NAME:

Grade:

Start	1	2	3	4	5	6	7	8

Graph Theory

Written examination / D

04 February 2021

1. (0.75p) Let G be the weighted graph. Mark the edges of G which form a minimum weight spanning tree of G, and indicate its weight.

The total weight of the minimum spanning tree of G is:

2. (1.25p) Consider the following graph. Apply the Dijkstra's algorithm in order to compute the lightest path from s to all the other nodes. Fill in the following table with the final results.

	Node							
	s	a	b	c	d	\boldsymbol{x}	y	t
π								
d								
	w[s, , t] =							

3. (0.75p) Draw the tree of which Prüfer sequence is 5,4,3,5,1?

4. (1.5p) Let G be the weighted graph depicted below. Apply the Warshall algorithm to compute the matrix $WP^{[5]}$ of the lightest paths between any pair of nodes in G.

- 5. (2p) Consider the following graph. Compute:
 - (I) the chromatic polynomial $c_G(z)$ of G,
 - (II) what is the chromatic number of G?
 - (III) how many 2-colorings has G?
 - (IV) how many possibilities are there to color G with 3 colors?

Ι	$c_G(z) =$			
II	(a) 4	(b) 5	(c) 3	(d) 2
III				
IV				

6. (0.50p) Which of the following graphs are eulerian graphs and which ones are not? Indicate a reason for each given answer. For the eulerian graphs (if any) indicate an eulerian circuit.

- 7. (0.50p) How many distinct trees there exist with the nodes numbered between 1 and 6?
 - (a) 36
- (b) 8
- (c) 216
- (d) 120
- (e) 1296
- 8. (1.75p) Consider the following flow network G with flow f depicted below:

(a) Indicate the residual network G_f .

(b) Is f the maximum flow? If it is not, then indicate an augmenting path in G_f .

(c) Determine a maximum flow in the flow network with source s and sink t, and indicate its value.