
PROGRAMMING III
JAVA LANGUAGE

COURSE 5

PREVIOUS COURSE
CONTENT
qCollections

q Utilities classes

q Comparing objects

q Lambda expressions

q Generics
q Wild Cards
q Restrictions

COURSE CONTENT
qCollections

q Streams
q Aggregate operations

q Exceptions

COLLECTIONS
q What is a collection in Java?

q Containers of Objects which by polymorphism can hold
any class that derives from Object

q GENERICS make containers aware of the type of objects
they store
q from Java 1.5

JAVA 8 STREAMS
qWhat are streams?

qStreams are not related to InputStreams, OutputStreams, etc.

qStreams are NOT data structures but are wrappers around Collection
that carry values from a source through a pipeline of operations.

qStream represents a sequence of objects from a source, which
supports aggregate operations

JAVA 8 STREAMS
qStreams characteristics

qSequence of elements − A stream provides a set of elements of specific type
in a sequential manner. A stream gets/computes elements on demand. It
never stores the elements.

qSource − Stream takes Collections, Arrays, or I/O resources as input source.

qAggregate operations − Stream supports aggregate operations like filter, map,
limit, reduce, find, match, and so on.

qPipelining − Most of the stream operations return stream itself so that their
result can be pipelined. These operations are called intermediate operations
and their function is to take input, process them, and return output to the
target. collect() method is a terminal operation which is normally present
at the end of the pipelining operation to mark the end of the stream.

qAutomatic iterations − Stream operations do the iterations internally over the
source elements provided, in contrast to Collections where explicit iteration is
required.

STREAMS
qStream types

qstream() − Returns a sequential stream considering collection as its source.

qparallelStream() − Returns a parallel Stream considering collection as its
source.

Example
List<String> strings =

Arrays.asList("abc", "", "bc", "efg", "abcd","",
"jkl");

List<String> filtered =
strings.stream()

.filter(string -> !string.isEmpty())

.collect(Collectors.toList());

CREATING STREAMS
qFrom individual values
q Stream.of(val1, val2, …)

qFrom array
q Stream.of(someArray)
q Arrays.stream(someArray)

qFrom List (and other Collections)
qsomeList.stream()
qsomeOtherCollection.stream()

CREATING STREAMS
qStream.builder()

Stream<String> streamBuilder =Stream.<String>builder()

.add("a").add("b").add("c")

.build();

q Stream.generate()

Stream<String> streamGenerated =

Stream.generate(() -> "element").limit(10);

qStream.iterate()

Stream<Integer> streamIterated =

Stream.iterate(40, n -> n + 2).limit(20);

CREATING STREAMS
qStream of Primitives
IntStream intStream = IntStream.range(1, 3);

LongStream longStream = LongStream.rangeClosed(1, 3);

Random random = new Random();

DoubleStream doubleStream = random.doubles(3);

qStream of String
IntStream streamOfChars = "abc".chars()

Stream<String> streamOfString =

Pattern.compile(", ").splitAsStream("a, b, c");

STREAM PIPELINE
qPerform a sequence of operations over the elements of the data
source and aggregate their results

qParts

qsource
qintermediate operation(s)

q return a new modified stream
q can be chained

qterminal operation
qOnly one terminal operation can be used per stream.
qThe result of a interrogation
qExample

qPredefined operation: count(), max(), min(), sum()

STREAM PIPELINE
Example
List<String>strings =

Arrays.asList("abc", "", "bc", "efg",

"abcd","", "jkl");

//get count of empty string

int count = strings.stream()

.filter(string -> string.isEmpty())

.count();

ORDER OF THE
OPERATIONS
List<String> list = Arrays.asList("one", "two", "three", "four");

long size = list.stream().map(element -> {

System.out.println("Call map method");

return element.substring(0, 3);

}).skip(2).count();

System.out.println("size" + size);

size = list.stream().skip(2).map(element -> {

System.out.println("Call map method");

return element.substring(0, 3);

}).count();

System.out.println("size" + size);

What is the result
of the following

code?

