
Functional Programming

Logic and Functional Programming
Lecture 1: Introduction

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin LFP

mailto:mmarin@info.uvt.ro

Functional Programming

Organization

Weekly lecture.

Topics:
Introduction to Functional Programming (7 weeks):

theoretical aspects: lambda calculus, etc.,
practical programming in Racket and Haskell

Introduction to logic programming (7 weeks):
logical foundations, computational model
practical programming in Prolog: programming techniques;
selected examples; efficiency issues.

Grading:
I in-class quizzes, individual assignments: 20%
I two partial exams: 25% FP; 25% LP
I Written exam: 30%

M. Marin LFP

Functional Programming

References
Books

For Functional Programming:

H. Abelson, G. J. Sussman, J. Sussman. Structure and
Interpretation of Computer Programs. MIT Press Ltd. 1996.

M. Marin, V. Negru, I. Drămnesc. Principles and Practice of
Functional Programming. Editura UVT. 2016.

S. Thompson. Haskell: The Craft of Functional Programming.
Second Edition. Pearson Education Ltd. 1999.

Haskell tutorials

For Logic Programming:

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Fifth
edition. Springer. 2003.

M.A. Covington et al. Coding Guidelines for Prolog. Theory and
Practice of Logic Programming. 12(6): 889-927 (2012) (Highly
recommended).

P. Gloess. Constraint Logic Programming (PowerPoint format).
M. Marin LFP

https://wiki.haskell.org/Tutorials
https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/ConstraintLogicProgramming.ppt

Functional Programming

References
Software

For Functional Programming:

Racket

Haskell

For Logic Programming

SWI-Prolog. For Windows users, there is a convenient
SWI-Prolog editor.

M. Marin LFP

https://racket-lang.org
https://www.haskell.org
https://www.swi-prolog.org
http://arbeitsplattform.bildung.hessen.de/fach/informatik/swiprolog/indexe.html

Functional Programming

Getting started
Imperative versus declarative

In the imperative style of programming
the programmer should describe how to get the output for
the range of required inputs.
the programming process is based on the description of
solutions to problems rather than on description of the
problems themselves.

In the declarative style of programming
the programmer should describe what relationships hold
between various entities.
the programming process is based on the description of
the problems themselves.

M. Marin LFP

Functional Programming

Programming styles

There are two main imperative programming styles:
Procedural programming: programming with

procedures=parameterized groups of instructions
Object-oriented programming: programming with objects =

(usually) instances of classes.
This lecture is about the declarative programming styles:
Logic programming: programming using predicates.
Functional programming: programming using functions.

M. Marin LFP

Functional Programming

Functions versus procedures

In Functional Programming, functions are “pure”: their
evaluation can not alter the environment of the computation
⇒ no side effects.
⇒ referentially transparent: the same function call always

produces the same output.
In Procedural Programming, procedure calls can refer to global
data, whose destructive assignment is also allowed.
⇒ side effects
⇒ referentially opaque: the same procedure call can produce

different outputs.

M. Marin LFP

Functional Programming

Functional Programming
Computations and Programs

Main idea: Express every computation as a request to evaluate
an expression, and use the resulting value for something.

Program: collection of function definitions in the
mathematical sense

The computation of a result depends only on the values of
the function arguments, and not on the program state.

Computation = evaluation of (nested) function calls.
Each expression denotes a single value which cannot be
changed by evaluating the expression or by allowing
different parts of a program to share the expression.

Evaluation of the expression changes its form, not value
(e.g., 1+1 vs 2).
All references to the value are equivalent to the value itself.

M. Marin LFP

Functional Programming

Recursion

Functions may be defined recursively, referring to
themselves in their definition.
In declarative programming, recursion is used for iteration.

Example (Computing the factorial)
Imperative style Functional style
int fact(int n) { int fact(int n) {
int r=1,i=n; if(n==0)
while(i>=1) { return 1;
r=r*i; else
i=i-1; return n*fact(n-1);

} }
return r;

}

REMARK: iterative computations can be simulated by recursion.
M. Marin LFP

Functional Programming

Evaluation strategies

Every (functional) language implements a particular evaluation
strategy. Function calls can be evaluated strictly (call-by-value)
or lazily (call-by-name)

Evaluation strategies affect efficiency and termination.

