Lecture 3: Environment-based computations

Functions as values. Tail recursion

Mircea Marin
West University of Timisoara
mircea.marin@e-uvt.ro

mailto:mmarin@info.uvt.ro

Recap from Lecture 2
What is the A-calculus?

The smallest language for FP. It consists of

© A language to write expressions, also known as terms.
ti=x|Ax.t1 | t1 b

where x is a variable and

@ Ax.t is an abstraction with intended reading “the function
which, for input x computes the value of t."

@ Ax is the binder of the abstraction
e tis the body (or scope) of the abstraction

e t1 tp is an application: t; is applied to argument t».
@ Transformation rules
a-conversion: Ax.t —q Ay.[y/x]|t
if [y/x]|t is a capture-free substitution.
[B-reduction: ()\X.tl) tr =g [t2/X]t1
if [t2/x]t1 is a capture-free substitution.

M. Marin LFP

Racket and the A-calculus

The A-calculus is the core language of Racket = Racket recognizes
the expressions of the A-calculus, but we should write them in a
slightly different way:

(lambda (x) t) instead of Ax.t
(t; tp) instead of t1 t

RENEIS

© For efficiency reasons, Racket has built-in values for many
useful datatypes including many predefined functions.

@ The editor of Racket allows us to view the referenced-based
representation of A-terms
o If we hover the mouse over a binder, the editor highlights the
occurrences bound to it.
o If we hover the mouse over a variable occurrence, we see a
reference to its corresponding binder.

M. Marin LFP

Racket and the A-calculus

Referenced-based representations of expressions (snapshot)

@ ® Untitled 3 - DrRacket e0e® Unti
Untitled 3w (define ..)v wp(5]) Check Syntax 4 Debug @[Untiled 3v (define) &(5] Check Syntax |
#lang racket #lang racket
(define y 1) (define y 1)
(lambda () [2bound occurrences] (lambda (x)

(+ y))| (+ xxvy))
@ @ Untitled 3 - DrRacket

Untitied 3w (define) v sp(E]) Check Syntax O« Debug @[

#lang racket
(define/y 1)

(laﬁpdé (x)
(¥ x x y))|imported from rackef]

M. Marin LFP

Transformation rules

The purpose of a-conversion

a-conversion allows us to do harmless renamings of parameters of
functions.
Suppose y is a global variable with a given value.
@ Ax.y is the function which, for every input x, returns the
value of y.
AX.y = Az.[z/x]y = Az.y

is harmless because Ax.y and A\z.y are describe the same
function. But we are not allowed to perform the
variable-capture substitution

Ax.y = Ay.ly/xly = Ay.y

because Ax.y and Ay.y describe different functions.

M. Marin LFP

Transformation rules

The purpose of B-reduction

B-reduction simulates the first-step of evaluating a function call:
We replace in the body of the function the formal parameters with
the input arguments.

Example (Evaluation in Racket)

(define y 7)
> ((lambda (x) (+ x y)) 5)

—g [7/y106/x1(+ x y)
= (+57)
— 12
> ((lambda (x) (lambda (y) (+ x y))) 6)
—p5 [6/x](lambda (y) (+ x y))
= (lambda (y) (+ 6 y))

Remark: + and y have free occurrences = to use them, we need to
know where to find their values.

M. Marin LFP

Environment-based computations

Environment = data structure which stores the values of variables
with free occurrences.

@ Environment = a list of frames.

@ Every frame is a table of values for some variables.

Example (Environment E with two frames)

E e v —rme

x——{4] z——8

@ The first frame is the top frame.

o Variable lookup: E(var) is the value of var found in the first
frame, from top to bottom (or left to right) which contains a
value for var:

E(x) =4, E(y) = "abc", E(z) =5

E(t) is not defined.

The binding z +— 8 is shadowed by the binding z — 5 in the
top frame.

M. Marin LFP

Environment-based computations
Preliminary remarks

All evaluations are performed w.r.t. a global environment which
stores the values of variables with free occurrences in expressions.