ADVANCED
OPERATIONS
qcollect

q transform the
elements of the
stream into a
different kind of
result

qreduce
qcombines all

elements of the
stream into a
single result

class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
@Override
public String toString() {

return name;
}

}
List<Person> persons =

Arrays.asList(new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));

ADVANCED OPERATIONS.
COLLECT
List<Person> filtered = persons .stream()

.filter(p -> p.name.startsWith("P"))

.collect(Collectors.toList());

System.out.println(filtered);

Map<Integer, List<Person>> personsByAge = persons .stream()

.collect(Collectors.groupingBy(p -> p.age));

personsByAge .forEach((age, p) -> System.out.format("age %s: %s\n", age, p));

Double averageAge = persons .stream()

.collect(Collectors.averagingInt(p -> p.age));

System.out.println(averageAge);

IntSummaryStatistics ageSummary = persons .stream()

.collect(Collectors.summarizingInt(p -> p.age));

System.out.println(ageSummary);

collect

reduce

ADVANCED OPERATIONS.
COLLECT
Exercise

Transform the following collect operation from collection Map<Integer, List<Person> to
collecting for each different age the number of persons having that age

Map<Integer, List<Person>> personsByAge = persons .stream()

.collect(Collectors.groupingBy(p -> p.age));

personsByAge .forEach((age, p) ->

System.out.format("age %s: %s\n", age, p));

Solution

Map<Integer, Long> personsByAge = persons .stream()

.collect(Collectors.groupingBy(p -> p.age, Collectors.counting()));

personsByAge .forEach((age, nr) ->

System.out.format("age %s: %s\n", age, nr));

ADVANCED
OPERATIONS. REDUCE
qfind the oldest person
persons
.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println);

qdetermine the sum of ages from all persons
Integer ageSum = persons

.stream()

.reduce(0, (sum, p) -> sum += p.age,
(sum1, sum2) -> sum1 + sum2);

System.out.println(ageSum);

EXAMPLE
Person result = persons.

.stream()

.filter(x -> "michael".equals(x.getName()))

. findAny()

.orElse(null);

Person result = persons

.stream()

.filter(x -> { if("michael".equals(x.getName()) &&

21==x.getAge()){ return true; } return false; })

.findAny()

.orElse(null);

ERRORS
q What are errors?

q The state or condition of being wrong in conduct or
judgement

q A measure of the estimated difference between the
observed or calculated value of a quantity and its true
value

ERRORS
q Errors Types

q Syntax errors
q Arise because the rules of the language have not been

followed. They are detected by the compiler.

q Runtime errors
q Occur while the program is running if the environment

detects an operation that is impossible to carry out.

q Logic errors
q Occur when a program doesn’t perform the way it was

intended to.

EXCEPTIONS
q What is an exception

q A situation leading to an impossibility of finishing an operation

q How to handle an exception
q Provide mechanism that allows communication between the

method that is detecting an exceptional condition, while is
performing an operation, and the functions/objects/modules
that are clients of that method and wish to handle dynamically
the situation

q Exception handling systems
q Allows user to signal exceptions and associate handlers (set

system into a coherent state) to entities

JAVA EXCEPTIONS
q Java exception

q Is an object that describes an error condition occurred in the code

q What happens when a exception occurs
q An object representing that exception is created and thrown in

the method that caused the exception.
q That method may choose to handle the exception itself, or pass it

on.
q Exceptions break the normal flow of control. When an exception

occurs, the statement that would normally execute next is not
executed.

q At some point, the exception should be caught and processed.

THROWING
EXCETIONS
q Use the throw statement to throw an exception object

q Example
public class BankAccount {

public void withdraw(double amout) {

if (amount > balance) {

IllegalArgumentException ex

= new IllegalArgumentException (

Amount exceeds balance”);

throw ex;

}

balance = balance – amount;

}

}

THROWING
EXCETIONS
q When an exception is thrown, the current method

terminates immediately.

q Recommendations
q Throw exceptions only in exceptional cases.

q Do not abuse of exception throwing
q Don’t use exception just to exit a deeply nested loop or a

set of recursive method calls.