Example

Consider the function: double(x) = x+ x.
I strict: double(1+ 2) = double(3) = 3+ 3 = 6.
I lazy:

double(1+2) = (1+2)+(1+2) = 3+(1+2) = 3+3 = 6.

M. Marin LFP

Functional Programming

First-class citizens and higher-order functions

A first-class citizen is something that can be
named,
passed as argument to a function,
returned as result of a function call,
stored in a data structure (e.g., as element of a list)

A higher-order function is a function that takes function(s)
as argument(s) and/or returns a function as value.
In functional programming:
I Functions are first-class citizens
I Functions can be higher-order

M. Marin LFP

Functional Programming

Mutable versus immutable data

Mutable data can be modified after its initial construction,
immutable data can not be modified.

Declarative programming uses immutable data.
Imperative programming uses mutable data.

M. Marin LFP

Functional Programming

Declarative versus imperative programming styles
Summary of major differences

Declarative Imperative
Focus on ”what” Focus on “how”
Stateless Uses state
Functions without side effects Functions with side effects
Uses recursion to iterate Uses loops to iterate
Good for Big Data No good for Big Data
Statement execution order: Statement execution order:
not very important very important

M. Marin LFP

Functional Programming

Pros and cons of functional programming
Pros

“No state, no side-effects” in functional programming help
to write bugs-free code or less error-prone code.
Functional code is compact, easier to maintain, reuse, and
test.
Functional programs consist of independent blocks that
can run concurrently⇒ improved efficiency.
They are close to mathematics, which is advantageous
when proving their properties.

Recommended reading:
J. Hughes. Why Functional Programming Matters. 1984.

M. Marin LFP

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf

Functional Programming

Pros and cons of functional programming
Cons

The absence of state requires to create new objects whenever
we perform actions
⇒ Functional Programming requires large memory space.
⇒ Garbage collection must be used to reclaim memory

occupied by objects that become inaccessible.
Historical note: Garbage collection was invented in 1959 by
John McCarthy, the inventor of Lisp, the second-oldest
high-level programming language (after Fortran) and the
first functional programming language.

Recursion is usually slower than iteration.
This is not so bad: modern languages have efficient
garbage collectors⇒ some recursive computations can be
as fast as iterative computations.

M. Marin LFP

Functional Programming

Languages

Functional programming languages: Clean, Clojure,
Haskell, Scala, Common Lisp, Scheme, Racket, ML family
(including OCaml), Mathematica
Languages that support functional programming style:
Javascript, Lua, Oz, Python, . . .

M. Marin LFP

Functional Programming

Functional versus logic programming

Functional Programming evaluates an expression according to
a fixed, predictable strategy.

expression = nested function calls
program = collection of function definitions
strategy: lazy or strict evaluation

Logic Programming answers a question by search according to
a fixed, predictable strategy.

question = conjunction of atomic queries.
program = collection of predicate definitions
strategy: SLDNF resolution

M. Marin LFP

Functional Programming

Logic Programming

Logic programming is based on a way of thinking which is
useful for solving problems related to the extraction of
knowledge from basic facts and relations:

The programmer must describe what he knows as facts
and rules collected in a program.
The compiler (or interpreter) of the programming language
finds the answers to all questions we may ask afterwards,
using a built-in search strategy.

I Most representative language: Prolog
I search strategy of Prolog: SLDNF-resolution

M. Marin LFP

Functional Programming

Functional versus logic programming

Illustrated example
Compute/Find the minimum element of a list of numbers, using
the following knowledge:

Fact: The minimum element of a singleton list made of
number m is m.
Rules:

The minimum of x and y is x if x ≤ y .
The minimum of x and y is y if y < x .
The minimum element of a list starting with x , y followed by
sublist t is m if m is the minimum of x and n, where n is the
minimum element of the list with first element y followed by
sublist t .

M. Marin LFP

Functional Programming

Functional versus logic programming
Illustrated example

Functional Programming: Haskell

minList (x:[]) = x
minList (x:y) = minim x (minList y)
minim x y
| x <= y = x
| x > y = y

Logic Programming: Prolog

min(X,Y,X) :- X =< Y.
min(X,Y,Y) :- Y < X.
minList([X],X).
minList([X|T],M) :- minList(T,Y), min(X,Y,M).

