Databases 1

Daniel POP

Week 8

Database Design.
Practice

I Agenda

Entity/Relationship modelling

— Entities / Entity Sets
— Attributes
— Relationships

* N-ary relationships

* Weak entity sets

* Mapping E-R diagrams to relational model
— Mapping inheritance

» Case study 1. Geo

 Case study 2. Trains

Database Design

Understand the real-world domain being modelled

Specify it using a database design model
— More intuitive and convenient for schema design
— But not necessarily implemented by DBMS

— A few popular ones: Entity/Relationship (E-R) model, Object
Definition Language (ODL), UML (Unified Modeling Language)

 Translate specification to the data model of DBMS
— Relational, XML, object-oriented, etc.
* Create DBMS schema

I Multiple graphical languages

ER diagram Object diagram using
notation the Blaha and Premerlani
variations of UML notation
[BRJG8, BIPrasa]

entity, ClassMName Employee
attribute Employee attribute emp-id: string
{no operation} emp-name: string

i jab-class: integer
operation change-job-class
change-name

job-class

{a) Entity with attributes

is—-managed-

by

Department Employee Department/()———Employee

(b) One-to-one

o 1 i has
Division @ 0 Department Division 4.|Department

{c) One-to-many, many side optional

1 1'5--:lcbcupied-
Office —O NEleugee Office O#.Fmpmgee

(d) One-to-many, one side optional

M N works-on
Employee—O O— Project Empiloyee [@—@|Project

{e) Many-to-many

qroup-leader

Employee Employee

®

(f) Recursive binary

relationship group-leader -

Conceptual modelling

Conceptual modelling (conceptual database design) is
the process of constructing a model of the information
use in an enterprise

Model is independent of implementation details, such
as the target DBMS, application programs,
programming languages, or any other physical
considerations.

This model is called a conceptual data model.

Conceptual models may also be referred to as logical
models in the literature.

The conceptual model is independent of all
implementation details, whereas the logical model
assumes knowledge of the underlying data model of
the target DBMS.

I Entity-relationship (E-R) model

Historically and still very popular
— Peter Chan 1976

Graphical language
Can think of as a “watered-down” object-oriented design model
Primarily a desigh model—not directly implemented by DBMS

Designs represented by E-R diagrams

— We use the style of E-R diagram covered by GMUW; there are other
styles/extensions

— Very similar to UML diagrams

— Crow’s Foot notation - Gordon Everest 1976 / Barker’s notation
* Relationships need to be represented as tables/relations

I E-R basics
< Entity: a “thing,” like an object

+ Entity set: a collection of things of the same type, like a
relation of tuples or a class of objects

" Represented as a rectangle

“ Relationship: an association among entities

< Relationship set: a set of relationships of the same type
(among same entity sets) <

" Represented as a diamond

“ Attributes: properties of entities or relationships, like

attributes of tuples or objects

" Represented as ovals

I Entity sets. Attributes

Entity Set has a name and a set of attributes

An attribute has a name and a domain

— data type (e.g., INT, VARCHAR)
— constraints (e.g., allows, or not, NULL value)

I Running example

< Students enroll 1n courses

Students

nanie

Courses

2+ A key of an entity set is represented by underlining

all attributes in the key

" A key 1s a set of attributes whose values can belong to at

most one entity in an entity set—Ilike a key of a relation

I Relationships with attributes

% Example: students take courses and receive grades

Stude C
— tudents @ ourses \.H

< Where do the grades go?
= With Students?

* But a student can have different grades for multiple courses

» \X/1th Courses?

® But a course can assign different grades for multiple students

m \With Enroll!

i3

I Properties of relationships

Relationships can have attributes

There could be multiple relationships between the
same entity sets. Examples

* (1) Students Enroll to Courses;

* (2) Students are assighed to Teaching Assistant
(TA) per Courses

Properties of relationships
— Degree

— Multiplicity

— Reflexivity

I Properties of relationships

Degree of a relationship = the number of
participating entity sets in the relationship
— Binary relations (degree = 2)

— N-ary relations (N >= 3)

— Example: Enroll is a binary relation because it connects
2 entity sets (Students and Courses);

I Relationships classification

Reflexive relationships: entities of the same
entity set are related to each other

N
1
Employee

Multiplicity of relationships

Multiplicity - The multiplicity applies to the adjacent entity and it is

independent of the multiplicity on the other side of the association. Let E and F
be 2 entities.

One-one: Each entity in E is related to 0 or 1 entity in F and vice versa.