TREATING
EXECEPTIONS
q Every exception should be handled

q If an exception has no handler
q An error message is printed, and the program terminates.

q A method that is ready to handle a particular exception
type
q Contains the statements that can cause the exception

inside a try block, and the handler inside a catch clause

TREATING
EXECEPTIONS
q Example

try {
System.out.println(“What is your name?”);
String name = console.readLine();
System.out.println(“Hello. “ + name + “!”);

} catch(IOException ex){
// should handle exception
ex.printStackTrace();
System.exit(1);

}

Display the call stack for

the method that throwed

the exception

Interrupts the program

EXCEPTIONS FLOW

q What happens instead depends on

q Whether the exception is caught

q Where it is caught

q What statements are executed in the ‘catch block’

q Whether you have a ‘finally block’

EXCEPTIONS
HIERACHY
q Java organizes exceptions in inheritance tree

q Throwable
q Superclass for all exceptions

q Error
q Are usually thrown for more serious problems, such as

OutOfMemoryError, that may not be so easy to handle
q Exception

q RuntimeException
q TooManyListenersException
q IOException
q AWTException

q Remark
q The code you write should throw only exceptions, not errors.
q Errors are usually thrown by the methods of the Java API, or by

the Java virtual machine itself.

EXCEPTIONS
HIERACHY

EXCEPTIONS
HIERACHY
q Exceptions Type

q Unchecked exceptions
q Error and RuntimeException
q Are not checked by the compiler, and hence, need not be

caught or declared to be thrown in your program

q Checked exceptions
q They are checked by the compiler and must be caught or

declared to be thrown

CATCHING AN
EXCEPTION
qSynatax

try {
// statement that could throw an exception

} catch (<exception type> e) {
// statements that handle the exception

} catch (<exception type> e) {
// higher in hierarchy
// statements that handle the exception

} finally {
// release resources

}

q At most one catch block executes

q finally block always executes once, whether there’s an error or not

CATCHING AN
EXCEPTION
q When an exception occurs, the nested try/catch statements are

searched for a catch parameter matching the exception class

q A parameter is said to match the exception if it
q is the same class as the exception;
q is a superclass of the exception;
q if the parameter is an interface, the exception class implements the

interface.

q The first try/catch statement that has a parameter that matches
the exception has its catch statement executed.

q After the catch statement executes, execution resumes with the
finally statement, then the statements after the try/catch
statement.

CATCHING AN
EXCEPTION
q Catching more than one type of exception with one exception

handler
q from Java 1.7

q single catch block can handle more than one type of exception

q separate each exception type with a vertical bar (|)

q Useful
q same behavior for multiple catch

q Example
catch (IOException | SQLException ex) {

logger.log(ex);
throw ex;

}

THROWING
EXCEPTIONS
q Syntax

q from method body
q throw new Exceprion()

q method prototype
q throws Exception1, Exception2, ..., ExceptionN

q If a method body throws an exception and is not threated in the body
the thrown exception has to be added at method prototype

q Example
public void foo(int i)

throws IOException, RuntimeException {
if (i == 1) throw new IOException();
if (i == 2) throw new RuntimeException();
System.out.println(“No exeception is thrown”);

}

TRY-WITH-RESOURCES
STATEMENT
q try statement that declares one or more resources

q A resource is an object that must be closed after the
program is finished with it.
q Any object that implements

java.lang.AutoCloseable, which includes all objects
which implement java.io.Closeable

q Syntax
try (/*Resourse declaration and
initialization*/){

//resource utilization

} catch(Exception e) { .. }

TRY-WITH-RESOURCES
STATEMENT
q Example

q before java 1.7
static String readFirstLineFromFileWithFinallyBlock(String
path) throws IOException {

BufferedReader br = new BufferedReader(
new FileReader(path));

try {
return br.readLine();

} finally {
if (br != null) br.close();

}
}

q java 1.7
static String readFirstLineFromFile(String path) throws
IOException {

try (BufferedReader br =
new BufferedReader(new FileReader(path))) {

return br.readLine();
}

}

The resource is closed

automatically does not have to

be closed manually

CUSTOM EXCEPTION
CLASS
q For example if we want to withdraw mony from an accout

public class BankAccount {

public void withdraw(double amout) {

if (amount > balance){

IllegalArgumentException ex

= new IllegalArgumentException (

Amount exceeds balance”);

throw ex;

} balance = balance – amount;

}

}

q What if we would like to throw a more specific error for the application?