M. Marin LFP

Functional Programming

A word of warning

Functional Programming (FP) and Logic Programming (LP) are
declarative programming styles:

Programming = encode “what” you know in a program,
without caring too much how the result/answer is
computed
I trust the built-in strategy of the language (FP: evaluation

strategy; LP: resolution strategy). which always finds the
right result/answer

Good thing: Declarative programs are referentially
transparent: they are easy to understand and verify if they
are correct (with equational reasoning tools)
Bad thing: Declarative programs can become very
inefficient
I We should care how the computation proceeds, and

inmrove its efficiency by writing tail-recursive code.

M. Marin LFP

Functional Programming

Efficiency in FP
Example: computing Fibonacci numbers

Recursive: easy to understand but awfully inefficient
implementation (in Haskell):

fib 1 = 1
fib 2 = 1
fib n = fib (n-1) + fib (n-2)

Tail recursive: less readable but very efficient

fib n = fib_acc n 1 1 where
fib_acc 1 _ acc = acc
fib_acc n prev acc = fib_acc (n-1) acc (prev+acc)

M. Marin LFP

Functional Programming

Example: computing Fibonacci numbers
Trace of computations

.
fib 37 fib 36 fib 36 fib 35 fib 36 fib 35 fib 35 fib 34

fib 38 fib 37 fib 37 fib 36

fib 40

fib 39 fib 38

⇒ fib 40 performs 331 160 281 recursive function calls!

fib_acc 40 1 1 = fib_acc 39 1 2 = fib_acc 38 2 3 = . . .

= fib_acc 1 102334155 165580141 = 165580141

⇒ fib_acc 40 1 1 performs only 40 recursive function calls.

M. Marin LFP

Functional Programming

Functional programming languages
Lisp and its dialects

1955: John McCarthy (MIT): proposed the study of Artificial
Intelligence (AI): “the science and engineering of making
intelligent machines.”

Inventor of Lisp (1958) = first language with notable
functional programming capabilities

Second oldest high-level programming language–only
Fortran is 1 year older (from 1957)
Both Fortran and Lisp are in widespread use today
Lisp stands for List processing: linked lists are the main
data structure, used to represent both source code
(programs) and data.
Lists were used mainly for algebraic processing in AI
Other data types (besides lists): numbers and symbols

Initially, Lisp was not standardized: many people
developed their own versions of Lisp (a.k.a.Lisp dialects)
⇒ standardization became necessary.

M. Marin LFP

Functional Programming

Functional programming languages
Major dialects of Lisp

There are 2 main dialects of Lisp, standardized and in
widespread use:

1 Common Lisp: industrial standard developed by the Lisp
community to combine the features from earlier Lisp
dialects; became an ANSI standard in 1994

Huge, multi-paradigm programming language
2 Scheme: a Lisp dialect developed at MIT for instructional

use; became an IEEE standard in 1990 (IEEE 1990), and
was recently renamed to RACKET

Small, modular, easy-to-learn programming language
We will practice functional programming in RACKET (a
dialect of Lisp) and Haskell

M. Marin LFP

Functional Programming

Peculiarities of Racket and Haskell

Racket, and all dialects of Lisp, use a weird syntax to write
expressions, called fully parenthesised syntax. For example:

Instead of f (v1, . . . , vn) we write (f v1 . . . vn)

Instead of if cond then branch1 else branch2
we write
(if cond branch1 branch2)
etc.

Haskell requires the usage of parentheses only for two
purposes: (1) to disambiguate the order of operator application
(e.g., in arithmetic expressions), and (2) to build tuples (a
composite datatype). For example:

Instead of f (v1, . . . , vn) we write f v1 . . . vn

M. Marin LFP

Functional Programming

Evaluation strategies
Strict and lazy languages

Most functional languages (including Racket) are strict:
Whenever we evaluate a function call, we first evaluate all
function arguments to values, and then call the function
with the values of the arguments:
EXAMPLE:
(+ (/ 4 (− 3 1)) (∗ 2 5)) = (+ (/ 4 2) (∗ 2 5)) =
(+ 2 (∗ 2 5)) = (+ 2 10) = 12

Sometimes, argument evaluation is useless:

(∗ 0 (/ (− (sqrt (−17 1)) (− 3 1)))) = 0

The evaluation of red argument is time-consuming and useless
Lazy functional languages evaluate only needed
arguments

Representative language: Haskell (standardized in 1990)

M. Marin LFP

Functional Programming

What is Racket?