Students Arpy[)Affgynf_f H T

Crow’s Foot notations
Many-one: Each entity in E is related to 0 or 1 entity in F, but each|entity|in F is
related to O or more in E.

Courses LaughtBy [nstructors

Many-many: Each entity in E is related to 0 or more entities in F and vice|versa

Students Courses ’

“One” (0 or 1) is represented by an arrow.
“Exactly one” is represented by a rounded arrow.,

w

I Modelling N-ary relationships

< Example: Each course has multiple TA’s; each
student is assigned to one TA

Students Courses

TA's

< Meaning of an arrow into E: Pick one entity from

each of the other entity sets; together they must be
related to either O or 1 entity in E

I Modelling N-ary relationships

% Can we model z-ary relationships using just binary
relationships?

Students Courses

ssignedTo Assist

TA's

% No; for example:
" Bart takes CPS116 and CPS1 14
" Lisa TA's CPS116 and CPS114
" Bart is assigned to Lisa in CPS116, but not in CPS114

I Modelling N-ary relationships. Exercise

Ca

LECTUOURER TERET
CCCCCC
Fecomitiends
_ -
LECTIUORER TEXET
CCCCCC -
I=
Fecom i ends
B o
LECTUORER TEXET
- | W COURSE
sac =
LECTUORER TEXKT
> | 2 COoURSE -
eac = I
Fecom i ends
_ -
LECTUORER TERT

CCCCCC

Which
decompositions
(b, c, d, e) of
the n-ary
relationship in
(a) hold the
same
constraints as
in (a)?

I Weak Entity Sets

Sometimes, the key of an entity set E

comes not completely from its own attributes,

but from the keys of other (one or more) entity sets
to which E is linked by many-one (or one-one)
relationship sets

» Example: Rooms inside Buildings are partly identified by
Buildings’ name

" E is called a weak entity set
® Denoted by double rectangle C

® The relationship sets through which
E obtains its key are drawn as double diamonds

I Weak Entity Sets. Example

Seats in rooms in buildings

number
Rooms 0 Buildings

capacity N

Seats

\

G

0

number

0

Why must double diamonds be many-one/one-one?

" With many-many, we would not know which entity
provides the key value!

I Modelling N-ary relationships

- An n-ary relationship set can be replaced by a weak

entity set (called a connecting entity set) and #

binary relationship sets

6;

Enroll

Students E@—

Students @ Courses

TA’s

>

Courses

Note that the multiplicity

TA’s

constraint is lost

Example of lost constraints (multiplicity): a (student, course) pair has only one TA assigned

I IS-A (Inheritance) relationships

< Similar to the idea of subclasses in object-oriented

programming: subclass = special case, fewer

entities, and possibly more properties

" Represented as a triangle (direction is important)

< Example: Graduate students are students, but they

also have offices

Courses

N

' GradStudents

Translating E-R Diagram to Relational Model

« An Entity Set directly translates to a table:
« Attributes map to columns,
« Key attributes become candidate keys
« Arelationship translates to.... guess what? a table (of course)
* PK of connected entities become columns (FK)
« Attributes of the relationship become columns
* Choose the PK based on multiplicity of relationship
A Weak Entity Set:
« PK will be a composed PK of the connected entity sets
primary key columns (which become FK)
« Pay attention to name conflicts
* A double-diamond connecting one weak entity set to another
entity - no need to translates since the keys migrate anyway
(example: Seats-Rooms-Buildings)

Translating E-R Diagram to Relational Model.
Examples

 Example:
Students(S1D, Name)
Courses(CID, Title)
Enroll(SID, CID, grade)

 Example:
Buildings(name, year)
Rooms(building_name, number, capacity)
Seats(number, building_name, room_number, L_R)

I Table Diagram. Examples

Students

PK

Studld int NOT NULL

Enroliments

StudMame nvarchar(100) NOT NMULL
DoB DATE

PoB nvarchar(100)

Major char{10) NOT NULL

PK, FK1

PK.FK2

Stuld int NOT NULL

CourseTitle VARCHAR(70) NOT NULL

Courses

PK

CourseTitle VARCHAR(70) NOT NULL

EnrollmentDate date NOT NULL
Accepted BIT

Department VARCHAR(20)

Credits INT MOT NULL

0 to many

I Exercise

 Translate the following diagram into relations. ldentify the
(primary) keys of the relations.

@ Students Enrol Courses

nearne

TA’s

I Exercise

+ Translate the following diagram into relations. ldentify the

(primary) keys of the relations.
Students Enrol Courses /.

