eq? request ′year) year]

[(eq? request ′study-field) study-field])))

This function is a constructor of objects which are function closures. For
example, the function calls

> (define roy (make-student "Roy Wilson" 122016 1 ′math))
> (define bill (make-student "Bill Cosby" 122021 2 ′arts))

binds roy and bill to functions with local state for the variables id, year
and study-field.

• make-student is a constructor of functions whose local state encapsu-
lates information from the input arguments of the constructor call

• The closure produced by the constructor is a dispatch function f : if
we call it with (f ′field) we retrieve the value of the local variable
field stored in f . For example:

7

> (roy ’name) > (bill name)

"Roy Wilson" "Bill Cosby"

> (roy ’study-field) > (bill ’study-field)

’math ’arts

OOP with Racket

Racket is not a pure functional programming language: FP does not allow to
change the values of variables or the content of composite values, but Racket
has instructions that can change the value of a variable and the content of
a some composite values. These operations are destructive and specific to
imperative programming styles.

Note that:

1. Racket is intended to be used mostly for functional programming. The
names of destructive operations end with ! to warn programmers that
they have side effects.

2. Sometimes, these operations are useful.

We mention here only the assignment operation

(set! name expr)

which does the following when evaluated in an environment E: :

1. It computes the value v of expr in E

2. It looks up for a binding of name in E. If no binding is found, name is
undefined and the assignment fails (it will display a warning message).
Otherwise, the binding of name in E is replaced with name 7→ v.

For example:

> (define x 1) > (set! y 3)

> x set!: assignment disallowed;

1 cannot set variable before its definition

> (set! x "abc")

> x

"abc"

With set! we can define function objects that can change local state, e.g.,
account information:

8

(define (make-account amount)

(lambda (request [value 0])

(cond [(eq? request ′show) (display amount)]

[(eq? request ′deposit) (set! amount (+ amount value))]

[(eq? request ′withdraw)

(if (> amount value)

(set! amount (- amount value))

(displayln "Insufficient money in account"))])))

The interpretation in an environment E of the definitions

> (define account1 (make-account 300))

> (define account2 (make-account 400))

creates two function values, for variables account1 and account2, and each of them
has its own local variable amount, as illustrated below.

. . .
E

account1

account2 code

code
amount 300

amount 400

> (account1 ′deposit 50) ; increase by 50 the amount of account1
> (account2 ′withdraw 80) ; decrease by 80 the amount of account2
> (account1 ′show)

350

> (account2 ′show)

320

> (account1 ′withdraw 360)

Insufficient money in account

Note that

1. makeAccount is a constructor of function objects with local state for bank
accounts.

2. The account objects created by makeAccount are dispatch functions which
can be used to view or modify the state of an account.

3 Variadic functions

A variadic function is a function that can take an unlimited number of arguments.
Typical examples are the predefined functions +, * and append.

A variadic function f can be defined as follows:

(define (f x1 . . . xk . xs) body)

9

Function f must be called with at least k input arguments. The values of the
first k inputs are bound to variables x1, . . . , xk and the list of values of the other
arguments is bound to parameter xs.

Examples:

• A function that computes the arithmetic mean
a1 + a2 + . . . + an

n
of the val-

ues a1, a2, . . . , an of its arguments:

(define (a-mean . lst)

(if (null? lst)

’no-average

(/ (apply + lst) (length lst))))

> (a-mean) > (a-mean 1 4 7)

’no-average 4

• A function that computes the harmonic mean
n

1
a1

+ 1
a2

+ . . . + 1
an

of the val-

ues a1, a2, . . . , an of its arguments:

(define (h-mean . lst)

(if (null? lst)

’no-harmonic-mean

(/ (length lst)

(apply +

(map (lambda (x) (/ 1 x)) lst)))))

4 Problem-solving strategies

There are two well known problem-solving strategies: top-down and bottom-up.

Top-down

The top-down approach, also known as decomposition, solves a problem by start-
ing from the most abstract specification that can describe succintly the solution,
and decomposing it incrementally into simpler sub-problems until we reach situa-
tions that can be implemented directly in Racket. This approach is suitable for
procedural programming and functional programming, because most procedures
and functions have a compositional structure that can be identified by top-down
refinement.

We used the top-down approach to define

• recursive functions on recursively defined datatypes.

• Newton’s method to compute
√
a for a ∈ R, a > 0.

10

Bottom-up

The bottom-up approach resembles building with LEGO: It starts from elementary
functions and operations whose behavior is specified in great detail (the basic build-
ing blocks), and repeatedly links them together into more complex functions, until
we reach a solution of the given problem. This approach is suitable in programming
environments with generic programming constructs that can be used as building
blocks for a large variety of applications. For example, the list datatype and the
higher-order functions map, filter, apply, foldl, foldr constitute very powerful
collection of functionality that can be used for the bottom-up implementation of a
large variety of applications. These higher-order functions behave as follows:

• (map f lst)

takes as input a function f and list of values v1, . . . , vn and computes the list
of values (f v1), (f v2), . . . , (f vn). More generally,

(map f lst1 . . . lstn)

takes as input an n-ary function f and n lists of values, all of the same length,
and returns the list of values

(f v1,1 . . . v1,n), . . . , (f vk,1 . . . vk,n)

if every list lsti consists of values v1,i, . . . , vk,i.

Examples:

> (map cons ’(a b c) ’(1 2 3))

’((a . 1) (b . 2) (c . 3))

> (map (lambda (x) (/ 1 x)) ’(2 3 4))

’(
1

2

1

3

1

4
)

• (filter p lst)

tekes as inputs a predicate (=boolean function with 1 argument) p and a list
lst and returns the list of values in lst for which p holds.

Examples:

> (filter symbol? ’(a 1 () "abc" abc #t))

’(a abc)

• (apply f lst)

is reduced to the function call (f v1 . . . vn) where v1, . . . , vn are the values
of elements from lst.

• (foldl f v0 lst)

computes the value of (f vn . . . (f v1 v0) · · ·)
where v1, . . . , vn are the values of elements from lst.

11

• (foldr f v0 lst)

computes the value of (f v1 (f . . . (f vn v0) . . .)) where v1, . . . , vn are the
values of elements from lst.

Remarks: efficient implementations of these operations

• foldl has an efficient, tail-recursive definition:

(define (foldl f v0 lst)

(if (null? lst)

v0

(foldl (f (car lst) v0) (cdr lst))))

If the runtime complexity of f is O(1), then the runtime complexity of

(foldl f v0 lst)

is O(n) where n is the length of lst.

• (reverse has an efficient implementation with foldl:

(define (reverse lst) (foldl cons null lst))

Quiz: what is the runtime complexity of this implementation of reverse?

• A straightforward implementation of foldr is

(define (foldr f v0 lst)

(if (null? lst)

v0

(f (car lst) (foldr f v0 (cdr lst)))))

but this is not tail-recursive. But foldr can be implemented efficiently with
reverse and foldl.

Exercises:

1. Define foldr with foldl and reverse, and indicate the runtime complexity
of this definition.

2. Define filter with foldr.

3. Define length with foldl.

4. Use foldr to define the variadic function

(compose f1 . . . fn)

which takes as inputs n ≥ 0 unary functions f1, . . . , fn and returns the func-
tion that maps x to the value of

(f1 ... (fn x)...)

12

