
Logic and Functional Programming

Labwork 3

March 8, 2021

Goal: to practice recursive thinking and the programming principles taught in Lecture 3.

1 Recap

Functions with one or more arguments of a recursive type should be defined by recursion on
that argument.

• For list argument(s) there should be a base case when the list is empty, and a recursive
case when the list is of the form (cons v lst).

– the recursive calls should take “simpler” argument values, to ensure termination
of computation.

• For numeric argument(s), there should be

– one or more base cases for small numeric values

– one or more recursive cases which take simpler (smaller) numeric values.

Exercise set 1

1. Define the function (joinLists lst1 lst2) which returns the results of joining lists
lst1 and lst2.

• Example: (joinLists ’(1 2) ’(a b)) should return ’(1 2 a b).

• Suggestion: implement recursion on the length of lst1.

• Side remark: Racket has the predefined function (append lst1 ... lstn) to
join an arbitrary number of lists.

2. (LW3 from labwork 2) Define the numeric function (digit-sum N) which computes
the sum of digits of the decimal representation of N. For example, (digit-sum 726)

should return 15 because 7+2+6 = 15. Racket has the following predefined functions
for a, b ∈ N:

(quotient a b) ; returns the quotient of dividing a by b

(remainder a b) ; returns the remainder of dividing a by b

1

3. (LW4 from labwork 2) Define (flatten sl) which takes as input a nested list of
symbols, and returns the list of symbols contained in sl in the order in which they
occur when sl is printed. Intuitively, flatten removes all the inner parentheses form
its argument. For example:

> (flatten ′(a b c))
′(a b c)

> (flatten ′((a b) c (((d)) e)))
′(a b c d e)

> (flatten ′((a) () (b ()) () (c)))
′(a b c)

Note that nested lists of symbols are defined by the grammar

SL ::= null | (cons s SL) | (cons SL SL)

where s is a symbol.

2 Recursion by solving a more general problem

Sometimes, the best way to solve a problem is to find a solution to a more general problem,
and use that solution to solve the original problem as a special case.

Example

Suppose von is a vector of numbers. Define (vector-sum von) which returns the sum of
elements of von, using the functions

• (vector-length von): returns the length (number of elements) of von

• (vector-ref von i): returns the i-th element of von; the elements of von are indexed
starting from 0.

Instead of defining (vector-sum von), we can define the more general function

(partial-vector-sum von n)

which computes the sum of elements with indexes from 0 to n in von.

Note that (vector-sum von) coincides with

(partial-vector-sum von (vector-length von))

(define (vector-sum von)

(define (partial-vector-sum von n)

(if (= n 0)

0 ; nothing to add

(+ (partial-vector-sum von (- n 1))

(vector-ref von (- n 1)))))

(partial-vector-sum von (vector-length von)))

2

Note that

1. partial-vector-sum is tail recursive, therefore it’s computation is very fast.

2. The argument von of partial-vector-sum does not change its value. Since the func-
tion partial-vector-sum is defined in the body of vector-sum, we can optimize the
definition of partial-vector-sum by eliminating argument von:

(define (vector-sum von)

(define (partial-vector-sum n)

(if (= n 0)

0 ; nothing to add

(+ (partial-vector-sum (- n 1))

(vector-ref von (- n 1)))))

(partial-vector-sum (vector-length von)))

Exercise set 2

1. Let (rev2 lst1 lst2) be the function which returns the result of joining the reverse
of list lst1 with list lst2. For example, (rev2 ’(3 4) ’(2 1)) yields ’(4 3 2 1).

Note that, if lst1 is not empty, then (rev2 lst1 lst2) returns the same result as

(rev2 (cdr lst1) (cons (car lst1) lst2))

(a) Write a tail recursive definition of rev2.

(b) Define the function (revList lst) which computes the reverse of list lst as a
special case of using the function rev2.

2. Let (f2 a b c) the function which computes c · ab when a, b, c are non-negative
integers. Note that

c · ab =

c if b = 0,
c · (a2)b/2 if b > 0 is even,
(c · a) · (a2)(b−1)/2 if b is odd.

(a) Write a tail recursive definition of f2.

(b) Define the function (power a b) which computes ab for a, b ∈ N as a special case
of using the function f2.

3. Newton discovered the following method to compute
√
a when a is a non-negative

number:
√
a is the limit of the sequence of numbers (xn)n∈N where

x0 = 1.0, xn+1 = (xn + a/xn)/2 for all n ∈ N.