TA
|

Students(S1D, Name)
Courses(CID, Title)
TAs(TID, Name)
Enroll(SID, CID, TID)

Table Diagram. Examples

Students Enroliments Courses
PK | Studid int NOT NULL ————0o<| PK, FK1 | Stuld int NOT NULL PK | CourseTitle VARCHAR(70) NOT NULL
StudMame nvarchar(100) NOT NULL PK. FK2 | CourseTitle VARCHAR(T0) NOT HULL>Df Department VARCHAR(30)
DoB DATE EnrolimentDate date NOT NULL Credits INT NOT NULL
PoB nvarchar(100) Accepted BIT
Major char{10) NOT NULL

Students Enrollments Courses
PK | Studld int NOT NULL ———— PK, FK1 | Stuld int NOT NULL PK | CourseTitle VARCHAR{T0) NOT NULL

StudName nvarchar(100) NOT NULL PK. FK2 | CourseTitle VARCHAR(T0) NOT HULL>Df Department VARCHAR(30)
DoB DATE PK, FK3 | TAId INT NOT NULL =0—, Credits INT NOT NULL
PoB nvarchar(100)

EnrollmentDate date MOT NULL
Major char(10) NOT NULL

Accepted BIT

TA
PK | TeachingAssistantld INT NOT NULL —

Mame NVARCHAR(120) NOT MULL

Translating IS-A (Inheritance Mapping)

* Mapped Superclass

« Single Table

« Table per Class

 Joined Table

0 Author
& -final long serialVersionUID
&1 -Long id
&7 -intversion
& - String firstName
&7 - String lastName 0.~
: e“'amhﬂrs__c

(% Publication

O +Long getld(

O +void setld{Long id)

O +int getversiond)

O +hoolean equals(Ohject obj)

o +inthashCode()

O +8tring getFirstNamed

o +void setFirstName(String firstName)
O +8tring getLastNamed

o +void setLastName(String lastName)
© +8String toString

T#Long id

%1 #String title

&1 -intversion

&7 -Set=Author= authors
&1 -Date publishingDate

> Book

&1 -intpages

o +Long getld)

O +void setld{Long id)

O +String getTitled

O +void setTitle(String title)

O +int getVersion()

O +void setversion(int version)

0 +Set=Author= getAuthors()

O +void setAuthors(Set=Author= authors)
0 +Date getPublishingDate()

o +void setPublishingDate(Date publishingDate)

©+String toString)
o +int hashCode()

O +int getPages()
o +void setPages(int pages)
O +boolean equals(Object obj)

i BlogPost

|

&1 - String url

©+String getUrl()
O +void setUrl(String url)

https://thorben-janssen.com/complete-guide-inheritance-strategies-jpa-hibernate/

https://thorben-janssen.com/complete-guide-inheritance-strategies-jpa-hibernate/

I Inheritance Mapping. Mapped Superclass

il bigint epkol (Pid blgmt epky| id bigint

frstname character varying(255) | © publshngdate date publshnadate date

stname character varying(235) | tte character varying(255) | Otte character varying(255)
Verson - integer (my verson — Integer o Cverson integer

1| ENEEE u character varying(25) | “pages integer

* Maps each subclass to its own table (includes attributes from
superclass)

» There is no table for superclass

» Not possible to represent relationships for superclass (base
class), e.g. author-publication relationship

I Inheritance Mapping. Table per class

id bigint « pk »
publshngdate date
tile character varying(255)
version integer

id bigint « pk » b I publicationid bigint « pk »

frstname character varying(255) / ~nk> authorid bigint « pk fx »

lastname character varying(255) rel_publcationauthor_author” ' =
id bigint « pk »
publshngdate date
tle character varying(255)
Verson integer
url character varying(255)

* Maps each subclass to its own relation (includes attributes from

superclass)
« There is no table for superclass
* Maps the relationship Authors-Write-Publications to a relation
* Retrieval of authors-publications details rely on complex and
expensive queries involving UNION

I Inheritance Mapping. Table per class
bk

»id bigint «pk»|
publshngdate date
tile character varying(255)
Verson integer
publicationauthor pages integer
Lid bigint «pkrHib—__ 4 publicationid bigint « pk »
frstname character varying(255) ¢ =+ authorid bigint « pk f »
lastname character varying(255) rd,awwrwthor author =1
= id bigint «pk»|
publshngdate date
tile character varying(255)
VErson integer
oul __ dharacter varying(255) |
SELECT
PA.* P.*
FROM
PublicationAuthor PA
INNER JOIN

