Lecture 3: Environment-based computations Functions as values. Tail recursion

Mircea Marin West University of Timişoara mircea.marin@e-uvt.ro

Recap from Lecture 2 What is the λ -calculus?

The smallest language for FP. It consists of

A language to write expressions, also known as terms.

 $t ::= x \mid \lambda x.t_1 \mid t_1 t_2$

where x is a variable and

- λx.t is an abstraction with intended reading "the function which, for input x computes the value of t."
 - λx is the binder of the abstraction
 - t is the body (or scope) of the abstraction
- t_1 t_2 is an application: t_1 is applied to argument t_2 .
- 2 Transformation rules

 $\begin{array}{l} \alpha \text{-conversion: } \lambda x.t \rightarrow_{\alpha} \lambda y.[y/x]t \\ \text{ if } [y/x]t \text{ is a capture-free substitution.} \\ \beta \text{-reduction: } (\lambda x.t_1) \ t_2 \rightarrow_{\beta} [t_2/x]t_1 \\ \text{ if } [t_2/x]t_1 \text{ is a capture-free substitution.} \end{array}$

Racket and the λ -calculus

The λ -calculus is the core language of Racket \Rightarrow Racket recognizes the expressions of the λ -calculus, but we should write them in a slightly different way:

(lambda (x) t) instead of $\lambda x.t$ (t₁ t₂) instead of t₁ t₂

Remarks

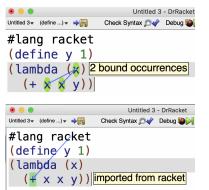
- For efficiency reasons, Racket has built-in values for many useful datatypes including many predefined functions.
- 2 The editor of Racket allows us to view the referenced-based representation of $\lambda\text{-terms}$
 - If we hover the mouse over a binder, the editor highlights the occurrences bound to it.

э

< ロ > < 同 > < 三 > < 三 > <

• If we hover the mouse over a variable occurrence, we see a reference to its corresponding binder.

Referenced-based representations of expressions (snapshot)



- 4 同 6 4 日 6 4 日 6

 $\alpha\text{-}\mathsf{conversion}$ allows us to do harmless renamings of parameters of functions.

Example

Suppose y is a global variable with a given value.

λx.y is the function which, for every input x, returns the value of y.

$$\lambda x. y \rightarrow_{\alpha} \lambda z. [z/x] y = \lambda z. y$$

is harmless because $\lambda x.y$ and $\lambda z.y$ are describe the same function. But we are not allowed to perform the variable-capture substitution

$$\lambda x. y \rightarrow \lambda y. [y/x] y = \lambda y. y$$

because $\lambda x.y$ and $\lambda y.y$ describe different functions.

The purpose of β -reduction

 β -reduction simulates the first-step of evaluating a function call: We replace in the body of the function the formal parameters with the input arguments.

Example (Evaluation in Racket)

 $\begin{array}{l} (\text{define y 7}) \\ > & \underbrace{((\text{lambda } (x) \ (+ \ x \ y)) \ 5)}_{\rightarrow_{\beta}} \ \overline{[7/y] \ [5/x] \ (+ \ x \ y)} \\ = & \underbrace{(+ \ 5 \ 7)}_{\rightarrow} \\ \rightarrow & 12 \end{array}$ $> & ((\text{lambda } (x) \ (\text{lambda } (y) \ (+ \ x \ y))) \ 6) \\ \rightarrow_{\beta} \ [6/x] \ (\text{lambda } (y) \ (+ \ x \ y)) \\ = & (\text{lambda } (y) \ (+ \ 6 \ y)) \end{array}$

Remark: + and y have free occurrences \Rightarrow to use them, we need to know where to find their values.

Environment-based computations

Environment = data structure which stores the values of variables with free occurrences.

- Environment = a list of frames.
- Every frame is a table of values for some variables.