The global environment is initialized with bindings for predefined
variables when we start the system

@ Built-in functions names are predefined variables with
functions as values

The value of an expression expr in an environment E is computed
in two steps:

@ All variables x in expr are replaced with E(x)

@ The new expression is evaluated using the rules of evaluation.

M. Marin LFP

Evaluation of expressions
Example

z—1+—5] Y1+—7 +—1—
X—+—{4] z—1+—8] *——»

The value of (+ x (*x y z)) in E is computed as follows:

(+x (xy2z)—=(+4 (x75)—(+ 4 35)—39

From now on we will always assume implicitly that the environment
has a frame with bindings for all built-in operations and constants.

M. Marin LFP

Environment-based computations
The interpretation of definitions

When the interpreter reads a definition
(define var expr)

in an environment E, it does the following:
Q It computes the value v of expr in E
@ It adds the binding var — v to the top frame of E.

E e 7o > (+x (xy 2)
| X @ | 27— 39

The definition (define y 1) changes E to be

E e 7o > (+x (xy 2)
x—+—@ | z—@ 9
|y

The new binding y — 1 shadows the binding y +— 8.

M. Marin LFP

The interpretation of definitions
A word of warning

Bindings can shadow each other, but they can not be overwritten

= (define var expr)
is prohibited in an environment E which has a binding of var
in the first frame.

We can not redefine x and z in environment

E

z——>{5] Y——7]
X [4] z [8]

but we can define y.

M. Marin LFP

Blocks and their evaluation

Block = sequence of definitions and expressions, which ends with an
expression.

@ (local [] compy ... comp, expr)

is a special form for the block made of the sequence of components
comps,. .., comp, followed by expr.

The evaluation of such a block in an environment E proceeds as follows:
@ E is extended with a temporary top frame, initially empty.
@ The all components of the block are interpreted one by one:

o the block definitions add bindings to the (initially empty) top
frame
e expr is evaluated and its value is returned as value of the block

© E is restored by discarding its temporary top frame.

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (local []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]

(define y 4)

(define z 5)

(println (+ x y 2)))
+ x 2))

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(local [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

5

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(QQocal [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

5

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(QQocal [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

5

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(QQocal [1]
(define y 4)
(define z 5)
(println (+ x y 2)))
+ x 2))

5

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(QQocal [1]
(define y 4)
(define z 5)
(println (+ x y z)))
+ x 2))

5
10

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(QQocal [1]
(define y 4)
(define z 5)
(println (+ x y z)))
+ x 2))

5
10
3

M. Marin LFP

The evaluation of blocks

Example

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (Qocal []
(define x 1)
(local []
(define x 2)
(define y 3)
(println (+ x y)))
(Qocal [1]
(define y 4)
(define z 5)
(println (+ x y z)))
+ x 2))
5
10
3

M. Marin LFP

Other special forms with blocks

@ The conditional form
(cond [test; blocki]

[test, block,])
where testy, ..., test, are boolean expressions. The evaluation
returns the value of the first block block; for which test; is
true. If all tests are false, the evaluation returns value
#<void>
@ Abstractions, which are used to define functions
(lambda (x1 ... X,) block)

© let and letx:

(let ([vary expri] (let* ([var, exprl
[var, exprp]) Lvar, exprp])
block) block)

M. Marin LFP

The boolean operators and and or

and and or are special forms: they are not functions!
Q@ (and t; ... t,)
evaluates expressions ti, ..., t, from left to right.
o if it finds t; with value #£, it returns #£f
e otherwise, it returns the value of t,.
Q@ (or t1 ... ty)
evaluates expressions ti, ..., t, from left to right.
o if it finds t; whose value is not #£, it returns the value of t;.
e otherwise, it returns #f£.
REMARK: In Racket, all non-#f values are true. This is similar to
language C, where anything non-zero is interpreted as true.

> (and 1 (lambda (x) x) #f) > (or #f ’abc "abc")
#f ’abc

> (and) > (or)

#t #f

> (and 1 "abc" ’abc)

’abc

M. Marin LFP

The special forms if and cond

(if test expry expry)
is equivalent with

(cond [test expri]
[#t exprp])

@ cond is more general than if, also because its branches can
be blocks.