(a) Define the function (improve xn a) which takes as inputs the values of of xn

and a and returns the value of xn+1.

3

(b) x a good enough approximation of
√
a if |x2 − a| ≤ 0.000001. Define the boolean

function (good? x a) which returns #t if the value of x is a good enough ap-
proximation of

√
a, and #f otherwise.

(c) Newton’s method finds a good approximation of
√
a starting from a number x,

as follows: If x is a good approximation of
√
a it returns x, otherwise it returns

a good approximation od
√
a starting from (improve x a).

Write a tail recursive definition of the function (newton2 a x) which uses New-
ton’s method to compute a good approximation of

√
a starting from x.

4. Newton discovered the following method to compute 3
√
a when a ∈ R: 3

√
a is the limit

of the sequence of numbers (xn)n∈N where

x0 = 1.0, xn+1 = (2 · xn + a/x2
n)/3 for all n ∈ N.

(a) Define the function (improve3 xn a) which takes as inputs the values of of xn

and a and returns the value of xn+1.

(b) x a good enough approximation of 3
√
a if |x3 − a| ≤ 0.000001. Define the boolean

function (good3? x a) which returns #t if the value of x is a good enough ap-
proximation of 3

√
a, and #f otherwise.

(c) Newton’s method finds a good approximation of
√
a starting from a number x,

as follows: If x is a good approximation of 3
√
a it returns x, otherwise it returns

a good approximation od
√
a starting from (improve3 x a).

Write a tail recursive definition of the function (newton3 a x) which uses New-
ton’s method to compute a good approximation of 3

√
a starting from x.

5. Write a tail-recursive definition of the function (eval v lst) which takes as input a
list of numbers

lst = ’(a0 a1 . . . an)

and computes the value of a0 + a1 · v + . . . + an · vn.

6. Consider lists of symbols defined by the grammar

SL ::= null | (cons s SL) | (cons SL SL)

where s is a symbol. Write a tail recursive definition of the function (flattenTR sl)

which computes the reverse of the flattened form of a list of symbols sl.

7. A rational number is a number whose value coincides with a
b

where a, b ∈ Z and b 6= 0.
Suppose we choose to represent every rational number a

b
as a pair (cons a b) where

a, b ∈ Z. Thus, we consider the following BNF for rational numbers

〈rat〉::=(cons 〈integer〉 〈integer〉)

Define the following operations:

4

(a) (rat? q), which recognizes if q ∈ 〈rat〉.
(b) (qsum q r), (qdif q r), (qmul q r), and (qdiv q r),

which take as inputs two values q, r ∈ 〈rat〉 and compute their rational sum,
difference, product, and division.

(c) (rat-eq? q1 q2), which returns #t if q and r represent the same rational num-
ber, and #f otherwise.

(d) (simplify q), which returns r ∈ 〈rat〉 such that q and r represent the same
rational number, and r=(cons a b) where a, b are relatiely prime. To define
this function, you can use the predefined function (gcd u v) which returns the
greatest common divisor of two integers u, v ∈ Z.

8. A complex number is a number whose value coincides with a + i · b where a, b are
floating-point numbers and i ∈ C is the imaginary unit that satisfies the equation i2 =
−1. Suppose we choose to represent such a complex number as a pair (cons a b).
Thus, we consider the following BNF for complex numbers

〈cplx〉::=(cons 〈real〉 〈real〉)

Define the following operations:

(a) (cplx? c), which recognizes if c ∈ 〈cplx〉.
(b) (abs-value c), which computes the absolute value of c ∈ 〈cplx〉. Remember

that the absolute value of a complex number z = a + i · b is |z| =
√
a2 + b2.

(c) (rdiv c r) which takes as inputs c ∈ 〈cplx〉 and r ∈ 〈real〉, r 6= 0, and returns
the value from 〈cplx〉 corresponding to the division of c by r.

(d) (csum q r), (cdif q r), (cmul q r), and (cdiv q r),
which take as inputs two values q, r ∈ 〈cplx〉 and compute their complex sum,
difference, product, and division.

9. Consider sets represented by lists without repeating elements, and let A, B be two such
sets. Define the following operations:

(a) (union A B), which computes the set union of A and B.

(b) (difference A B), which computes the set difference of A and B.

You can use the predefined function (member v lst) which returns #f if v is not equal
to any element of list lst, and true otherwise.

5

	Recap
	Recursion by solving a more general problem