CUSTOM EXCEPTION
CLASS
q How define a custom exception class

q Define a class that extends Exception
q Add constructors

q default
q one parameter: the error message
q two parameters: the error message, an another Exception

q Add other elements that help to explain better the exception

q Example
public class MyException extends Exception{

public MyException(){super();}
public MyException(String msg){super(msg);}
public MyException(String msg, Exception e){

super(msg,e);
}

}

CUSTOM EXCEPTION
CLASS
q When to create custom exception classes?

q Use exception classes offered by API whenever possible

q Write your exception class if
q You need an exception type that is not represented by those

in Java platform

q It helps users if they could differentiate your exceptions from
those thrown by classes written by other vendors

q You want to pass more than just a string to the exception
handler

INFORMATION ABOUT
THROWN EXCEPTIONS
q getMessage()

q Returns the detail message string of this throwable.

q printStackTrace()

q Prints this throwable and its stacktrace to the standard error
stream.

q printStackTrace(PrintStream s)

q Prints this throwable and its stacktrace to the specified print
stream.

q printStackTrace(PrintWriter s)

q Prints this throwable and its stacktrace to the specified print
writer.

INFORMATION ABOUT
THROWN EXCEPTIONS
Example

public class BankDemo {

public static void main(String [] args) {
CheckingAccount c = new CheckingAccount(101);
System.out.println("Depositing $500...");

c.deposit(500.00);
try {

System.out.println("\nWithdrawing $100..."); c.withdraw(100.00);

System.out.println("\nWithdrawing $600..."); c.withdraw(600.00);
} catch (InsufficientFundsException e) {

System.out.println("Sorry, but you are short $" + e.getAmount());
e.printStackTrace();

}

}
}

Output
Depositing $500...
Withdrawing $100...
Withdrawing $600...
Sorry, but you are short $200.0
InsufficientFundsException

at CheckingAccount.withdraw(CheckingAccount.java:25)
at BankDemo.main(BankDemo.java:13)

Error stack

ASSERTIONS
q An assertion is a Boolean expression that is placed at a point in

code where is expect something to be true

q Syntax
q assert boolean_expression;
q assert boolean_expression: error_message;

q Behaviour
q If assertions are disabled, Java skips the assertion and goes on in

the code.
q If assertions are enabled and the boolean expression is true , then

the assertion has been validated and nothing happens. The program
continues to execute in its normal manner.

q If assertions are enabled and the boolean expression is false, then
the assertion is invalid and a java.lang.AssertionError is
thrown.

ENABLING
ASSERTIONS
q Enabling Assertions

q java -enableassertions MyClass
q java -ea MyClass

q Example
public class TestSeasons {
public static void test(Seasons s) {
switch (s) {
case SPRING:
case FALL:
System.out.println("Shorter hours");
break;

case SUMMER:
System.out.println("Longer hours");
break;

default:
assert false: "Invalid season";

}}}

ASSERTIONS.
REMARKS
q Do not use assertions to check for valid arguments

passed in to a method. Use an
IllegalArgumentException instead

q Because assertions can, should, and probably will be
turned off in a production environment, your assertions
should not contain any business logic that affects the
outcome of your code.

q The following assertion is not a good design because it
alters the value of a variable:

int x = 10;
assert ++x > 10; // Not a good design!

NEXT COURSE
PRESENTATION
q 1 Student

q 0.5 points bonus points at final exam
q Presentation for next course (when the course start)

regarding
q Exceptions and lambda functions
q Exceptions and streams

q The presentation must be sent by email to me until
Saturday for initial review

q Express your intention now