@ The branches of if must be expressions.

M. Marin LFP

User-defined functions

@ The value of (lambda (x3 ... x,) block) in an
environment E is the pair ((lambda (x1 ... xp) block) ,E)
» Such a value is called lexical closure or function closure or
closure: it is a pair made of (1) the textual definition of the
function and (2) the environment where f was created.

o If f has value ((lambda (x; ... x,) block),E) then
the value of (f t; ... t,) in E’ is computed as follows:
» compute the values vq,...,v, of t1,...,t, in E’

» create the temporary environment

and compute v =the value of block in E”
» return v as the value of (f t; ... t,) in E’.

M. Marin LFP

The evaluation of function calls
lllustrated example

Consider the environments E; and E> where

E>

E Y14l
1 f}—{{(Qambda &) + z (* x y)),E)] z——[3]
y1—4 X*—»@

What is the value of (£ y) in E17

M. Marin LFP

The evaluation of function calls
lllustrated example

Consider the environments E; and E> where

E>

E Y14l
1 f}—{{(Qambda &) + z (* x y)),E)] z——[3]
y1—4 X*—»@

What is the value of (£ y) in E17

Ey)in g - (£ 4) in BE = (+z (x xy)) in E’

where

> (+z (x xy))inE
12

M. Marin LFP

The evaluation of function calls
lllustrated example

Consider the environments E; and E> where

E>

E Y14l
1 f}—{{(Qambda &) + z (* x y)),E)] z——[3]
y1—4 X*—»@

What is the value of (£ y) in E17

Ey)in g - (£ 4) in BE = (+z (x xy)) in E’

where

> (+z (x xy))inE
12

= the value of (£ y) in Ey is 12.

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.
» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.
» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

Why learn recursion?

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:
» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.
» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

Why learn recursion?

» New way of thinking

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.
» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

Why learn recursion?
» New way of thinking

» Powerful programming tool

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.

» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

Why learn recursion?
» New way of thinking
» Powerful programming tool

» Divide-and-conquer paradigm

M. Marin LFP

Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

» Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.

» In functional programming

e A function is recursive when it calls itself directly or indirectly.
o A data structure is recursive if it is defined in terms of itself.
o All repetitive computations can be performed only by recursion.

Why learn recursion?
» New way of thinking
» Powerful programming tool
» Divide-and-conquer paradigm
Many computations and data structures are naturally

recursive

M. Marin LFP

Recursive function definitions

General structure

@ A simple base case (or base cases): a terminating scenario
that does not use recursion to produce an answer.
@ One or more recursive cases that reduce the computation,

directly or indirectly, to simpler computations of the same
kind.

» To ensure termination of the computation, the reduction
process should eventually lead to base case computations.

M. Marin LFP

Recursive function definitions

General structure

@ A simple base case (or base cases): a terminating scenario
that does not use recursion to produce an answer.

@ One or more recursive cases that reduce the computation,
directly or indirectly, to simpler computations of the same
kind.

» To ensure termination of the computation, the reduction
process should eventually lead to base case computations.

Classic recursive functions:
@ Factorial function
@ Fibonacci function
@ Ackermann function
Q Euclid’s Greatest Common Divisor (GCD) function

M. Marin LFP

How to write a recursive definition?

@ Try to break a problem into subparts, at least one of which is
similar to the original problem.
o There may be many ways to do so. For example, if m;n € N
and m > n > 0 then
ged(m, n) = ged(m — n, n), or gcd(m, n) = ged(n,m mod n)
@ Make sure that recursion will operate correctly:

» there should be at least one base case and one recursive case
(it's OK to have more)

» The test for the base case must be performed before the
recursive calls.

» The problem must be broken down such that a base case is
always reached in a finite number of recursive calls.

» The recursive call must not skip over the base case.

» The non-recursive portions of the subprogram must operate
correctly.

M. Marin LFP

Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n € N?

