LoGIic AND FUNCTIONAL PROGRAMMING

Labwork 4

March 15, 2021

Labworks related to lecture 4.

1

. Define foldr with foldl and reverse, and indicate the runtime complexity of this
definition.

Define filter with foldr.
Define length with foldl.
Define the following higher-order functions:

(a) (nest f n) which takes as input a function f: A — A and n € N, and returns
the function that maps z € A to the value of f(...f(z)---). If n = 0 then
——

n times

(nest f 0) should return the identity function (lambda (x) x).

(b) (nestwhile f v p) which takes as inputs a function f : A — A, a predicate
p: A — bool and a value v € A, and returns the value w = f"(v) for the smallest
n € N such that (p w) is #f.

Use foldr to define the variadic function

(comp f1 ... fn)

which takes as inputs n > 0 unary functions f1,..., f,, and returns the function that
maps z to the value of

(fi oo (fo 2.0

Define the function (list->set 1lst), which drops the duplicate occurrences of ele-
ments from a list 1st.

Suggestion: express the computation of (list->set 1st) as (foldr f null 1st)
with a suitable function f. You can use the built-in function (member e 1) which is
true if e is an element of list 1 and #f otherwise.



7. Consider the problem of counting the number of occurrences of every word in a doc-
ument d. More precisely, let d be a list of symbols (the words of document d). We
wish to define (count-words d) which returns the list of pairs (cons w n) where w
is a string in d, and n is the number of occurrences of w in d. For example

> (count-words ‘(ababbcxzzx))

"a.2) b .3 (c.1)(z.2 x.2)