(SELECT *, 1 as Type from Book UNION ALL
SELECT *, 2 as Type from BlogPost) P ON PA.publicationld = P.id

WHERE PA.authorld=%¢

I Inheritance Mapping. Joined table

pages integer ‘
nid Dbigint < pk fk »
T bl
vid bigint « pk » —1\0\ publicationid bigint « pk fk » } n} I bigint « pk » Ll)ok_pubicawn
frstname character varying(255) N authorid bigint « pk fi» | > bicatoauthor pub publshngdate date
lastname character varying(255) lbicaaonauthor author! title character varying(255)
version integer «m»| version /nteger b
; ; q
Lot o ST
url character varying(255)

i id bigint «pk fk»

* Maps each subclass to its own relation (does not include
attributes from superclass) + FK to parent’s relation

* Maps the superclass to a relation as well

* Maps the relationships to a relation

* More joins are required as attributes are split between super
class and subclasses

* Queries exhibit a better performance, but still complex

I Inheritance Mapping. Joined table
* BT

pages integer ‘
/n ~id bigint «pk fk»

publicationauthor publication }—J
~id bigint « pk » 1\‘\ = publicationid bigint « pk fk » ‘n bigint « pk » lnk_publ'awn
frstname character varying(255) n== authorid bigint « pkﬂ(romrr—e _pulz pubishngdate date

lastname character varying(255,) Fblzwnaum aithor title character varying(255) \
version integer versnon integer 4
I N
)

\Ourl character varying(255)
\n+ id bigint « pk fk »

SELECT

PA.*, P.id, P.publishingDate, P.title, P.version, B.pages, BP.url
FROM

PublicationAuthor PA

INNER JOIN Publication P ON PA.publicationld = P.id

LEFT OUTER JOIN Book B ON P.id = B.id

LEFT OUTER JOIN BlogPost BP ON P.id = BP.id
WHERE

PA.authorld = ¢

Inheritance Mapping. Single table

. : SQL off
public |
publicationautior
= id bigint «pksHI—___A = publicationid bigint « pk fk » n-—iT_____ A publication_type character varying(31) « nn »
O frstname character varying(255) N ni\ authorid bigint « pkfk»| | V"“--—- I id bigint « pk »
Olastname character varying(255) rel publicationauthor_author rel publcationauthor_publcation’ © publshngdate date
version integer «m») i Otite character varying(255)
| Cversion integer
" pages integer
Ourd character varying(255)

* Maps all entities of the inheritance structure to the same
relation

« Easy to include in relationships; queries have best performance

« Drawbacks: lots of NULLs => data integrity may break

* An additional discriminator column is needed for the type

Inheritance Mapping. Single table

public

whliationautior 1

= id bigint « pk » Ir—__EQ\ = publicationid bigint « pk fk » HW O publcation_type character varying(31) «nn »
O frstname character varying(255) ~——nt"=authorid bigint « pkfk»| | I id bigint « pk »

date

character varying(255)
integer

integer

character varying(255)

QL off

Olastname character varying(255) rel publcationauthor_author rel publcationauthor_publcation’ © publshingdate
O version integer «mm > ' it
Cversion
" pages
Oud
SELECT
PA.*, P.*
FROM
PublicationAuthor PA

INNER JOIN Publication P ON PA.publicationld = P.id
WHERE
PA.authorld = ¢

I Comparison of the four approaches

Mapped Table per Single

class table

superclass

Does the superclass gets
its own table

Attributes are scattered No No No Yes
Entity instances are Yes Yes No Yes
scattered

Polymorphic queries / No Yes Yes Yes

Choosing an approach

If you require the best performance and need to use
relationships, you should choose the single table strategy. But
be aware, that you can’t use not null constraints on subclass
attributes which increase the risk of data inconsistencies.

If data consistency is more important than performance and
you need relationships, the joined strategy is probably your
best option.

If you don’t need relationships, the table per class strategy is
most likely the best fit. It allows you to use constraints to
ensure data consistency and provides an (inefficient) option
to express relationships.