M. Marin LFP

The factorial function

Time and space complexity of computation

(define (fact n) (if (=n 0) 1 (*x n (fact (- n 1)))))

> Space
(fact 4) in E

€ ¢n (fact 3)) in @ ~E

(* n (i n (fact 2))) in B e E

(*n (*1n (*n (fact 1)) in [EPE EPE EPE"E

(¢*n (+n (10 (* n¢(fact 0N in EPDEFT EPE EEE

(¢)n (*n (*n (*n (ié (=0 0) 1 ..00Nin
(*n (xn (* n@m in EPD EPED EPE e tE

(*n <*n@>> in @ mPE EPEE

> n@) in @G EE £

(I n é) in Epa*E

24 in E
Y

time
M. Marin LFP

Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)
(if (=n 0) 1 (x n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n € N?
Al: The computation of (fact n) has
time complexity 2-(n+ 1) = O(n)
space complexity O(n): the maximum number of frames
added to Eisn+1

M. Marin LFP

Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)
(if (=n 0) 1 (x n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n € N?
Al: The computation of (fact n) has
time complexity 2-(n+ 1) = O(n)
space complexity O(n): the maximum number of frames
added to Eisn+1
Q2: Can we reduce the space complexity?

M. Marin LFP

Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)
(if (=n 0) 1 (x n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n € N?
Al: The computation of (fact n) has
time complexity 2-(n+ 1) = O(n)
space complexity O(n): the maximum number of frames
added to Eisn+1
Q2: Can we reduce the space complexity?
A2: Main idea: Add an extra argument to accumulate and
propagate the result computed so far.
(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
(if (= n 0) a (fact-acc (- n 1) (*x a n))))

M. Marin LFP

Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)
(if (=n 0) 1 (x n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n € N?
Al: The computation of (fact n) has
time complexity 2-(n+ 1) = O(n)
space complexity O(n): the maximum number of frames
added to Eisn+1
Q2: Can we reduce the space complexity?
A2: Main idea: Add an extra argument to accumulate and
propagate the result computed so far.
(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
(if (= n 0) a (fact-acc (- n 1) (*x a n))))
e (fact-acc n a) computes n! - a, therefore (fact-acc n 1)
computes n!

M. Marin LFP

The factorial function

Towards a space-efficient implementation

> space
(fact-acc 4 1) in E

oy E
(fact-acc (- n 1) (*x a n)) in

E
(f¢act-acc 3 4)in
(fict—acc (-n1) (x amn))in E
(thct-ace 2 12 n|ades adely
(f%act—acc (-n 1) (* an))in E

! -] :
(fact-acc 1 24) in a-{»4 la

/

(fact-acc

(fact-acc

A space-efficient implementation

Tail call optimization

(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
(if (=n 0) 1 (fact-acc (- n 1) (x an))))

Clever compilers and interpreters recognize the fact that the
gray-colored frames are useless:
@ The gray frames can be discarded by a garbage-collector
= the space complexity of computing (fact-acc n 1) becomes
constant, O(1) (see next slide).
@ This technique of saving memory is called tail call optimization
» Tail call optimization can be applied whenever the recursive
call is the last action in the body of a recursive function.
» Functions written in this way (including fact-acc) are called
tail recursive.
@ Most languages, including RACKET, Java, C++ implement tail call
optimization.

M. Marin LFP

Tail call optimization

Example: computation of (fact-acc 4 1) with tail call optimization

» space
(fact-acc 4 1) in E

7
ENES|
m

(fact-acc (- n 1) (* a n)) in

‘ N
(fact-acc 3 4) in |

(fact-acc (- n 1) (* a n)) in
| B> E
(fact-acc 2 12) in E

(fact-acc (- n 1) (¥ an))in

E 2™ E (constant space of memory)
1 24) in

7
=
;

all evaluations happen in an exten-

sion af E with at most one frame

i
] &
m

(fact-acc 1 24)

