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Recap from Lecture 2
What is the λ-calculus?

The smallest language for FP. It consists of

1 A language to write expressions, also known as terms.

t ::= x | λx .t1 | t1 t2

where x is a variable and
λx .t is an abstraction with intended reading “the function
which, for input x computes the value of t.”

λx is the binder of the abstraction
t is the body (or scope) of the abstraction

t1 t2 is an application: t1 is applied to argument t2.

2 Transformation rules

α-conversion: λx .t →α λy .[y/x ]t
if [y/x ]t is a capture-free substitution.

β-reduction: (λx .t1) t2 →β [t2/x ]t1

if [t2/x ]t1 is a capture-free substitution.
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Racket and the λ-calculus

The λ-calculus is the core language of Racket ⇒ Racket recognizes
the expressions of the λ-calculus, but we should write them in a
slightly different way:

(lambda (x) t) instead of λx .t
(t1 t2) instead of t1 t2

Remarks

1 For efficiency reasons, Racket has built-in values for many
useful datatypes including many predefined functions.

2 The editor of Racket allows us to view the referenced-based
representation of λ-terms

If we hover the mouse over a binder, the editor highlights the
occurrences bound to it.
If we hover the mouse over a variable occurrence, we see a
reference to its corresponding binder.
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Racket and the λ-calculus
Referenced-based representations of expressions (snapshot)
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Transformation rules
The purpose of α-conversion

α-conversion allows us to do harmless renamings of parameters of
functions.

Example

Suppose y is a global variable with a given value.

λx .y is the function which, for every input x , returns the
value of y .

λx .y →α λz .[z/x ]y = λz .y

is harmless because λx .y and λz .y are describe the same
function. But we are not allowed to perform the
variable-capture substitution

λx .y → λy .[y/x ]y = λy .y

because λx .y and λy .y describe different functions.
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Transformation rules
The purpose of β-reduction

β-reduction simulates the first-step of evaluating a function call:
We replace in the body of the function the formal parameters with
the input arguments.

Example (Evaluation in Racket)

(define y 7)

> ((lambda (x) (+ x y)) 5)

→β [7/y][5/x](+ x y)

= (+ 5 7)

→ 12
> ((lambda (x) (lambda (y) (+ x y))) 6)

→β [6/x](lambda (y) (+ x y))

= (lambda (y) (+ 6 y))

Remark: + and y have free occurrences ⇒ to use them, we need to
know where to find their values.

M. Marin LFP



Environment-based computations

Environment = data structure which stores the values of variables
with free occurrences.

Environment = a list of frames.

Every frame is a table of values for some variables.

Example (Environment E with two frames)

E z
x

5

4

y

z
"abc"

8

The first frame is the top frame.

Variable lookup: E (var) is the value of var found in the first
frame, from top to bottom (or left to right) which contains a
value for var :

E (x) = 4, E (y) = "abc", E (z) = 5

E (t) is not defined.
The binding z 7→ 8 is shadowed by the binding z 7→ 5 in the
top frame.
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Environment-based computations
Preliminary remarks

All evaluations are performed w.r.t. a global environment which
stores the values of variables with free occurrences in expressions.

The global environment is initialized with bindings for predefined
variables when we start the system

Built-in functions names are predefined variables with
functions as values

The value of an expression expr in an environment E is computed
in two steps:

1 All variables x in expr are replaced with E (x)

2 The new expression is evaluated using the rules of evaluation.
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Evaluation of expressions
Example

E z
x

5

4

y

z
7

8

+
*

The value of (+ x (* y z)) in E is computed as follows:

(+ x (* y z))→(+ 4 (* 7 5))→(+ 4 35)→39

Remark

From now on we will always assume implicitly that the environment
has a frame with bindings for all built-in operations and constants.
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Environment-based computations
The interpretation of definitions

When the interpreter reads a definition

(define var expr)

in an environment E , it does the following:
1 It computes the value v of expr in E
2 It adds the binding var 7→ v to the top frame of E .

