
Lecture 2: Functional Programming
Theoretical foundations. The λ-calculus

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin LFP

mailto:mmarin@info.uvt.ro

General structure of programming languages

According to Peter Landin (1966):

Programming language = core language + syntactic sugar.

Core language: small programming language that implements
basic functionality

Syntactic sugar: other programming constructs (a.k.a. derived
forms) which are abbreviations of combinations of
core language constructs.

they simplify the writing of programs.
Programs are processed in two steps:

1 First, a preprocessor (or macro translator) translates all
syntactic sugar into core language⇒ program written in
core language

2 Next, a compiler or interpreter runs the program
produced by the preprocessor.

M. Marin LFP

What is the λ-calculus?

The core language of most programming languages, and
almost al FP languages, is the λ-calculus

Invented by Alonzo Church in 1928, long before the advent
of electronic digital programmable computers
The smallest programming language of the world. It
consists of

A language that can be used to write meaningful
expressions
A set of transformation rules that indicate how to perform
evaluation by manipulating them.

M. Marin LFP

The λ-calculus
Syntax

There are only 3 kinds of expressions also known as terms. A
variable x by itself is a term; the abstraction of a variable x
from a term t , written λx .t , is a term; and the application of a
term t1 to another term t1, written t1 t2 is a term.

t ::= x | λx .t | t1 t2

where x is a variable. Variables are assumed to be elements of
a countably infinite set V .

Intended reading of λx .t : "the function which, for input x
returns the value of t .”

This grammar defines the syntax of the language: how to write
expressions as strings of characters.

A parser translates terms from syntax into trees of a
special kind, called abstract syntax trees or AST

M. Marin LFP

The λ-calculus
Abstract syntax trees

1 The AST of a variable x is a single node with label x .
2 The AST of an abstraction λx .t is

λx

T

where T is the AST of t .
λx is called the binder of this abstraction.

3 The AST of an application t1 t2 is

apply

T1 T2

where T1 is the AST of t1 and
T2 is the AST of t2.

M. Marin LFP

Parsing
Rules of disambiguation

I t1 t2 t3 is parsed as (t1 t2) t3. This means that application is
left associative.

I The bodies of abstractions are taken to extend as far to the
right as possible, so that, for example,

λx .λy .x y x is parsed as λx .(λy .((x y) x)), and
x λx .y x x is parsed as x (λx .(y x) x).

I Inner abstractions bind more tightly than outer
abstractions, so that, for example, λx .λy .y y x is parsed as
λx .(λy .(y y) x).

Every binder in an AST has a depth, which is the number of
binders above that binder in the AST.

M. Marin LFP

Parsing
Example

(λx .λy .x y x) λz.z z is parsed as (λx .λy .((x y) x)) (λz.(z z)).
Its AST is

apply

λx

λy

apply

apply

x y

x

λz

apply

z z

The depths of binders λx , λy , λz in this AST are 0,1 and 0,
respectively.

M. Marin LFP

Scope. Free variables

An occurrence o of a variable x is free in an expression t if
either

1 t = x , or
2 t = λy .t with y 6= x , and o is a free occurrence or x in t , or
3 t = t1 t2 and o is a free occurrence or x in either t1 or t2.

The set of variables with free occurrences in a term t is
denoted by FVar(t), and can be computed as follows:

FVar(t) :=

{x} if t = x ∈ V ,
FVar(t1) \ {x} if t = λx .t1,
FVar(t1) ∪ FVar(t2) if t = t1 t2.

The scope of a binder λx of λx .t is t . The occurrences
bound to λx are the free occurrences of x in t .

Example

If t = (λz.λs.s s z) (s x) then FVar(t) = {s, x} and the free
occurrences of these variables in t are those colored with red.

M. Marin LFP

The λ-calculus
Other representations of terms

1 Reference-based representation: makes explicit the
relationship between bound variable occurrences and their
binders by drawing an arrow from every binder to the
variable occurrences bound to it. For example:

(λz.λs.s s z) (s x) and (λn.λt .t t n) (s x).

The underlined occurrences are free variable occurrences.
2 Nameless representation: all binders λx are replaced by λ,

and all variable occurrences bound to a binder of depth i in
the AST are replaced by i .
For example, the previous two terms have the same
nameless representation: (λ.λ.1 1 0) (s x).

