NAME:

Grade:

Start	1	2	3	4	5	6	7	8

Graph Theory

Written examination / A
27 January 2021

1. (0.75 p$)$ Which is the minimum weight spanning tree of the following connected graph? (hint: apply the Kruskal algorithm)

(a) 43
(b) 40
(c) 36
(d) 41
2. (1.5p) Consider the weighted graph. Apply the Warshall algorithm to compute the matrix $W P^{[4]}$ of the lightest paths between any two nodes of G.

3. (1.25p) Consider the following graph. Apply the Dijkstra's algorithm in order to compute the lightest path from s to all the other nodes. Fill in the following table with the final results.

	Node						
	s	a	b	x	c	d	t
π							
d							
$w[s, \quad, t]=$							

4. (1p) Which is the Prüfer sequence of the following tree?

(a) $8,3,4,5,7,6,1,9,10,11,2$
(b) $3,4,5,7,6,1,8,2,10,11$
(c) $8,11,9,6,1,8,8,2,2$
(d) $8,11,9,6,1,8,2,2,8$
5. (1.5p) Find a maximum flow f in the flow network G with s and destination t depicted below. Draw $G+f$ and indicate the value $|f|$ of the maximum flow,

6. (0.5p) How many different trees with 5 nodes, labeled with numbers from 1 to 5 , there exist?
(a) 10
(b) 273
(c) 32
(d) 120
(e) 125
7. $(2 \mathrm{p})$ Consider the graph G.

Compute:
(a) the chromatic polynomial $c_{G}(z)$ of G and
(b) in how many ways can we color G with three colors.
(c) which is the chromatic number of G ?
(d) how many 2-colorings has G?

(a) $c_{G}(z)=$
(b)
(c)
(d)
8. (0.5 p) Let M be the matching made of the edges marked in the graph G depicted below:

(a) Is M maximal? Motivate your answer
(b) Indicate a maximum matching for G

Start: 1p