Example

E z
x

5

4

y

z
7

8

> (+ x (* y z))

39

The definition (define y 1) changes E to be
E z

x
y

5

4

1

y

z
7

8

> (+ x (* y z))

9

The new binding y 7→ 1 shadows the binding y 7→ 8.
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The interpretation of definitions
A word of warning

Bindings can shadow each other, but they can not be overwritten

⇒ (define var expr)
is prohibited in an environment E which has a binding of var
in the first frame.

Example

We can not redefine x and z in environment

E z
x

5

4

y

z
7

8

but we can define y.
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Blocks and their evaluation

Block = sequence of definitions and expressions, which ends with an
expression.

(local [ ] comp1 ... compn expr)

is a special form for the block made of the sequence of components
comp1,. . . , compn followed by expr .

The evaluation of such a block in an environment E proceeds as follows:

1 E is extended with a temporary top frame, initially empty.

2 The all components of the block are interpreted one by one:

the block definitions add bindings to the (initially empty) top
frame
expr is evaluated and its value is returned as value of the block

3 E is restored by discarding its temporary top frame.
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The evaluation of blocks
Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation works

Example

> (local [ ]

> (local [ ]

(define x 1)

(define x 1)

(local [ ]

(local [ ]

(define x 2)

(define x 2)

(define y 3)

(define y 3)

(println (+ x y)))

(println (+ x y)))

(local [ ]

(local [ ]

(define y 4)

(define y 4)

(define z 5)

(define z 5)

(println (+ x y z)))

(println (+ x y z)))

(+ x 2))

(+ x 2))
5
10
3

...

x 1x 2
y 3

y 4
z 5
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Other special forms with blocks

1 The conditional form

(cond [test1 block1]

...

[testn blockn])

where test1, . . . , testn are boolean expressions. The evaluation
returns the value of the first block blocki for which testi is
true. If all tests are false, the evaluation returns value
#<void>

2 Abstractions, which are used to define functions

(lambda (x1 . . . xn) block)

3 let and let*:

(let ([var1 expr1] (let* ([var1 expr1]
... ...

[varn exprn]) [varn exprn])
block) block)
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The boolean operators and and or

and and or are special forms: they are not functions!
1 (and t1 ... tn)

evaluates expressions t1, . . . , tn from left to right.
if it finds ti with value #f, it returns #f

otherwise, it returns the value of tn.
2 (or t1 ... tn)

evaluates expressions t1, . . . , tn from left to right.
if it finds ti whose value is not #f, it returns the value of ti .
otherwise, it returns #f.

Remark: In Racket, all non-#f values are true. This is similar to
language C, where anything non-zero is interpreted as true.

> (and 1 (lambda (x) x) #f) > (or #f ’abc "abc")

#f ’abc

> (and) > (or)

#t #f

> (and 1 "abc" ’abc)

’abc
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The special forms if and cond

(if test expr1 expr2)

is equivalent with

(cond [test expr1]
[#t expr2])

cond is more general than if, also because its branches can
be blocks.

The branches of if must be expressions.
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User-defined functions

The value of (lambda (x1 . . . xn) block) in an
environment E is the pair 〈(lambda (x1 . . . xn) block),E 〉
I Such a value is called lexical closure or function closure or

closure: it is a pair made of (1) the textual definition of the
function and (2) the environment where f was created.

If f has value 〈(lambda (x1 . . . xn) block),E 〉 then
the value of (f t1 . . . tn) in E ′ is computed as follows:

I compute the values v1, . . . , vn of t1, . . . , tn in E ′

I create the temporary environment

E ′′ Ex1...
xn

v1

vn

and compute v =the value of block in E ′′

I return v as the value of (f t1 . . . tn) in E ′.
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The evaluation of function calls
Illustrated example

Consider the environments E1 and E2 where

E1 f
y

〈(lambda (x) (+ z (* x y)),E2〉
4

E2 y

z
x

1
3
0

What is the value of (f y) in E1?