Two terms t1, t2are α-congruent, and we write t1 =α t2, if they
have the same nameless representation.

Intuition: the names of variables bound in abstractions are
irrelevant.

M. Marin LFP

Capture-avoiding substitution

[t1/x]t is the operation of replacing all free occurrences of x in t
with t1. This operation is allowed only if there is no free
occurrence of x in t which is inside a subterm λy .t ′ where y
occurs in t1.

If this happens, then the free variable y of t1 gets captured.

Example

[x/y](λx .y) is not capture-free (and, therefore, disallowed);
it would produce λx .x
[z/y](λx .y) is capture-free and produces λx .z

M. Marin LFP

Safe operations on terms

α-conversion: λx .t →α λy .t ′

if t ′ = [y/x]t is a capture-avoiding substitution.
Intuition: we are allowed to rename bound
variables, is renaming is a capture-avoiding
substitution.

β-reduction: (λx .t1) t2 →β [t2/x]t ′1
where λx .t ′1 =α λx .t1 such that [t2/x]t ′1 a
capture-avoiding substitution.
Intuition: This operation describes how to
perform a function call: we replace all
occurrences of parameter x with the input
argument t2 in the body t1 of the abstraction.

M. Marin LFP

The intended reading of terms

I λx .t : the function which, for input argument x returns the
value of t . In particular, λx .x would represent the identity
function, and λx .y would represent a constant function
which, for any input returns the value if y .

I t1 t2: the application of the function represented by t1 to t2.

Function calls are represented by expressions (λx .t1) t2,
called β-redexes.

The lambda calculus has no built-in constants or primitive
operators. It has no numbers, arithmetic operations, condi-
tionals, records, loops, sequencing, I/O, etc. The only way
to compute is by applying functions represented by abstrac-
tions to terms – which can also be functions.

M. Marin LFP

The λ-calculus
Operational semantics (1)

Evaluation of expressions is performed by rewriting them with
the rule of β-reduction.

We write t ⇒β t ′ if we can rewrite t to t ′ by reducing one
β-redex of t .
Rewriting is defined by four rule of inference:

t →β t ′

t ⇒β t ′
t ⇒β t ′

λx .t ⇒β λx .t ′
t1 ⇒β t ′1

t1 t2 ⇒β t ′1 t2

t2 ⇒β t ′2
t1 t2 ⇒β t1 t ′2

Remark

In logic, rules of inference are described by writing
H1 . . . Hn

C
with the intended reading: “If H1 and . . . and Hn hold, then C
holds.”

M. Marin LFP

The λ-calculus
Operational semantics: Computation by reduction

A reduction derivation is a sequence t1 ⇒β t2 ⇒β . . .⇒β tn of
such rewrite steps, abbreviated t1 ⇒∗ tn.

1 t is a normal form if it contains no β-redexes. Also, we say
that t is normalizable if there exists a normal form t ′ such
that t ⇒∗β t ′. In this case, we say that t ′ is a normal form of
t .

2 t ′ is a functional normal form if all its β-redexes occur in
the body of some abstraction. We say that t ′ is a functional
normal form of t if t ⇒∗β t ′ and t ′ is a functional normal
form.

M. Marin LFP

Remarkable properties of the λ-calculus

1 Not all terms are normalizable. For example, Ω = ω ω
where ω = λx .x x is not normalizable because there is
only one possible reduction step of Ω, which can be
repeated forever:

Ω = ω ω = (λx .x x) ω ⇒β ω ω ⇒β . . .

2 There may be several derivations starting from an
expression: Some of them may terminate whereas other
may not. For example, the following are distinct derivations
of (λx .y) Ω:

(λx .y) Ω⇒β [Ω/x]y = y but (λx .y) Ω⇒β (λx .y) Ω⇒β . . .

3 If t is normalizable, then all its normal forms are
α-congruent. This means that, if t ⇒∗ t1, t ⇒∗ t2, and t1, t2
are normal forms, then t1 =α t2.

M. Marin LFP

Evaluation strategies

Reduction derivations are intended to describe the evaluation
of terms.

