
A crash course to Racket

Contents

1 Installation

Racket is an interpreted language for functional programming. It is freely
distributed for a large variety of platforms, including Windows, Unix, Linux
and MacOS X, and has the same behavior on all platforms.

You can download and install Racket on your own computer from

https://racket-lang.org

2 Usage

The main way to use Racket is via DrRacket. DrRacket is the programming
environment of the language. To start DrRacket, double-click its icon. A win-
dow made of two panels, as shown below, will open:

definitions

area

interactions

area

The definitions area

The top panel is the definitions area: It is the place where you usually edit
and save your programs. A program consists of definitions. Most definitions in
a program are function definitions. You can also include expressions to evaluate
in a program.

Programs are run by clicking the button. As a result, the definitions
will be loaded in the evaluation environment, and the printed forms of values
of the expressions written in the program will be shown in the interactions area
on separate lines.

1

The interactions area

This is the place where you interact with the interpreter of Racket as follows:

1. You type in the expression you which to evaluate, immediately after the
input prompt >

2. You click Enter

3. The interpreter will read the expression, evaluate it, and print its value
on the next line.

Afterwards, the interpreter waits for you to type in and evaluate another ex-
pression. This kind of interaction with the interpreter is called Read-Eval-Print
loop (REPL for short).

3 The syntax of expressions in Racket

Racket is a descendant of Lisp. Lisp is the second oldest high-level program-
ming language. It appeared in 1958, and was the favorite language of researchers
working in Artificial Intelligence. Racket inherits from Lisp a weird way of
writing expressions, called parenthesised prefix notation. This means that
all compound expressions are of the form

(id arg1 . . . argn)

where

I id is the name of a function, special form, or macro

I arg1, . . . , argn are subexpressions which represent the arguments expected
by id.

For example, we write

I (+ 1 2) instead of 1+2

I (sqrt (+ (expt 3 2) (expt 4 2))) instead of
√

32 + 42. In Racket,
(expt m n) computes mn, and (sqrt x) computes

√
x.

The notation is a bit nasty for human readers (one has to type a lot of paren-
theses), but is easy to read and parse by the interpreter of Racket.

You can ask Racket to compute the values of these expressions in the
interactions area. The Read-Eval-Print loop will produce the following results:

> (+ 1 2)

3

> (sqrt (+ (expt 3 2) (expt 4 2)))

5

2

3.1 Function calls

Most expressions are function calls. This means that id is the name of a function
which expects n arguments.

The evaluation of a function call (id arg1 . . . argn) proceeds as follows:

1. First, we evaluate arg1, . . . , argn and obtain the values v1, . . . , vn.

2. Next, we call the function id to compute the value of (id v1 . . . vn).

Remark: We can also have function calls of the form (e arg1 . . . argn) where
e is an expression whose value is a function f . The evaluation of such a function
call proceeds as follows:

1. First, we evaluate the e, arg1, . . . , argn and obtain the values f, v1, . . . , vn.

2. Next, we call the function f to compute the value of (f v1 . . . vn).

For example, the evaluation of (sqrt (+ (expt 3 2) (expt (3+1) 2)) can
be depicted as follows:

(sqrt (+ (expt 3 2) (expt (+ 3 1) 2)) ⇒ (sqrt (+ 9 (expt (+ 3 1) 2)))

⇒ (sqrt (+ 9 (expt 4 2))) ⇒ (sqrt (+ 9 16)) ⇒ (sqrt 26) ⇒ 5

This way of evaluating function calls is called strict (or call by value) evalu-
ation. Thus, Racket is a strict functional programming language.

3.2 Special forms

Special forms are expressions (id arg1 . . . argn) where id is the identifier of
a syntactic construct specific to the language of Racket. The identifiers of
special forms are predefined. Every special form has its own rules of evaluation.
Often, special forms do not evaluate all their arguments, like function calls do.

Remark: To simplify the learning of Racket, its implementers tried to keep
the number of special forms as small as possible. Typical examples of identifiers
of special forms are and, or, if, let, define, and lambda.
Below are the evaluation rules of some important special forms:

I (and arg1 . . . argn) computes the values vi of argi starting from i = 1
up to n, and stops as soon as it computes a value vi =#f. There are two
possible outcomes:

1. If all argi evaluate to vi 6=#f, return the value vn of argn.

2. Otherwise, stop when finding vi =#f and return #f.

For example

> (and (+ 1 2) (+ 3 4) #t "abc" (/ 4 2))

2

> (and (+ 1 3) (< 2 1) 4/2 (sin 1.2))

#f

3

I (cond (test1 block1)
...