(f y) in E1 → (f 4) in E1 → (+ z (* x y)) in E ′

where

E ′

E2

x 4 y

z
x

1

3

0

> (+ z (* x y)) in E ′

12

⇒ the value of (f y) in E1 is 12.
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Tail recursion

Tail recursion = technique to implement efficient recursive
computation.
Remember that:

I Recursion = technique that allows us to break a problem into
one or more subproblems similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.
All repetitive computations can be performed only by recursion.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive
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Recursive function definitions
General structure

A simple base case (or base cases): a terminating scenario
that does not use recursion to produce an answer.

One or more recursive cases that reduce the computation,
directly or indirectly, to simpler computations of the same
kind.

I To ensure termination of the computation, the reduction
process should eventually lead to base case computations.

Classic recursive functions:

1 Factorial function

2 Fibonacci function

3 Ackermann function

4 Euclid’s Greatest Common Divisor (GCD) function
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How to write a recursive definition?

1 Try to break a problem into subparts, at least one of which is
similar to the original problem.

There may be many ways to do so. For example, if m, n ∈ N
and m > n > 0 then
gcd(m, n) = gcd(m − n, n), or gcd(m, n) = gcd(n,m mod n)

2 Make sure that recursion will operate correctly:

I there should be at least one base case and one recursive case
(it’s OK to have more)

I The test for the base case must be performed before the
recursive calls.

I The problem must be broken down such that a base case is
always reached in a finite number of recursive calls.

I The recursive call must not skip over the base case.
I The non-recursive portions of the subprogram must operate

correctly.
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Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n ∈ N?
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The factorial function
Time and space complexity of computation

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

time

space
(fact 4) in E

(* n (fact 3)) in n 4 E

(* n (* n (fact 2))) in En 3 n 4

(* n (* n (* n (fact 1)))) in En n n2 3 4

(* n (* n (* n (* n (fact 0))))) in En n n n1 2 3 4

(* n (* n (* n (* n (if (= n 0) 1 ...))))) in n n n n n0 1 2 3 4

(* n (* n (* n (* n 1)))) in En n n n1 2 3 4

(* n (* n (* n 1))) in En n n2 3 4

(* n (* n 2)) in En n3 4

(* n 6) in n 4 E

24 in E
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Analysis of recursive computations
Case study: computation of the factorial

(define (fact n)

(if (= n 0) 1 (* n (fact (- n 1)))))

Q1: What is the space and time complexity of computing
(fact n) when n ∈ N?

A1: The computation of (fact n) has
time complexity 2 · (n + 1) = O(n)
space complexity O(n): the maximum number of frames

added to E is n + 1

Q2: Can we reduce the space complexity?
A2: Main idea: Add an extra argument to accumulate and

propagate the result computed so far.
(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) a (fact-acc (- n 1) (* a n))))

(fact-acc n a) computes n! · a, therefore (fact-acc n 1)

computes n!
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The factorial function
Towards a space-efficient implementation

space
(fact-acc 4 1) in E

(fact-acc (- n 1) (* a n)) in

En
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(fact-acc 3 4) in
n
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24 in

En 0
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n 2
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n 3

a 4
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a 1
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A space-efficient implementation
Tail call optimization

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) 1 (fact-acc (- n 1) (* a n))))

Clever compilers and interpreters recognize the fact that the
gray-colored frames are useless:

The gray frames can be discarded by a garbage-collector

⇒ the space complexity of computing (fact-acc n 1) becomes

constant, O(1) (see next slide).

This technique of saving memory is called tail call optimization

I Tail call optimization can be applied whenever the recursive
call is the last action in the body of a recursive function.

I Functions written in this way (including fact-acc) are called
tail recursive.

