
PROGRAMMING III

JAVA LANGUAGE

COURSE 1

COURSE CONTENT
q OOP Concepts. Java Language

q Classes

q Comparing objects in Java

q Collections. Generics

q Graphical Interfaces. Swing
q Java IO

q JDBC - Java Database Connectivity & JPA – Java Persistence
API

q Threads

INFORMATIONS
RELATED TO COURSE
q Course

q Flavia Micota
q cab. 046B
q contact: flavia.micota@e-uvt.ro
q Site: http://staff.fmi.uvt.ro/~flavia.micota

q Laboratory
q Flavia Micota
q Adrian Spătaru
q Raul Urecheatu

q Consultation timetable
q Thursday & Friday

http://staff.fmi.uvt.ro/~flavia.micota

COURSE 1. CONTENT
q Object Oriented Programming

q Java Language History

q Java Program Structure

q Java Language

PROGRAMMING
LANGUAGES
q Imperative (algorithmic) languages

q The program is a sequence of statements
q Uses variables to access memory
q Types

q Procedural Languages
q Object Oriented Languages

q Declarative (non-algorithmic) languages
q The programmer presents the problem, the way to solution it is

included in the language
q Types

q Functional (applicative) languages
q Logic languages

q Other languages

P
R

O
G

R
A

M
M

IN
G

LA

N
G

U
A

G
E

S

PROGRAMMING
PARADICSM
q Unstructured programming

q Procedural programming

q Modular programming

q Data abstractization

q Object oriented programming

q Generic programming (templates)

q Aspected oriented programing (AOP)

OBJECT ORIENTED
LANGUAGE
A language or technique is object-oriented if and only if it
directly supports
[Stroustrup, 1995]:

[1] Abstraction – providing some form of classes and objects

[2] Inheritance – providing the ability to build new
abstractions out of existing ones

[3] Runtime polymorphism – providing some form of runtime
binding.

OBJECT ORIENTED
LANGUAGE
q Objects

q Have a state that reflects by current characteristics and conditions and a
behaviour that describe the action that it cat execute

q Classes
q Groups objects with similar characteristics

q Data Encapsulation
q Hidding object data and behaviour

q Data Abstractization
q A simplification or a model of a compex concept, process or real word

object
q Inheritance

q Is a contract between a class and the outside world
q When a class implements an interface, it promises to provide the

behavior published by that interface
q Polymorphism

q The possibility to offer an interface that has different implementations for
different objects

OBJECT ORIENTED
LANGUAGE
q Objects

q Have a state that reflects by current characteristics and conditions
and a behavior that describe the action that it can execute

q Classes
q Groups objects with similar characteristics

q Data Encapsulation
q Hiding object data and behavior

q Data Abstraction
q A simplification or a model of a complex concept, process or real

word object
q Inheritance

q Is a contract between a class and the outside world
q When a class implements an interface, it promises to provide the

behavior published by that interface
q Polymorphism

q The possibility to offer an interface that has different implementations
for different objects

JAVA PLATFORMS
q J2SE (Standard Edition)

q offers support for creating desktop applications and applets
q Contains the standard set of classes offered by Java

q J2ME (Micro Edition)
q offers support for programming on mobile devices

q J2EE (Enterprise edition)
q Offers support for complex applications on web. It contains

standards for database accessing, servlets, beans, web services,
messages queues ...

q Site
q http://www.oracle.com/technetwork/java/index.html

http://www.oracle.com/technetwork/java/index.html

JAVA LANGUAGE
EVOLUTION

IDE JAVA
q NetBeans

q Eclipse
q https://eclipse.org/

q IntelliJ

q BlueJ
q developed mainly for educational porpuse

JAVA APPLICATIONS
q Stand alone

q Contains main() method

q Compile
q javac fileName.java

q Execution
q java fileName

q Applets
q Inherits Applet or JApplet class

q Compile
q javac fileName.java

q Execution
q create a HTML page that contains tag APPLET

that refers to compiled class
q appletviewer html.page
q Java Web Start

q Servlets
q Inherates class HttpServlet

q Compile
q javac fileName.java

q Execution
q an WAR archive deployed

on a WEB Server

q NOT object of this course

JAVA PROGRAM
STRUCTURE
[package identifier;]

[import class;]

[access specifiers] class/interface ClassName {
//member attributes declaration
// member methods declaration

} If a class is declared to be public it
must be placed in a file with same

name like the class

All code (functions, variable
declarations) is included inside a java

class. It can't exist code outside a
class.