The evaluation of an expression t is a derivation t ⇒∗β t ′

which yields an expression t ′, called the value of t .
Several evaluation strategies have been studied over the
years by programming language designers and theorists.
We mention only the most important evaluation ones, and
illustrate the differences between them by indicating how
they evaluate the expression id (id (λz.id z)) where
id = λx .x .

1 Normal order
2 Call-by-name
3 Call-by-value

M. Marin LFP

Evaluation strategies
Normal order

Normal order prescribes the selection of the leftmost
outermost β-redex at any time. It can be defined as the
reduction relation “⇒n” induced by the following rules of
inference:

t →β t ′

t ⇒n t ′
t ⇒n t ′

λx .t ⇒n λx .t ′
t1 ⇒n t ′1

t1 t2 ⇒n t ′1 t2

t1 6⇒n t2 ⇒n t ′2
t1 t2 ⇒n t1 t ′2

Under this strategy, the expression above is evaluated as
follows:

id (id (λz.id z)) = (λx .x) (id (λz.id z))⇒n id (λz.id z)
= (λx .x) (λz.id z)⇒n λz.(id z)
= λz.((λx .x) z)⇒n λz.z =α id

M. Marin LFP

Evaluation strategies
Call-by-name

Call by name prescribes at any time the selection of the
leftmost outermost β-redex, except if it is inside the body of an
abstraction. Call by name can be defined as the reduction
relation “⇒cbn” induced by the following rules of inference:

t →β t ′

t ⇒cbn t ′
t1 ⇒cbn t ′1

t1 t2 ⇒cbn t ′1 t2

t1 6⇒cbn t2 ⇒cbn t ′2
t1 t2 ⇒cbn t1 t ′2

Under this strategy, the expression above is evaluated as
follows:

id (id (λz.id z))⇒cbn id (λz.id z)⇒cbn λz.id z

M. Marin LFP

Evaluation strategies
Disadvantages of call-by-name. Call-by-need

Call by name reductions have the disadvantage that they may
replicate the computation of a needed argument of a function
call, as illustrated by the following derivation:

(λx .x (x x)) (id id)⇒cbn id id (id id (id id))⇒cbn

⇒cbn id (id id (id id))

⇒cbn id id (id id)

⇒cbn id(id id)⇒cbn id id⇒cbn id.

The first reduction step did replicate three times the need to
evaluate the redex argument id id. This disadvantage can be
eliminated by using an optimized version of call by name,
known as call by need. This strategy avoids reevaluating an
argument each time it is used by rewriting all occurrences of
the argument with its value the first time it is evaluated.

M. Marin LFP

Evaluation strategies
Call-by-value

Call by value prescribes at any time the selection of the
leftmost outermost β-redex which fulfils the following
conditions: (1) is not in the body of an abstraction, and (2) the
actual argument of the β-redex is a functional normal form. Call
by value can be defined as the reduction relation “⇒cbv”
induced by the following rules of inference:

t →β t ′

t ⇒cbv t ′
t2 ⇒cbv t ′2

t1 t2 ⇒cbv t1 t ′2

t1 ⇒cbv t ′1 t2 6⇒cbv

t1 t2 ⇒cbv t ′1 t2

Under this strategy, the expression above is evaluated as
follows:

id (id (λz.id z))⇒cbv id (λz.id z)⇒cbv λz.id z

M. Marin LFP

Strategies implemented by FP languages

Most programming language use the call by value strategy.
The call by value strategy is strict, in the sense that the
arguments of function calls are always evaluated, even if
they are not used in the body of the function.

Racket is a strict FP language
Call by name and call by need are called lazy strategies
because they evaluate only the arguments that are used in
the body of the function.

Haskell is a lazy FP language, based on call-by-need
evaluation strategy

M. Marin LFP

Programming in the λ-calculus

The λ-calculus is deceptively simple, but can be used as a
full-blown programming language in its own right.

We will illustrate a number of standard examples of
programming in the λ-calculus.
Note: high-level programming languages provide clearer
and more efficient ways to accomplish the tasks described
in these examples.

The λ-calculus has no predefined datatypes and values, like
integers, booleans, or lists. Instead, the programmer uses
combinators to represent all the values and operations of
a datatype.

