NAME:

Grade:

Start	1	2	3	4	5	6	7	8

Graph Theory

Written examination / D
04 February 2021

1. (0.75 p$)$ Let G be the weighted graph. Mark the edges of G which form a minimum weight spanning tree of G, and indicate its weight.

The total weight of the minimum spanning tree of G is:

2. (1.25p) Consider the following graph. Apply the Dijkstra's algorithm in order to compute the lightest path from s to all the other nodes. Fill in the following table with the final results.

	Node							
	s	a	b	c	d	x	y	t
π								
d								

3. (0.75 p) Draw the tree of which Prüfer sequence is $5,4,3,5,1$?

4. (1.5p) Let G be the weighted graph depicted below. Apply the Warshall algorithm to compute the matrix $W P^{[5]}$ of the lightest paths between any pair of nodes in G.

5. (2p) Consider the following graph. Compute:
(I) the chromatic polynomial $c_{G}(z)$ of G,
(II) what is the chromatic number of G ?
(III) how many 2 -colorings has G?
(IV) how many possibilities are there to color G with 3 colors?

I	$c_{G}(z)=$				
II	(a) 4	(b) 5	(c) 3	(d) 2	
:---					
III					
IV					

6. (0.50 p) Which of the following graphs are eulerian graphs and which ones are not? Indicate a reason for each given answer. For the eulerian graphs (if any) indicate an eulerian circuit.

7. (0.50 p) How many distinct trees there exist with the nodes numbered between 1 and 6 ?
(a) 36
(b) 8
(c) 216
(d) 120
(e) 1296
8. (1.75p) Consider the following flow network G with flow f depicted below:

(a) Indicate the residual network G_{f}.

(b) Is f the maximum flow? If it is not, then indicate an augmenting path in G_{f}.

(c) Determine a maximum flow in the flow network with source s and $\operatorname{sink} t$, and indicate its value.

Start: 1p