Most languages, including Racket, Java, C++ implement tail call

optimization.
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Tail call optimization
Example: computation of (fact-acc 4 1) with tail call optimization

all evaluations happen in an exten-

sion af E with at most one frame

(constant space of memory)
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More examples
The Fibonacci function

(define (fib n)

(if (or (= n 0) (= n 1))

1

(+ (fib (- n 1)) (fib (- n 2)))))

The computation of (fib n) for n > 0 has a tree-like structure.

. . . . . . . . . . . . . . . .
(fib 37) (fib 36) (fib 36) (fib 35) (fib 36) (fib 35) (fib 35) (fib 34)

(fib 38) (fib 37) (fib 37) (fib 36)

(fib 40)

(fib 39) (fib 38)

I (fib 40) is computed once

I (fib 38) is computed 2 times

. . .

I (fib 0) is computed 165,580,141 times.

⇒ (fib 40) performs 331,160,281 function calls!
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The Fibonacci function
A tail recursive definition

Add 2 extra arguments to accumulate and propagate the values of
two successive Fibonacci numbers:

I Suppose fn is the value of (fib n) for n ≥ 0.

I To compute fn, we call (fib-acc n f0 f1) whose computation
evolves as follows:

(fib-acc n f0 f1) → (fib-acc n − 1 f1 f2)
→ (fib-acc n − 2 f2 f3)
→ ...

→ (fib-acc k fn−k fn−k+1)

→ ...

→ (fib-acc 0 fn fn+1)

→ fn

(define (fib-acc n a1 a2)

(if (= n 0)

a1

(fib-acc (- n 1) a2 (+ a1 a2))))
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Another example of tail call optimized computation
Computation of f4 with (fib-acc 4 1 1)

(fib-acc 4 1 1) in E

(fib-acc (- n 1) a2 (+ a1 a2)) in

En
a1
a2

4

1

1

(fib-acc 3 1 2) in
n
a1
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4

1

1

E
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n
a1
a2

3

1

2

E

(fib-acc 2 2 3) in
En
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3

1

2
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n
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2

2

3

E

(fib-acc 1 3 5) in
n
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2

2

3

E

(fib-acc (- n 1) a2 (+ a1 a2)) in
n
a1
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1

3

5

E

(fib-acc 0 5 8) in

n
a1
a2

1

3

5

E

a1 in
En 0

a1 5

a2 8

5
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Computation of Fibonacci numbers

Remarks

(fib n) has time complexity O(2n) and space complexity
O(n)

(fib-acc n 1 1) has time complexity O(n) and space
complexity O(1):

The tail call optimized computation of the Fibonacci number
fn with (fib-acc n 1 1) is similar to the computation of fn
with the imperative program:

a1=1; a2=1;

for (i = n;i>0;i--) { tmp=a1;

a1=a2;

a2=tmp+a2;

}
return a1;
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Possible pitfalls with recursion

Is recursive computation fast?

Yes: some tail-recursive functions are remarkably efficient

No: We can easily write elegant, but spectacularly inefficient
recursive programs, e.g.

(define (fib n)

(if (or (= n 0) (= n 1))

1

(+ (fib (- n 1)) (fib (-n 2)))))

Recursion can take a long time if it needs to repeatedly recompute
intermediate results

General principle: Whenever possible, use tail recursion to
make your functions efficient.
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Conclusion

Environment-based computation is a standard technique to keep
track of the meaning of names in a program.

Environment = list of frames; every frame is a table that
maps distinct names to values.

Definitions add bindings to the top (=first) frame of the
environment

Evaluation of blocks extends the environment with a
temporary top frame, to store the bindings of local definitions.
The top frame and its bindings are garbage collected when
block evaluation ends.

In FP, all recursive computations are performed by recursion.

Every recursive step extends environment with a new frame ⇒
deep recursive calls produce stack overflow
Tail recursion = compiler optimization technique which
garbage collects frames and bindings that become inaccessible
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