
Logic and Functional Programming

Labwork 4

March 15, 2021

Labworks related to lecture 4.

1. Define foldr with foldl and reverse, and indicate the runtime complexity of this
definition.

2. Define filter with foldr.

3. Define length with foldl.

4. Define the following higher-order functions:

(a) (nest f n) which takes as input a function f : A → A and n ∈ N, and returns
the function that maps x ∈ A to the value of f(. . . f︸ ︷︷ ︸

n times

(x) · · · ). If n = 0 then

(nest f 0) should return the identity function (lambda (x) x).

(b) (nestwhile f v p) which takes as inputs a function f : A → A, a predicate
p : A→ bool and a value v ∈ A, and returns the value w = fn(v) for the smallest
n ∈ N such that (p w) is #f.

5. Use foldr to define the variadic function

(comp f1 . . . fn)

which takes as inputs n ≥ 0 unary functions f1, . . . , fn and returns the function that
maps x to the value of

(f1 ... (fn x)...)

6. Define the function (list->set lst), which drops the duplicate occurrences of ele-
ments from a list lst.

Suggestion: express the computation of (list->set lst) as (foldr f null lst)

with a suitable function f . You can use the built-in function (member e l) which is
true if e is an element of list l and #f otherwise.

1



7. Consider the problem of counting the number of occurrences of every word in a doc-
ument d. More precisely, let d be a list of symbols (the words of document d). We
wish to define (count-words d) which returns the list of pairs (cons w n) where w
is a string in d, and n is the number of occurrences of w in d. For example

> (count-words ′(a b a b b c x z z x))
′((a . 2) (b . 3) (c . 1) (z . 2) (x . 2))

2