Example (Environment E with two frames)

$$E \xrightarrow{z \to 5} y \xrightarrow{\text{"abc"}} z \xrightarrow{y \to 4} z \xrightarrow{\text{"abc"}} z$$

- The first frame is the top frame.
- Variable lookup: E(var) is the value of var found in the first frame, from top to bottom (or left to right) which contains a value for var:

$$E(\mathbf{x}) = 4$$
, $E(\mathbf{y}) =$ "abc", $E(\mathbf{z}) = 5$
 $E(\mathbf{t})$ is not defined.
The binding $\mathbf{z} \mapsto 8$ is shadowed by the binding $\mathbf{z} \mapsto 5$ in the top frame.

Preliminary remarks

All evaluations are performed w.r.t. a **global environment** which stores the values of variables with free occurrences in expressions.

The global environment is initialized with bindings for predefined variables when we start the system

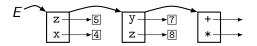
• Built-in functions names are predefined variables with functions as values

The value of an expression expr in an environment E is computed in two steps:

- All variables x in *expr* are replaced with E(x)
- **②** The new expression is evaluated using the rules of evaluation.

Evaluation of expressions

Example



The value of (+ x (* y z)) in *E* is computed as follows:

$$(+ \underline{x} (* \underline{y} \underline{z})) \rightarrow (+ 4 \underline{(* 7 5)}) \rightarrow \underline{(+ 4 35)} \rightarrow 39$$

Remark

From now on we will always assume implicitly that the environment has a frame with bindings for all built-in operations and constants.

Environment-based computations

The interpretation of definitions

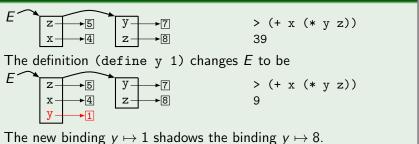
When the interpreter reads a definition

```
(define var expr)
```

in an environment E, it does the following:

- It computes the value v of *expr* in E
- **2** It adds the binding $var \mapsto v$ to the top frame of *E*.

Example



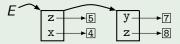
Bindings can shadow each other, but they can not be overwritten

 \Rightarrow (define var expr)

is prohibited in an environment E which has a binding of *var* in the first frame.

Example

We can not redefine x and z in environment



but we can define y.

 $\mathsf{Block} = \mathsf{sequence}$ of definitions and expressions, which ends with an expression.

(local [] comp₁ ... comp_n expr)
 is a special form for the block made of the sequence of components comp₁,..., comp_n followed by expr.

The evaluation of such a block in an environment E proceeds as follows:

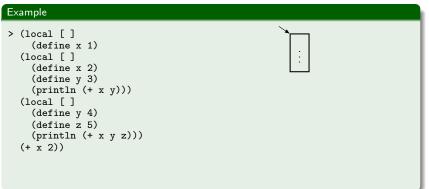
- **(**) E is extended with a temporary top frame, initially empty.
- ② The all components of the block are interpreted one by one:
 - the block definitions add bindings to the (initially empty) top frame
 - expr is evaluated and its value is returned as value of the block
- \bigcirc E is restored by discarding its temporary top frame.

Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

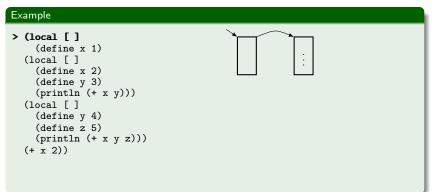


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.



Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

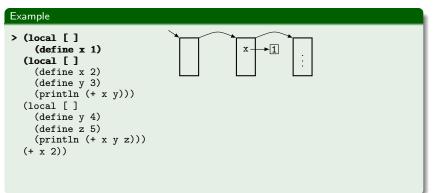
Example > (local [] (define x 1) (local [] (define x 2) (define y 3) (println (+ x y))) (local [] (define y 4) (define z 5) (println (+ x y z))) (+ x 2))

Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.



Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

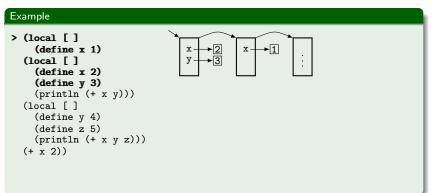
Example > (local [] (define x 1) (local [] (define y 2) (define y 3) (println (+ x y))) (local [] (define y 4) (define z 5) (println (+ x y z))) (+ x 2))

Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

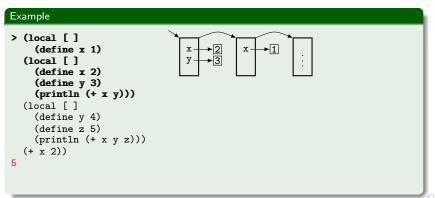


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

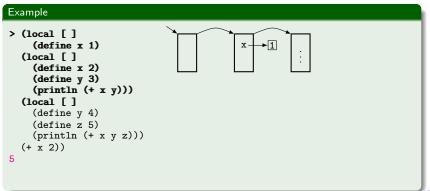


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

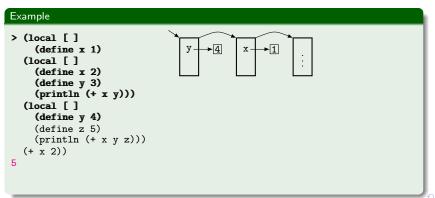


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

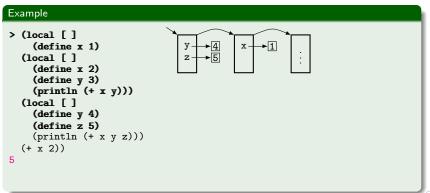


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

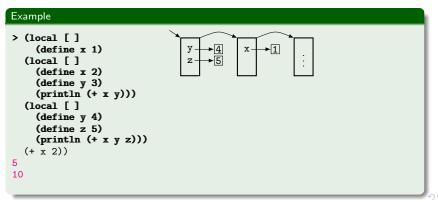


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

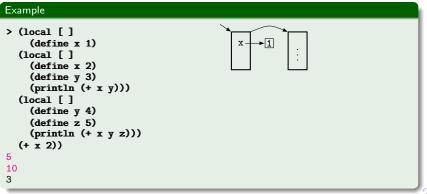


Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.



Example

Remark

(println expr)

prints the value of *expr* on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example > (local [] (define x 1) (local [] (define x 2) (define y 3) (println (+ x y))) (local [] (define y 4) (define z 5) (println (+ x y z))) (+ x 2))5 10 3

Other special forms with blocks

The conditional form

. . .

(cond [test₁ block₁]

 $[test_n \ block_n])$

where $test_1, \ldots, test_n$ are boolean expressions. The evaluation returns the value of the first block $block_i$ for which $test_i$ is true. If all tests are false, the evaluation returns value #<void>

- Abstractions, which are used to define functions
 (lambda (x₁ ... x_n) block)
- Iet and let*:

```
(let ([var_1 expr_1]
```

[var_n expr_n])
block)

(let* ([*var*₁ expr₁] ... [*var*_n expr_n]) block)

The boolean operators and and or

and and or are special forms: they are not functions!

(and $t_1 \ldots t_n$)

evaluates expressions t_1, \ldots, t_n from left to right.

- if it finds t_i with value #f, it returns #f
- otherwise, it returns the value of t_n .
- **2** (or $t_1 \ldots t_n$)

evaluates expressions t_1, \ldots, t_n from left to right.

- if it finds t_i whose value is not #f, it returns the value of t_i .
- otherwise, it returns #f.

REMARK: In Racket, all non-#f values are true. This is similar to language C, where anything non-zero is interpreted as true.

```
> (and 1 (lambda (x) x) #f) > (or #f 'abc "abc")
#f 'abc
> (and) > (or)
#t #f
> (and 1 "abc" 'abc)
'abc
```

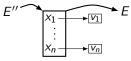
(if test $expr_1 expr_2$)

is equivalent with

(cond [test expr₁]
 [#t expr₂])

- cond is more general than if, also because its branches can be blocks.
- The branches of if must be expressions.