(testn blockn))

evaluates the expressions test1, . . . , testn in this order. There are two
possible outcomes:

1. All values of testi are #f. In this case, the value of the cond-form
is #<void>. The value #<void> has no printed form, and nothing is
displayed as a result. However #<void> exists but we can not see it.

2. Find the first testi whose value is not #t. Then evaluate the content
of blocki and return the value of its last expression as the result of
the cond-form.

Thus the cond-form behaves like switch instruction in C++. For example

> (cond ((> 1 2) "case 1")

((= 1 2) "case 2")

((< 1 2) "case 3"))

"case 3"

Remarks

1. There are two Boolean values in Racket: #t and #f. Any value different
from #f is called a true value. There are many true values (for example,
1, #t, "abc"), but only one Boolean true value, which is #t.

2. Racket allows to freely use the pair of parentheses [] instead of ().
For example, it is common practice to write cond-forms as follows:

(cond [test1 block1]
...

[testn blockn])

3. Comments can be added to programs. A comment starts with the char-
acter ‘;’ and extends to the end of line.

4 Writing programs

Several labworks are about writing programs. Programs are written in the
Definitions area, and saved in text files with extension .rkt via the menu option

File->Save Definitions or File->Save Definitions As...

Typically, a program consists of variable definitions of the form (define id expr).
A variable definition is a special form whose evaluation has the following effect:

1. The interpreter computes the value v of expr.

4

2. The interpreter assigns name id to v. From now on, we can use id to refer
to v.

For example:

> (define x (sqrt 10.)) ; give name x to the numeric value of
√
10.

Most often, programs contain definitions of functions. Function names are vari-
ables. The definition of a function f which, for input arguments x1, . . . , xn

evaluates the content of block and returns its value, is written as follows:

(define f (lambda (x1 . . . xn) block))

or in the simplified but equivalent form

(define (f x1 . . . xn) block)

For example, the following program defines functions to compute the length and
area of a circle with radius r, and computes the length and area of a circle with

radius 3. To run it, click the button:

5 List of useful predefined functions

Racket has several predefined functions that we can freely use when writing
programs. Below is a concise list of the most important predefined functions.

5

5.1 Numeric functions

function arguments return value

+ 0 or more sum of arguments
- 1 or more difference of arguments in let to right order
* 0 or more product of arguments
/ 1 or more quotient of arguments in left to right order
max 1 or more maximum of arguments
min 1 or more minimum of arguments
truncate num integer part of num (digits to the left of the

decimal point)
sqrt num square root of num,

√
num

abs num absolute value of num, |num|
expt num pow exponentiation (num raised to pow), numpow

quotient num1 num2 quotient of num1 divided by num2

remainder num1 num2 remainder of num1 divided by num2

The following examples illustrate the behaviour of some of these functions when
they are called with an unusual number of arguments:

> (+) > (*) > (/ 4) ; in general, (/ n) computes 1/n
0 1 1/4

> (/ 2 3 4) ; division is left-associative and computes (2/3)/4

1/6

Rational numbers are always reduced to lowest terms. For example, the evalu-
ation of (/ 2 3 4) produces the value 1/6 instead of 2/12.

5.2 Functions on lists

Remember that the printed form of a list value is

’(w1 . . . wn)

and that it can also be used as an input form. The most important functions
on lists are:

I (list? l) is the recognizer of lists. It returns #t if l is a list, and #f

otherwise.

I (null? l) is the recognizer of empty. It returns #t if l is null, and #f

otherwise.

I (length l) returns the length, that is, number of elements of list l.

I (cons v l) constructs a new list by adding value v in fromt of list l.

I (car l) returns the first element of list l. It fails if l is empty list.

6

I (cdr l) returns list l without first element. It fails if l is empty list.

I (reverse l) constructs a new list consisting of the elements of list l in
reverse order.

I (append l1 . . . ln) appends lists l1, . . . , ln.

I (list-ref l i) returns the i-th element of list l. List elements are
indexed starting from 0, thus (list-ref l 0) returns the first element
of l. Note that (list-ref l 0) is equivalent with (car l).

The following predefined higher-order functions on lists are also very useful:

I (map f l) computes the list

(list (f v1) ... (f vn)) if l is (list v1 . . . vn)

I (filter pred l) computes the sublist (list v1 . . . vp) of elements of
list l for which (pred vi) holds.

I (foldl f v0 l) computes the value of (f vn . . . (f v1 v0) · · ·)
if l is the list (list v1 . . . vn).

I (foldr f v0 l) computes the value of (f v1 (f . . . (f vn v0) . . .))
if l is the list (list v1 . . . vn).

I (apply f l) computes the value of (f v1 . . . vn)
if l is the list (list v1 . . . vn).
The first argument of apply must be a function that can take any number
of arguments. Such functions are called variadic functions. Examples
of variadic functions are + and *.

7