Use Mapped Superclass when the superclass factors out
common properties of otherwise unrelated entities (e.g.
auditing details - createdBy, createdAt, modifiedBy,
modifiedAt, version)

I IS-A (Inheritance) relationships

< Similar to the idea of subclasses in object-oriented

programming: subclass = special case, fewer

entities, and possibly more properties

" Represented as a triangle (direction is important)

< Example: Graduate students are students, but they

also have offices

Courses

N

' GradStudents

I Table Diagram. Examples

Students

PK

Studld int NOT NULL

Enrollments

Courses

StudMame nvarchar(100) NOT NULL
DoB DATE

PoB nvarchar(100)

Major char(10) NOT NULL

PK, FK1
PK. FK2

PK, FK3

Stuld int NOT NULL

CourseTitle VARCHAR(70) NOT NULL

PK

CourseTitle VARCHAR(T0) NOT NULL

TAId INT NOT NULL

StudType TINYINT MOT NULL

Office varchar(20)

EnrolimentDate date NOT NULL

Accepted BIT

Department VARCHAR(20)

Credits INT MOT NULL

with Single table

TA

PK | TeachingAssistantld INT NOT NULL

MName NVARCHAR(120) NOT MULL

I Time for a Quiz

Case study 1

< Design a database representing cities, counties, and states
= For states, record name and capital (city)
" For counties, record name, area, and location (state)

" For cities, record name, population, and location (county and
state)

 Assume the following:
= Names of states are unique
= Names of counties are only unique within a state
= Names of cities are only unique within a county

= A city is always located in a single county

A county is always located in a single state

I Case study 1. First design

M O

oUnNLy name

coun t_)v’ _area

% County area information is repeated for every city in

g

the county
% Redundancy is bad (why?)

“ State capital should really be a city

@ Should “reference” entities through explicit relationships

I Case study 1. Second design

States

I Case study 1. Second design discussion

« Database Schema
States(Name)
Counties(Name, Area, StateName)
Cities(Name, Population, CountyName, StateName)
CapitalOf(CityName, CountyName, StateName)

* Which NF?

 |Is it anomalies free?

Case study 1. Second design discussion

Counties (geo
7 Name

&l Area
A FK_Cities Counties ¥ StateName

7 Name

Population
% CountyName
7 StateName

8

‘ FK_Capitals_Cities

Capitals (geo

CityName
CountyName
¥ StateName

0 to many

This diagram has been exported from Microsoft SQL Server Studio and the
notation differs a bit comparing to E-R symbols.

Case study 1. Third design

« Introduce surrogate PK

* Represent Capital in States

FK_Counties_State ?
Counties _- eoZ Cities (geo?2

% Id
Name
Area
Stateld

Name
Capitalld

States (geo?2
% Id

58

|

FK_States_Cities

FK_Cities_Counties
K00

? Id
Name
Population
Countyld

Cycle in design

This diagram has been exported from Microsoft SQL Server Studio and the
notation differs a bit comparing to E-R symbols.

I Case study 2

Design a database consistent with the following:

" A station has a unique name and an address, and is either

an express station or a local station

" A train has a unique number and an engineer, and is

either an express train or a local train
" A local train can stop at any station
" An express train only stops at express stations

" A train can stop at a station for any number of times

during a day

" Train schedules are the same everyday

I Case study 2. First design

number name

Trains ‘w Stations
E/L? w E/L?

% Nothing in this design prevents express trains from

stopping at local stations

® Should capture as many constraints as possible

% A train can stop at a station only once during a day

& Should not introduce constraints

I Case study 2. Second design

number ‘
Trains Local TrainStops @3 Stations
engineer /{5\ A
/\\IE A)

(LocalTrains LocalStations)

ExpressTrains ExpressStations

4R 7\
é‘ ExpressTrainStops é

)

)

/—

Case study 2. Second design relational
mapping

.
Trains Local TrainStops -@9 Stations

/S\ A address
\) ? A)

\ /

j

Local Trains LocalStations

ExpressTrains ExpressStations

7T @ TS
Train (number, engineer)

LocalTrain (number) Express TrainStops

ExpressTrain (number)

. LocalTrainStop (local train_number, station name, time)
Station (name, address) e —

ExpressTrainStop (express_train_number, express_station_name, time)

LocalStation (name)
ExpressStation (name) Note that keys for Local/ExpressTrainStop

come from assumptions not encoded in the E/R design

I Case study 2. Second design refinement

Train (number, engineer), Local Train (number), ExpressTrain (number)
Station (name, addvess), LocalStation (name), ExpressStation (name)
Local TrainStop (local _train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station _name, lime)

& Eliminate Loca/Train table

" Can be computed as 7 (Train) — ExpressTrain

number

®» Slightly harder to check that local train number is indeed
a local train number

< Eliminate Loca/Station table

" [t can be computed as ., (Station) — ExpressStation

I Case study 2. Third design

Train (number, engineer, type)
Station (name, addyess, type)

TrainStop (train_number, station name, time)

“ Encode the type of train/station as a column rather
than creating subclasses

+ Some constraints are no longer captured
" Type must be either “local” or “express”

" Express trains only stop at express stations

“ Fortunately, they can be expressed/declared explicitly as
database constraints in SQL

= Arguably a better design because it is simpler!