- The value of $(lambda (x_1 \dots x_n) block)$ in an environment E is the pair $\langle (lambda (x_1 \dots x_n) block), E \rangle$
 - ► Such a value is called lexical closure or function closure or closure: it is a pair made of (1) the textual definition of the function and (2) the environment where f was created.
- If f has value $\langle (lambda (x_1 \dots x_n) block), E \rangle$ then the value of $(f t_1 \dots t_n)$ in E' is computed as follows:
 - compute the values v_1, \ldots, v_n of t_1, \ldots, t_n in E'
 - create the temporary environment



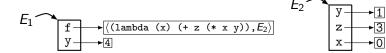
and compute v = the value of *block* in E''

• return v as the value of $(f t_1 \dots t_n)$ in E'.

The evaluation of function calls

Illustrated example

Consider the environments E_1 and E_2 where

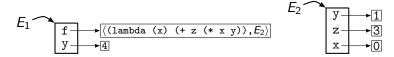


What is the value of (f y) in E_1 ?

The evaluation of function calls

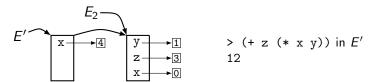
Illustrated example

Consider the environments E_1 and E_2 where



What is the value of (f y) in E_1 ?

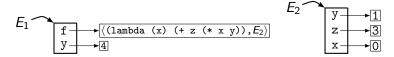
(f $\underline{y})$ in $E_1 \ \rightarrow$ (f 4) in $E_1 \ \rightarrow$ (+ z (* x y)) in E' where



The evaluation of function calls

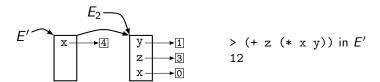
Illustrated example

Consider the environments E_1 and E_2 where



What is the value of (f y) in E_1 ?

(f $\underline{y})$ in $E_1 \ \rightarrow$ (f 4) in $E_1 \ \rightarrow$ (+ z (* x y)) in E' where



 \Rightarrow the value of (f y) in E_1 is 12.

Tail recursion = technique to implement efficient recursive computation. Remember that:

э

Tail recursion = technique to implement efficient recursive computation. Remember that:

Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem. Tail recursion = technique to implement efficient recursive computation.

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Tail recursion = technique to implement efficient recursive computation.

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Why learn recursion?

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Why learn recursion?

New way of thinking

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool
- Divide-and-conquer paradigm

Remember that:

- Recursion = technique that allows us to break a problem into one or more subproblems similar to the initial problem.
- In functional programming
 - A function is recursive when it calls itself directly or indirectly.
 - A data structure is recursive if it is defined in terms of itself.
 - All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool
- Divide-and-conquer paradigm

Many computations and data structures are naturally recursive

Recursive function definitions General structure

- A simple base case (or base cases): a terminating scenario that does not use recursion to produce an answer.
- One or more recursive cases that reduce the computation, directly or indirectly, to simpler computations of the same kind.
 - ► To ensure termination of the computation, the reduction process should eventually lead to base case computations.

Recursive function definitions General structure

- A simple base case (or base cases): a terminating scenario that does not use recursion to produce an answer.
- One or more recursive cases that reduce the computation, directly or indirectly, to simpler computations of the same kind.
 - ► To ensure termination of the computation, the reduction process should eventually lead to base case computations.

Classic recursive functions:

- Factorial function
- Pibonacci function
- Ackermann function
- Euclid's Greatest Common Divisor (GCD) function

- Try to break a problem into subparts, at least one of which is similar to the original problem.
 - There may be many ways to do so. For example, if $m, n \in \mathbb{N}$ and m > n > 0 then gcd(m, n) = gcd(m - n, n), or $gcd(m, n) = gcd(n, m \mod n)$
- Ø Make sure that recursion will operate correctly:
 - there should be at least one base case and one recursive case (it's OK to have more)
 - The test for the base case must be performed before the recursive calls.
 - The problem must be broken down such that a base case is always reached in a finite number of recursive calls.
 - ▶ The recursive call must not skip over the base case.
 - The non-recursive portions of the subprogram must operate correctly.