P
K =
s

(fact-acc (- n 1) (*x a n))in

‘ N
(fact-acc 0 24) in
N
ain E
bnladm
' 24 in

M. Marin LFP

More examples

The Fibonacci function

(define (fib n)
(if (or (=n 0) (=n 1))
1
(+ (fib (- n 1)) (fib (- n 2)))))
The computation of (fib n) for n > 0 has a tree-like structure.
(fib 40)
(fib 39) (fib 38)
(£ib 38) (fib 37) (fib 37) (fib 36)
(fib 37) (fib 36) (fib 36) (fib 35) (fib 36) (fib 35) (fib 35) (fib 34)
N 7N 7N PN 70N N 7N 7N
» (fib 40) is computed once
» (fib 38) is computed 2 times
» (fib 0) is computed 165,580,141 times.
= (fib 40) performs 331,160,281 function calls!

M. Marin LFP

The Fibonacci function
A tail recursive definition

Add 2 extra arguments to accumulate and propagate the values of
two successive Fibonacci numbers:
» Suppose f, is the value of (fib n) for n > 0.
» To compute f,, we call (fib-acc n fy ;) whose computation
evolves as follows:
(fib-acc n fy ;) — (fib-acc n—1 f H)
— (fib-acc n—2 H f)

— (fib-acc k fnfk fnfk+l)
N
-

(fib-acc 0 f, fpy1)

— 1
(define (fib-acc n al a2)
(if (=n 0)
al

(fib-acc (- n 1) a2 (+ al a2))))

M. Marin LFP

Another example of tail call optimized computation

Computation of f» with (fib-acc 4 1 1)

(fib-acc 4 1 1) in E

jre= =< el =
(fib-acc (- n 1) a2 (+ al a2)) in aé‘
Ry = a2 1
L n >[4 == |
(fib-acc 3 1 2) in a;*
(fib-acc 3 1 2) jie
| 2] TG E
(fib-acc (- n 1) a2 (+ al a2)) in al->{1]
— a2 12|
| TEAE 22
(fib-acc 2 2 3) in aé»
(fib-acc 2 2 3) e
¢ 2] M2 = E
(fib-acc (- n 1) a2 (+ al a2)) in al>2]
— a2 >3]
' TR E [221
(fib-acc 1 3 5) in aé»
- 13
' = o™ E
(fib-acc (- n 1) a2 (+ al a2)) in al>(3]
— a2 {5
' TR £ [221
(fib-acc 0 5 8) in [l 7B

| eEee 22rE
a1 infal

T a2

5

M. Marin LFP

Computation of Fibonacci numbers

@ (£fib n) has time complexity O(2") and space complexity
O(n)
@ (fib-acc n 1 1) has time complexity O(n) and space
complexity O(1):
e The tail call optimized computation of the Fibonacci number
f, with (fib-acc n 1 1) is similar to the computation of f,
with the imperative program:

al=1; a2=1;

for (i =n;i>0;i--) { tmp=al;
al=a2;
a2=tmp+a2;

}

return al;

M. Marin LFP

Possible pitfalls with recursion

Is recursive computation fast?
@ Yes: some tail-recursive functions are remarkably efficient

@ No: We can easily write elegant, but spectacularly inefficient
recursive programs, e.g.
(define (fib n)
(if (or (= n 0) (=n 1))
1
(+ (fib (- n 1)) (fib (-n 2)))))
Recursion can take a long time if it needs to repeatedly recompute
intermediate results

General principle: Whenever possible, use tail recursion to
make your functions efficient.

M. Marin LFP

Conclusion

Environment-based computation is a standard technique to keep
track of the meaning of names in a program.
@ Environment = list of frames; every frame is a table that
maps distinct names to values.

e Definitions add bindings to the top (=first) frame of the
environment

@ Evaluation of blocks extends the environment with a
temporary top frame, to store the bindings of local definitions.
The top frame and its bindings are garbage collected when
block evaluation ends.

@ In FP, all recursive computations are performed by recursion.

o Every recursive step extends environment with a new frame =
deep recursive calls produce stack overflow

e Tail recursion = compiler optimization technique which
garbage collects frames and bindings that become inaccessible

M. Marin LFP