Combinator = term without free variables,

M. Marin LFP

Programming in the λ-calculus
Functions with multiple arguments

There is no built support for functions with multiple arguments,
but we can simulate them with higher-order functions that
produce functions as results:

A function f which computes the value of t for inputs x and
y can be defined as f = λx .λy .t

f v1 is [v1/x](λy .t) = λy .[v1/x]t . This abstraction is for the
function which already knows the value of x , and is waiting
for the value of y .
f v1 v2 is parsed as ((f v1) v2), and reduced in two steps as
follows:

((f v1) v2) = ((λx .λy .t) v1) v2 ⇒β λy .[v1/x]t t2 ⇒β [v2/y][v1/x]t .

This transformation of multi-argument functions into
higher-order functions is called currying.

M. Marin LFP

Programming in the λ-calculus
Abstract data types

Abstract data type (ADT) = mathematical model for a certain
class of data structures with similar behaviour. Is is
characterised by

1 a set of constructors, that is, functions that build objects of
that type from zero or more input arguments;

2 a set of functions that operate on objects of that type; and
3 a set of equational axioms that describe the properties of

the operations.
ADTs can be implemented by specific data types or data
structures. In the λ-calculus

there are no built-in constants or primitive operators
⇒ we represent ADT by terms to which we give a meaning,

based on some convention.

M. Marin LFP

Programming in the λ-calculus
An ADT for booleans (1)

Two constructors

true : Bool false : Bool

The operations

and : Bool× Bool→ Bool not : Bool→ Bool
or : Bool× Bool→ Bool if : Bool× T × T → T

where T can be any other type.
The equational axioms

not true = false and true b = b or true b = true
not false = true and false b = false or false b = b
if true t1 t2 = t1 if false t1 t2 = t2

M. Marin LFP

Programming in the λ-calculus
An ADT for booleans (2)

For the boolean values “true” and “false” we choose the
combinators

true = λt .λf .t false = λt .λf .f

For the conditional operation if and the boolean operators
not, and and or, we can choose the following combinators:

if = λx .λy .λz.x y z not = λb.b false true
and = λb.λc.b c false or = λb.λc.b true c

These operations are coherent with the interpretation given to
them, as seen from the call by name evaluation of the following
combinators (where t1, t2, and t are combinators):

if true t1 t2 ⇒∗
cbn true t1 t2 = λt .λf .t t1 t2 ⇒∗

cbn t1
if false t1 t2 ⇒∗

cbn false t1 t2 = λt .λf .f t1 t2 ⇒∗
cbn t2

not true⇒cbn true false true⇒∗
cbn false

not false⇒cbn false false true⇒∗
cbn true

. . .
M. Marin LFP

Programming in the λ-calculus
An ADT for pairs (1)

Pair = composite data type that groups two arbitrary values in a
compound value. The ADT for pairs has

A constructor pair which takes as arguments two
arbitrary values v1, v2, such that pair v1 v2 represents the
pair of values (v1, v2)

The selector functions first and second that expect as
input a pair, and return its first and second component,
respectively.
The equational axioms that must be satisfied by these
operations are
first (pair v1 v2) = v1 second (pair v1 v2) = v2

M. Marin LFP

Programming in the λ-calculus
An ADT for pairs (2)

A coherent representation is given by

pair = λf .λs.λb.b f s first = λp.p true
second = λp.p false

because, for any values v1 and v2, we have the call by name
evaluation

first (pair v1 v2) = (λp.p true) (pair v1 v2)

⇒cbn pair v1 v2 true

⇒∗cbn true v1 v2 ⇒∗cbn v1,

and, similarly, we can verify that second (pair v1 v2)⇒∗cbn v2.

M. Marin LFP

Programming in the λ-calculus
An ADT for lists (1)

List = composite data type characterized by
two constructors: (1) null of the empty list; and
(2) cons v l which takes as arguments a value v and a list
l , and creates the list with head v and tail l .
The recognizer null? that recognizes the empty list, and
the selector functions car and cdr which, when applied to
a representation of a nonempty list, evaluate to its head
and tail, respectively.
The equational axioms of this data type are

null? null = true car (cons v1 v2) = v1
null? (cons v1 v2) = false cdr (cons v1 v2) = v2

M. Marin LFP

Programming in the λ-calculus
An ADT for lists (2)