Case study: computation of the factorial

Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?

The factorial function

Time and space complexity of computation

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

$$(fact 4) in E$$

$$(* n (fact 3)) in n + 4 + E$$

$$(* n (* n (fact 2))) in n + 3 + 4 + E$$

$$(* n (* n (* n (fact 1)))) in n + 3 + 4 + E$$

$$(* n (* n (* n (* n (fact 1)))) in n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n (* n (* n (fact 0))))) in n + 1 + n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n (* n (* n (if (= n 0) 1 ...))))) in n + 0 + 1 + n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n (* n (* n 1)))) in n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n (* n 1))) in n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n 1))) in n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n 1))) in n + 2 + n + 3 + n + 4 + E$$

$$(* n (* n (* n 2)) in n + 3 + n + 4 + E$$

$$(* n 6) in n + 4 + E$$

$$(* n 6) in n + 4 + E$$

$$(* n 6) in n + 4 + E$$

cnaco

Case study: computation of the factorial

- Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
- A1: The computation of (fact n) has time complexity $2 \cdot (n+1) = O(n)$ space complexity O(n): the maximum number of frames added to E is n+1

Case study: computation of the factorial

- Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
- A1: The computation of (fact n) has time complexity $2 \cdot (n+1) = O(n)$ space complexity O(n): the maximum number of frames added to E is n+1
- Q2: Can we reduce the space complexity?

Case study: computation of the factorial

- Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
- A1: The computation of (fact n) has time complexity $2 \cdot (n+1) = O(n)$ space complexity O(n): the maximum number of frames added to E is n+1
- Q2: Can we reduce the space complexity?
- A2: Main idea: Add an extra argument to accumulate and propagate the result computed so far. (define (fact n) (fact-acc n 1)) (define (fact-acc n a) (if (= n 0) a (fact-acc (- n 1) (* a n))))

Case study: computation of the factorial

- Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
- A1: The computation of (fact n) has time complexity $2 \cdot (n+1) = O(n)$ space complexity O(n): the maximum number of frames added to E is n+1
- Q2: Can we reduce the space complexity?
- A2: Main idea: Add an extra argument to accumulate and propagate the result computed so far.

```
(define (fact n) (fact-acc n 1))
```

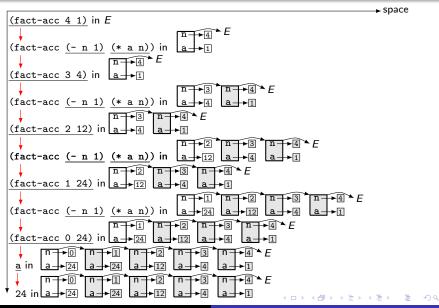
```
(define (fact-acc n a)
```

(if (= n 0) a (fact-acc (- n 1) (* a n))))

• (fact-acc n a) computes $n! \cdot a$, therefore (fact-acc n 1) computes n!

The factorial function

Towards a space-efficient implementation



M. Marin

A space-efficient implementation Tail call optimization

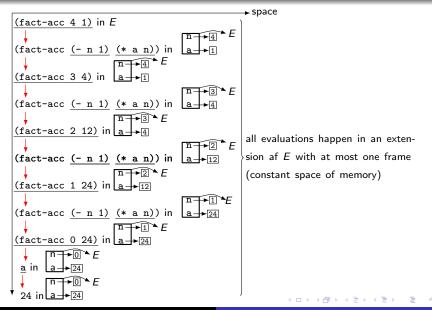
```
(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
  (if (= n 0) 1 (fact-acc (- n 1) (* a n))))
```

Clever compilers and interpreters recognize the fact that the gray-colored frames are useless:

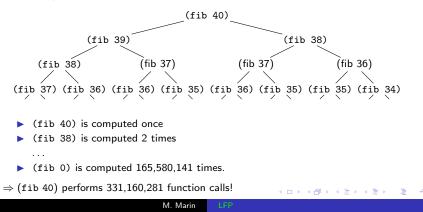
- The gray frames can be discarded by a garbage-collector
 ⇒ the space complexity of computing (fact-acc n 1) becomes
 constant, O(1) (see next slide).
- This technique of saving memory is called tail call optimization
 - ► Tail call optimization can be applied whenever the recursive call is **the last action** in the body of a recursive function.
 - Functions written in this way (including fact-acc) are called tail recursive.
- Most languages, including RACKET, Java, C++ implement tail call optimization.

Tail call optimization

Example: computation of (fact-acc 4 1) with tail call optimization



The computation of (fib n) for n > 0 has a tree-like structure.



A tail recursive definition

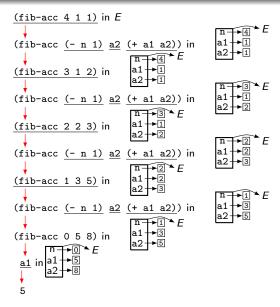
Add 2 extra arguments to accumulate and propagate the values of two successive Fibonacci numbers:

- Suppose f_n is the value of (fib n) for $n \ge 0$.
- ► To compute f_n, we call (fib-acc n f₀ f₁) whose computation evolves as follows:

$$\begin{array}{rcl} (\texttt{fib-acc} n \ f_0 \ f_1) \rightarrow (\texttt{fib-acc} \ n-1 \ f_1 \ f_2) \\ \rightarrow & (\texttt{fib-acc} \ n-2 \ f_2 \ f_3) \\ \rightarrow & \dots \\ \rightarrow & (\texttt{fib-acc} \ k \ f_{n-k} \ f_{n-k+1}) \\ \rightarrow & \dots \\ \rightarrow & (\texttt{fib-acc} \ k \ f_{n-k} \ f_{n-k+1}) \\ \rightarrow & \dots \\ \rightarrow & (\texttt{fib-acc} \ 0 \ f_n \ f_{n+1}) \\ \rightarrow & f_n \end{array}$$

$$(\texttt{define} \ (\texttt{fib-acc} n \ \texttt{a1} \ \texttt{a2}) \\ (\texttt{if} \ (\texttt{=} n \ \texttt{0}) \\ \texttt{a1} \\ & (\texttt{fib-acc} \ (\texttt{-} n \ \texttt{1}) \ \texttt{a2} \ (\texttt{+} \ \texttt{a1} \ \texttt{a2})))) \end{array}$$

Another example of tail call optimized computation Computation of f_4 with (fib-acc 4 1 1)



Remarks

- (fib n) has time complexity $O(2^n)$ and space complexity O(n)
- (fib-acc n 1 1) has time complexity O(n) and space complexity O(1):
 - The tail call optimized computation of the Fibonacci number f_n with (fib-acc n 1 1) is similar to the computation of f_n with the imperative program:

Is recursive computation fast?

- Yes: some tail-recursive functions are remarkably efficient
- No: We can easily write elegant, but spectacularly inefficient recursive programs, e.g.

Recursion can take a long time if it needs to repeatedly recompute intermediate results

General principle: Whenever possible, use tail recursion to make your functions efficient.

Environment-based computation is a standard technique to keep track of the meaning of names in a program.

- Environment = list of frames; every frame is a table that maps distinct names to values.
- Definitions add bindings to the top (=first) frame of the environment
- Evaluation of blocks extends the environment with a temporary top frame, to store the bindings of local definitions. The top frame and its bindings are garbage collected when block evaluation ends.
- In FP, all recursive computations are performed by recursion.
 - Every recursive step extends environment with a new frame \Rightarrow deep recursive calls produce stack overflow
 - Tail recursion = compiler optimization technique which garbage collects frames and bindings that become inaccessible