FIRST EXAMPLE
File: Example.java
public class Example {

public satic void main (String args[]) {

System.out.println (“Hello World!”);

}

}

Compile
javac Example.java => Example.class

Execution
java Example

Output
Hello World!

Starting point of a desktop application
in Java.

The signature of the method cannot
be changed

The method println() that belong to
class out displays a text to standard

output

JAVA CODDING
GUIDELINES
q Different standards

q http://www.oracle.com/technetwork/java/codeconventions-
135099.html

q https://google.github.io/styleguide/javaguide.html

q https://www.securecoding.cert.org/confluence/display/java/
Java+Coding+Guidelines

http://www.oracle.com/technetwork/java/codeconventions-135099.html
https://google.github.io/styleguide/javaguide.html
https://www.securecoding.cert.org/confluence/display/java/Java+Coding+Guidelines

JAVA CODDING
GUIDELINES
q Packages

q the prefix of a unique package name is always written in all-lowercase
q Classes

q should be nouns
q in mixed case with the first letter of each internal word capitalized

q Interfaces
q names should be capitalized like class names

q Methods
q should be verbs
q in mixed case with the first letter lowercase, with the first letter of each

internal word capitalized
q Variables

q should not start with '_'
q the name starts with lower case
q each word starts with upper case

q Constants
q should be uppercase with words separated by underscores ('_')

JAVA KEYWORDS
Category Keyword Example
Primitive Types boolean boolean isopen = true;

byte byte i1 = -128;

char char c ='A';

short short i =10;

int int i = 10;

long long i = 7l;
long j = 1234567567;

float float i =3.4f;

double double i = 3.4;

JAVA KEYWORDS
Category Keyword Example
Control Flow for for(int i=0; i<10; i++){

...}

do while do{ ... }while (i<10);

while while (true) { ... }

if if (a<3) { ...
} else if (a>5) { ...
} else { ... }

else

switch swich(i) {
case “abc”: ...

breack;
default:

...
}

case
default

JAVA KEYWORDS
Category Keyword Example
Control flow break break label;

continue continue label;

return return i;

try try{
...
throw new Exception();
...

} catch (Exception e) {
...

} finally {
...

}

throw

catch

finally

throws void fct () throws Exception
{ ... }

JAVA KEYWORDS
Category Keyword Example
Modifier public public int i;

protected protected int i;

private private int i;

static static int i;

final final int i;

abstract abstract void fct() { ... }

synchronized synchronized int funct() { ... }
synchronized (obj) { .. }

native native int funct() { ... }

tansient transient int i;

volatile volatile int i;

JAVA KEYWORDS
Category Keyword Example
Classes class class A { ... }

interface interface A { ... }

extends class A extends B { ... }

implements class A implements B { ... }

package package ro.uvt.p3;

import import java.awt.*;

OBS: Some of the modifiers keywords can be used together with
classes not just with class fields.

JAVA KEYWORDS
Category Keyword Example
Miscellaneous (true) boolean x = true;

(false) boolean x = false;

(null) Object obj = null;

void void fct() { ... }

this this.x = x;

new Object obj = new Object();

super super (“call base classs
constructor”)

instanceof if (a instanceof String)
String s = (String) a;

OPERATORS
Category Operator Description
Simple Assigment = Simple assigment operator
Aritmetic + Additive (also used for String

concatenation)
- Substraction
* Multiplication
/ Division
% Remainder

Unary + Indicates positive value
- Negates a value
++ Increment
-- Decrement
! Logical complement

OPERATORS
Category Operator Description
Equality and Relational == Equal to

!= Not equal to
> Greater then
>= Greater then or equal to
< Less then
<= Less then or equal to

Conditional && Conditional AND
|| Conditional OR
?: Ternary (if - then - else)

OPERATORS
Category Operator Description
Type comparation instanceof Simple assigment operator
Bitwise and Bit Shift ~ Unary bitwise complement

<< Signed left shift
>> Signed right shift
>>> Unsigned right shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

COMMENTS
q Line comment

q //
q Block comment

q /* */
q Java Doc

q class documentation
q methotds documentation

JAVADOC. CLASS
COMMENTS

/**
* <h1>Add Two Numbers!</h1>
* The AddNum program implements an application that
* simply adds two given integer numbers and Prints
* the output on the screen.
* <p>
* Note: Giving proper comments in your program
makes it more
* user friendly and it is assumed as a high quality code. *
* @author Popescu Ion
* @version 1.0
* @since 2016-08-31 */

public class AddNum { ...

