
Labwork 1

February 2021

The purpose of this labwork is to practice defining recursive functions for
some simple examples.

Recursive function definitions

A function is recursive if it calls itself in the body. A typical example is the
factorial function

fac : N→ N, fac(n) :=

{
1 if n = 0,
n · fac(n− 1) if n > 0.

Typically, a recursive function f is defined by cases:

• One or more base cases: these are the “simple” cases when the value of
the f can be computed directly, without any need to perform a recursive
call.

• One or more recursive cases: these are the cases when the value of f is
computed as follows:

1. we compute the value of f for some simpler input arguments

2. next, we combine the previously computed values to obtain the value
we want.

For example, the definition of fac(n) consists of

• one base case, for n = 0. In this case we simply return 1 as result.

• one recursive case: when n > 0. In this case we perform the recursive call
fac(n − 1) to compute the value of fac for the smaller input n − 1, and
then combine the value of fac(n − 1) with the value of n to obtain the
value of fac(n).

In Racket, the recursive definition of fac is

(define fac (lambda (n) (if (= n 0) 1 (* n (fac (- n 1))))))

This definition can also be written in the simplified form

1



(define (fac n) (if (= n 0) 1 (* n (fac (- n 1)))))

The following exercises are intended to train you in identifying suitable re-
cursive definitions (base cases+recursive cases) for some simple functions.

Problem 1

Write down a recursive definition for the function (l-ref l i) which returns
the i + 1-th element of a list l. If l has less than i + 1 elements, the function
call should return #f.

Answer: We know that a list is either empty (that is, null) or a list of the
form (cons h t) consisting of a first element h and a shorter list t (the
tail of the list). Note that, if the list (cons h t) has n elements, then the
list t has n− 1 elements.

Thus, we distinguish two cases:

1. l is empty. In this case, l has no i+1-th element, therefore (l-ref l i)

should return #f

2. l has a first element h, followed by the sublist of elements t. We
distinguish two sub-cases:

(a) i = 0. In this case, the i + 1-th element of l is the first element
of l, which is (car l).

(b) i > 0. In this case, the i + 1-th element of l is the i-th element
of t, which is (cdr l).

The Racket encoding of this recursive definition is straightforward:

(define (l-ref l i)

(if (null? l) #f

(if (eqv? i 0)

(car l) ; base case
(l-ref (cdr l) (- i 1)) ; recursive case

)))

Note: In Racket source code, the symbol ‘;’ indicates the start of a comment,
which continues till the end of the line.

Problem 2

Define a recurisve function (len l) which computes the length of a list l.

Answer: We distinguish two cases:

1. l is the empty list null. In this case, the length is 0.

2. l consists of a head element h followed by a sublist t. In this case,
the length of l is longer than t by 1.

2



In Racket, this definition looks as follows:

(define (len l)

(if (null? l) 0 (+ 1 (len (cdr l)))))

Problem 3

Write down a recursive definition for the function (app l1 l2) which computes
the result of concatenating lists l1 and l2. For example:

> (app ’(1 2 3) ’(4 5 6))
′(1 2 3 4 5 6)

> (app ′() ′(a b c))
′(a b c)

> (app ′(a b c) ’())
′(a b c)

Answer: We can reason by induction on the structure of list l1:

1. If l1 is null, then (app l1 l2) should return l2.

2. If l1 is not null then we can reason as follows:

• First, we append (cdr l1) with l2. Let’s assume the result is l3.

• l3 coincides with the tail of the list (app l1 l2). To obtain the
list (app l1 l2), we must add (car l1) in front of list l3. Thus,
(app l1 l2) coincides with (cons (car l1) (app (cdr l1) l2))

In Racket, this recursive definition is encoded as follows:

(define (app l1 l2)

(if (null? l1) l2 (cons (car l1) (app (cdr l1) l2))))

Problem 4

Write down a recursive definition of the function (rev l) which computes the
list obtained by reversing list l. For example:

> (rev null)
′()

> (rev ′(1 2 3 4))
′(4 3 2 1)

Suggestion: Note, that in order to compute (rev (l), we can proceed as fol-
lows: We call the auxiliary function (rev-aux l null), where (rev-aux l1 l2)

behaves as follows:

1. 1. As long as l1 is not null, remove (car l1) from l1 and add it as first
element of l2.

3



2. As soon as l1 is null, return l2.

For example, to reverse ′(1 2 3 4), we call:

→ (rev-aux ′(1 2 3 4) ′())

→ (rev-aux ′(2 3 4) ′(1))

→ (rev-aux ′(3 4) ′(2 1))

→ (rev-aux ′(4) ′(3 2 1))

→ (rev-aux ′() ′(4 3 2 1))

→ ′(4 3 2 1)

The final result is the reversed version of ′(1 2 3 4).
In Racket, the recursive definition of rev-aux is encoded as follows:

(define (rev-aux l1 l2)

(if (null? l1)

l2

(rev-aux (cdr l1) (cons (car l1) l2))))

and rev is defined by

(define (rev l) (rev-aux l null))

Homeworks

HW1 A list is good if it is either empty, or it is of the form

(list s1 n1 . . . sm nm)

where s1, . . . , sm are symbols, and n1, . . . , nm are numbers. Define recur-
sively a predicate (good-list? l) which returns #t if l is a good list,
and #f otherwise. For example:

> (good-list? null) > (good-list? ′(a 1 b 2 c 3/4))

#t #t

> (good-list? "abc") > (good-list? ′(1 a b))

#f #f

Remember that list? recognises lists, null? recognises the empty list,
symbol? recognises symbols, and number? recognises numbers.

HW2 Define recursively a function (symb-value l s) which takes as input a
good list l and a symbol s which occurs in l, and returns the number that
appears immediately after s in l.

For example

> (symb-value ′(x 2 y 3 z 4 t 5) ′z)

4

> (symb-value ′(a 3.14) ′a)

3.14

4



Other recommended exercises:

HW3 Define recursively the predicate (mem l v) which returns #t if v is an
element of the list l, and #f otherwise. Use the predicate equal? to check
if two elements are equal.

For example:

> (mem? ′(1 a b a c) ′a) > (mem? ′(1 a b a c) ′d)

#t #f

> (mem? ′(1 (2 3) 4) ′(2 3)) > (mem? ′() ′())

#t #f

HW4 Define recursively a function (add l) which takes as input a list of num-
bers, and computes the sum of its elements. If l is null, the function
should return 0.

HW5 Define recursively a function (mult l) which takes as input a list of num-
bers, and computes the sum of its elements. If l is null, the function
should return 1.

HW6 A nested list of numbers is either the empty list, or a list whose elements
are either numbers, or nested lists of numbers. Define recursively a predi-
cate (nlist? l) which returns #t if l is a nested list of numbers, and #f

otherwise. For example:

> (nlist? null) > (nlist? ′(((1) 2) 3.2 ((4))))

#t #t

> (nlist? 1) > (nlist? ′(4 ((-5) a)))

#f #f

HW7 Define recursively the following functions that take as input a nested list
of numbers l:

(a) (add-all l) which computes the sum of all elements in list l. If l
contains no number, this function should return 0.

(b) (max-elem l) which returns the maximum number that occurs in
list l. If If l contains no number, this function should return 0.

(c) (max-depth l) which returns the maximum number of nested paren-
theses in list l. For example:

> (max-depth ′()) > (max-depth ′(1 2 3))

1 1

> (max-depth ′((1 2) (3 ((0))))) > (max-depth ′(1 (())))

3 3

You can make use of the predefined function (max m n) which returns the
maximum of numbers m and n.

5