A strict functional programming language: the entire language
is built on top of a few primitive operations for list manipulation.

enormous volume of educational material which created
for it.
Easy to get.

Easiest way to interact with Racket, is via DrRacket = widely
used IDE among introductory Computer Science courses that
teach Scheme or Racket

Freely available for all major platforms: Windows, MacOS,
UNIX, Linux with X Window system
Recommended textbooks:

“Structure and Interpretation of Computer Programs”,
arguably the best textbook about functional programming.
“How to Design Programs” (from http://www.htdp.org)

M. Marin LFP

Functional Programming

More about strict functional programming
and Racket, in particular

Every expression is evaluates to a value, by a stepwise
process called reduction.
Values are expressions that evaluate to themselves.

Can be primitive or composite
A function expression is evaluated to a function object

Racket is dynamically typed:
We don’t have to declare the types of variables, functions,
etc.
The interpreter computes the types of expressions at
runtime.

Type = set of values with common properties.
type checking is performed at runtime, and can raise
runtime type errors.

M. Marin LFP

Functional Programming

What is Haskell?

A lazy functional language created in the 1980’s by a
committee of academicians:

Functional Functions are first-class citizens: they are values
which can be used as any other sort of value.

Lazy: Computation = evaluation of expressions using
lazy evaluation

expressions are not evaluated until their
results are actually needed

Pure: Expressions are referentially transparent:
no side effects
calling the function with same inputs produces
the same output every time

Statically typed: every expression has a type, which is checked
at compile-time. Programs with type errors will not
run because they will not even compile.

M. Marin LFP

Functional Programming

Main features of Haskell
1. Types

The type system is much more expressive in Haskell than in
C++ or Java

It helps clarify thinking and express program structure
Usually, the first step in writing a program is to write down
all the types.

Serves as a form of documentation
The type of a function tells you a lot about what a function
might do and how it can be used.

Turns run-time errors into compile-time errors
Many errors can be detected at compile time, and easy to
fix. Run-time errors are hard to debug.

M. Marin LFP

Functional Programming

Main features of Haskell
2. Abstraction (“Don’t repeat yourself”))

According to the Principle of Abstraction, nothing should
be duplicated: every idea, algorithm, and piece of data
should occur exactly once in your code.
The process of abstraction: take similar pieces of code and
factor out their commonality.

The following features of Haskell help us write abstract code
(without repetitions):

parametric polymorphism
higher-order functions
type classes

M. Marin LFP

Functional Programming

Main features of Haskell
3. Wholemeal programming

“Functional languages excel at wholemeal programming, a
term coined by Geraint Jones. Wholemeal programming means
to think big: work with an entire list, rather than a sequence of
elements; develop a solution space, rather than an individual
solution; imagine a graph, rather than a single path. The
wholemeal approach often offers new insights or provides new
perspectives on a given problem. It is nicely complemented by
the idea of projective programming: first solve a more general
problem, then extract the interesting bits and pieces by
transforming the general program into more specialised ones.”

M. Marin LFP

Functional Programming

Main features of Haskell
3. Wholemeal programming

Compare the following code in Java or C++:

int acc = 0;
for (int i = 0; i < lst.length; i++) {
acc = acc + 3 * lst[i];

}

with the equivalent Haskell code

sum (map (3*) lst)

We will explore the shift in thinking represented by this way
of programming, and how it works in functional
programming.

M. Marin LFP

Functional Programming

Setting up Haskell

For Functional Programming, we will use GHCi, the interactive
environment of the Glasgow Haskell Compiler.

Freely available for all platforms. See Downloads for
downloading instructions.
GHCi Users Guide

M. Marin LFP

https://www.haskell.org/downloads/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html

	Functional Programming