I Practical Desigh Recommendations

Practical Desigh Recommendations

Avoid redundancy

Everything should depend on the entire key and nothing but the
key

Carefully design the keys => BIG impact on performance, hence
use integer type, introduce surrogates if necessary; capture
natural keys as unique constraints

Capture essential constraints; don’t introduce unnecessary ones
Manage indexes

Choose data types carefully

Code style

I Data types in selected DBMS

Data type Access SQLServer Oracle MySQL PostgreSQL

boolean Yes/No Bit Byte N/A Boolean

integer Number (integer) Int Number Int Int

Integer Integer

float Number (single) Float Number Float Numeric
Real

currency Currency Money N/A N/A Money

string (fixed) N/A Char Char Char Char

string (variable) Text (<256) Varchar Varchar Varchar Varchar

Memo (65k+) Varchar2

binary object OLE Object Memo Binary (fixed up to Long Blob Binary

8K) Raw Text Varbinary

Varbinary (<8K)
Image (<2GB)

Note: Data types might have different names in different database. And even if the name is the same, the
size and other details may be different! Always check the documentation!

SQL Data Types

Exact numerics

e BIGINT/INT/SMALLINT/TINYINT/
BIT

« SMALLMONY/MONEY - precision

« DECIMAL/NUMERIC(p, s) -
fractions

Approximate numerics - floating
point numeric data

 FLOAT/REAL

Character strings
 CHAR(n)/VARCHAR(n)/TEXT -
ASCII characters
(VAR = variable-size)

« Collation controls the code page
that is used to store the
character data

« n defines the string length
in bytes not the number of
characters

Character strings
« National character strings
* NCHAR(n)/NVARCHAR(n)/NTEX
T - for everything else
* n defines the string length
in byte-pairs not the number
of characters
Date and tine
« DATE, TIME, TIMESTAMP
Binary strings
« BINARY/VARBINARY/IMAGE
Other data types
« UNIQUEIDENTIFIER - 16-byte
GUID, replication, hide next
key, performance
« XML - subset of XQuery
language
« Spatial geometry/geography
types

I Code Conventions

- Avoid using reserved words for naming tables, fields, constraints (even
variables

- Use schema to group the tables and stored procedures of a specific part of the

application (e.g. instead of using [dbo].[SalesCustomer], use
[Sales].[Customer])

- Table names

* use singular nouns (e.g. use employee instead of employees)
* use a single word that describes the table (if it is possible)
- Field names
 do not use a table name into field names
- keep them as short as possible
- Constraints (PK / FK / etc)

- preferably use id to name a single Primary Key or a word to describe its
unicity

- use the name of the tables in a Foreing Key name
(FK_<TargetTable>_<SourceTable>)

» the name of a composite FK should contain all keys

I Blbllography (recommended)

THO OLLY » CAROLYN

DATABASE
S LS MY

A Practical Approach to Design,
Implementation, and Management

I
?.

e ®

- .
= FOURTH EDITIONV 2

Teoria generala a Database Systems A

Practical Approach to

bazelor de date, Design, Implementation,

l. Despi, G. and Management (4t
Petrov, R. Reisz, edition) by Thomas

A. Stepan, Connolly and Carolyn
Mirton, 2000 Begg, Addison-Wesley,

Can 3 2004
=ap > Chapter 11, 12

References

» Mapping inheritance to Relational Model
* https://www.thoughts-on-java.org/complete-guide-inheritance-
strategies-jpa-hibernate/

» SQL Coding Style & Best Practices
» https://www.red-gate.com/simple-talk/sql/t-sql-programming/sql-
code-smells/
o https://www.red-gate.com/simple-talk/sgl/t-sgl-programming/basics-
good-t-sgl-coding-style/

https://www.thoughts-on-java.org/complete-guide-inheritance-strategies-jpa-hibernate/
https://www.red-gate.com/simple-talk/sql/t-sql-programming/sql-code-smells/
https://www.red-gate.com/simple-talk/sql/t-sql-programming/basics-good-t-sql-coding-style/