We can define

null = λx .true cons = λf .λs.λb.b f s
car = λp.p true cdr = λp.p false
null? = λp.p λf .λs.false

This representation is coherent with the ADT for lists because
each left side of an equational axiom is reducible, with the call
by name strategy, to the corresponding right side. For example:

null? (cons v1 v2)⇒cbn (cons v1 v2) λf .λs.false

⇒∗cbn (λb.b v1 v2) λf .λs.false

⇒cbn (λf .λs.false) v1 v2 ⇒∗cbn false

null? null⇒cbn (λx .true) λf .λs.false⇒cbn true

M. Marin LFP

Programming in the λ-calculus
An ADT for natural numbers (1)

Non-negative integers can be represented in the λ-calculus by
Church numerals, which are the combinators:

c0 = λs.λz.z c1 = λs.λz.s z c2 = λs.λz.s (s z) . . .

In this encoding, each number n is represented by an
abstraction cn that takes two arguments s and z (for
“successor” and “zero”), and applies s, n times, to z.

Like booleans, numbers are encoded as active entities: the
number n is represented by a function that does something
n times.

M. Marin LFP

Programming in the λ-calculus
An ADT for natural numbers (2)

All arithmetic operations can be defined to work properly with
numbers as Church numerals. For example, successor,
predecessor1, addition, multiplication, test for zero, and test for
equality on Church numerals can be defined as follows:

succ = λn.λs.λz.s (n s z)
pred = λm.first(m ss zz)
plus = λm.λn.λs.λz.m s (n s z)
zero? = λm.m (λx .false) true
times = λm.λn.m (plus n) c0

eq? = λm.λn.and (zero? (m pred n)) (zero? (n pred m))

where ss and zz are used only in the definition of pred:

zz = pair c0 c0

ss = λp.pair (second p)(plus c1 (second p))

1The predecessor of a non-negative integer n is assumed to be n − 1 if
n > 0, and 0 if n = 0.

M. Marin LFP

Programming in the λ-calculus
Other ADTs

Other ADTs, including
trees
arrays, and
records

can be encoded using similar techniques.

M. Marin LFP

Programming in the λ-calculus
Encoding recursion

In FP, recursion is the only way to define repetitive
computations.

How can we encode a recursive function? For example

fact : N→ N, fact(n) :=

{
1 if n = 0,
n · fact(n − 1) if n > 0.

This is called definition with textual recursion, because it
relies on the textual use of the function name in its own body.

We want to be able to write

fact = λn.if (zero? n) c1 (times n (fact (pred n)))︸ ︷︷ ︸
body containing fact

but the λ-calculus has no explicit support for such definitions.
M. Marin LFP

Programming in the λ-calculus
Encoding recursion with fixed-point combinator Z

All recursive functions can be encoded with the combinator

Z = λf .(λx .f (λy .x x y)) (λx .f (λy .x x y))

The encoding of a recursive function definition of the form
f = 〈body containing f 〉 is

f = Z λf .〈body containing f 〉

For example, fact = Z Fact where
Fact = λf .λn.if (zero? n) c1 (times n (f (pred n)))

fact simulates the recursive definition of the factorial func-
tion: for all n ∈ N: fact cn ⇒∗β v =α cn!

M. Marin LFP

Concluding remarks

1 The λ-calculus is the core language of most FP languages,
including Racket and Haskell.

2 Computation = reduction of an expression to a value with
rewrite derivations that respect a fixed and predictable
evaluation strategy:

strict languages implement call-by-value.
Example: Racket
lazy languages implement call-by-name or call-by-need.
Example: Haskell

3 The λ-calculus is a a full-fledged programming language:
we can encode the missing things: ADTs, operations on
them, recursion, etc.
computations in pure λ-calculus is inefficient

⇒ all modern FP languages implement extensions of the
λ-calculus with

built-in datatypes
built-in support for textual recursion (not via fixed-point
combinators)
etc.

M. Marin LFP

https://racket-lang.org
https://www.haskell.org
https://racket-lang.org
https://www.haskell.org

Bibliographic references

1 B. C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, MA, USA, 2002.

2 J. C. Mitchell. Foundations of Programming Languages.
MIT Press, Cambridge, MA. London, England, 2000.

Chapter 1. Introduction. Subsections 1.1-1.3.

M. Marin LFP