}

JAVADOC
q Method comments
q Fields comments

/**
* This method is used to add two integers. This is
* a the simplest form of a class method, just to
* show the usage of various javadoc Tags.
* @param numA This is the first paramter to addNum method
* @param numB This is the second parameter to addNum
method
* @return int This returns sum of numA and numB. */
public int addNum(int numA, int numB) { ... }

/**
* This is the main method which makes use of addNum method.
* @param args Unused.
* @return Nothing.
* @exception IOException On input error.
* @see IOException
*/
public static void main(String args[]) throws
IOException { ... }

JAVAD0C. ANNOTATIONS

@author
@deprecated
@exception
@param
@return
@see
@since
@throws
@version
...

JAVADOC. GENERATING
DOCUMENTATION
q javadoc

q tool that allows generation of HTML pages based on
javadoc annotations

q Example
q run in commned line: javadoc AddNum.java

q result: a structure similar with official Java API
documentation

JAVA UTIL STUFFS
q String class

q Display information on standard output

q Autoboxing

q Math class

q Random numbers generation

STRING CLASS
q java.lang.String

q stores charctes arrays
q inmutable objects

q the objects of the class cannot be modified
q see:

https://docs.oracle.com/javase/tutorial/essential/concurren
cy/ imstrat.html

q Exemple
q String s1 = null; //decleare a null string

object

q String s2 = “Course Java”; //declares and
initialize a string object

IMMUTABLE PATTERN
q Don't provide "setter" methods — methods that modify fields or

objects referred to by fields.
q Make all fields final and private.
q Don't allow subclasses to override methods.

q The simplest way to do this is to declare the class as final.
q A more sophisticated approach is to make the constructor private

and construct instances in factory methods.
q If the instance fields include references to mutable objects, don't

allow those objects to be changed
q Don't provide methods that modify the mutable objects.
q Don't share references to the mutable objects. Never store

references to external, mutable objects passed to the constructor; if
necessary, create copies, and store references to the copies.
Similarly, create copies of your internal mutable objects when
necessary to avoid returning the originals in your method

STRING CLASS
q Methods

q concatenation: “+”
q String s = “Course” + ' ' + “Java.”

q transformatios: toUpperCase(), toLowerCase()
q s.toLowerCase()

q comparations: compareTo(), equals(),
equalsIgnoreCase()

q s.equalsIgnoreCase(“course java.”)

q search a string into a string: contains(),
endsWith(), indexOf(), lastIndexOf()

q operations: split(), replace(), substring()
q size: length()

DISPLAY TO
STANDARD OUTPUT
q non-formated

q System.out.print()
q System.out.print(“without new line at the end”);

q System.out.println()
q System.out.print(“with new line at the end”);

q formated
q System.out.printf([format], [value list])

q System.out.printf("Integer : %d\n",15);
q System.out.printf("String: %s, integer: %d,

float: %.6f", "Hello World",89,9.231435);
q System.out.printf("%-12s%-12s%s\n","Column

1","Column 2","Column3");
q OBS: String can be formatted to be used latter

q String s = String.format("%-12.5f%.20f",
12.23429837482,9.10212023134);

AUTOBOXING
q Concept related to generics (templates in C)
q For each basic type there is a corresponding class

Basic Type Corresponding Class
char Characer
int Integer
float Float
double Double
boolean Boolean
byte Byte
long Long
short Short

AUTOBOXING
q before autoboxing

Integer iObject = Integer.valueOf(3);

int iPrimitive = iObject.intValue() ;

q after Java5
Integer iObject = 3; //autobxing - primitive

to wrapper conversion

int iPrimitive = iObject; //unboxing - object
to primitive conversion

Each class that coresponds to a primitive type contains static methods to
transform String objects to primitive types. ie.
int i = Integer.parseInt(“123”);

MATHEMATIC
OPERATIONS
q java.util.Math
q Static methods and constants

q Math.sqrt()
q Math.abs()
q Math.cons()
q Math.random()

q generates random numbers in [0,1)
q ...
q Math.PI
q Math.E

RANDOM NUMBERS
GENERATION
q Using Math class

q Math.random()
q generates uniform distributed numbers in [0,1)

q Using Random class
q Pakage: java.util.Random
q In order to user Random class create an object of type Random and

call methods to generate random numbers
q Random r = new Random();

q Random class methods
q setSeed(long seed);
q nextInt()

q generates uniform distributed numbers in [0, +2 147 483 647)
(for 32 bytes)

q nextInt(value)
q generates uniform distributed numbers in [0, value)

q nextDouble()
q generates uniform distributed numbers in numbers in [0,1)

q nextBoolean()

NEXT COURSE
q Classes
q Objects
q Object class

q Access control specifiers
q fields
q methods
q classes

