
Databases 1

Daniel POP

Week 8

Database Design.

Practice

Agenda

• Entity/Relationship modelling

– Entities / Entity Sets

– Attributes

– Relationships

• N-ary relationships

• Weak entity sets

• Mapping E-R diagrams to relational model

– Mapping inheritance

• Case study 1. Geo

• Case study 2. Trains

Database Design

• Understand the real-world domain being modelled

• Specify it using a database design model

– More intuitive and convenient for schema design

– But not necessarily implemented by DBMS

– A few popular ones: Entity/Relationship (E-R) model, Object

Definition Language (ODL), UML (Unified Modeling Language)

• Translate specification to the data model of DBMS

– Relational, XML, object-oriented, etc.

• Create DBMS schema

Multiple graphical languages

Conceptual modelling

• Conceptual modelling (conceptual database design) is
the process of constructing a model of the information
use in an enterprise

• Model is independent of implementation details, such
as the target DBMS, application programs,
programming languages, or any other physical
considerations.

• This model is called a conceptual data model.

• Conceptual models may also be referred to as logical
models in the literature.

• The conceptual model is independent of all
implementation details, whereas the logical model
assumes knowledge of the underlying data model of
the target DBMS.

Entity-relationship (E-R) model

• Historically and still very popular

– Peter Chan 1976

• Graphical language

• Can think of as a “watered-down” object-oriented design model

• Primarily a design model—not directly implemented by DBMS

• Designs represented by E-R diagrams

– We use the style of E-R diagram covered by GMUW; there are other

styles/extensions

– Very similar to UML diagrams

– Crow’s Foot notation – Gordon Everest 1976 / Barker’s notation

• Relationships need to be represented as tables/relations

E-R basics

Entity sets. Attributes

• Entity Set has a name and a set of attributes

• An attribute has a name and a domain

– data type (e.g., INT, VARCHAR)

– constraints (e.g., allows, or not, NULL value)

Running example

Relationships with attributes

Properties of relationships

• Relationships can have attributes

• There could be multiple relationships between the

same entity sets. Examples

•(1) Students Enroll to Courses;

•(2) Students are assigned to Teaching Assistant

(TA) per Courses

• Properties of relationships

– Degree

– Multiplicity

– Reflexivity

Properties of relationships

• Degree of a relationship = the number of

participating entity sets in the relationship

– Binary relations (degree = 2)

– N-ary relations (N >= 3)

– Example: Enroll is a binary relation because it connects

2 entity sets (Students and Courses);

Relationships classification

Reflexive relationships: entities of the same

entity set are related to each other

Multiplicity of relationships
Multiplicity - The multiplicity applies to the adjacent entity and it is

independent of the multiplicity on the other side of the association. Let E and F

be 2 entities.

One-one: Each entity in E is related to 0 or 1 entity in F and vice versa.

Many-one: Each entity in E is related to 0 or 1 entity in F, but each entity in F is

related to 0 or more in E.

Many-many: Each entity in E is related to 0 or more entities in F and vice versa

“One” (0 or 1) is represented by an arrow.

“Exactly one” is represented by a rounded arrow.,

Crow’s Foot notations

Modelling N-ary relationships

Modelling N-ary relationships

Modelling N-ary relationships. Exercise
Which

decompositions

(b, c, d, e) of

the n-ary

relationship in

(a) hold the

same

constraints as

in (a)?

Weak Entity Sets

Weak Entity Sets. Example

Modelling N-ary relationships

Example of lost constraints (multiplicity): a (student, course) pair has only one TA assigned

IS-A (Inheritance) relationships

Translating E-R Diagram to Relational Model

• An Entity Set directly translates to a table:

• Attributes map to columns,

• Key attributes become candidate keys

• A relationship translates to…. guess what? ….. a table (of course)

• PK of connected entities become columns (FK)

• Attributes of the relationship become columns

• Choose the PK based on multiplicity of relationship

• A Weak Entity Set:

• PK will be a composed PK of the connected entity sets

primary key columns (which become FK)

• Pay attention to name conflicts

• A double-diamond connecting one weak entity set to another

entity – no need to translates since the keys migrate anyway

(example: Seats-Rooms-Buildings)

Translating E-R Diagram to Relational Model.
Examples

• Example:

Students(SID, Name)

Courses(CID, Title)

Enroll(SID, CID, grade)

• Example:

Buildings(name, year)

Rooms(building_name, number, capacity)

Seats(number, building_name, room_number, L_R)

Table Diagram. Examples

0 to many

Exercise

• Translate the following diagram into relations. Identify the

(primary) keys of the relations.

Exercise

• Translate the following diagram into relations. Identify the

(primary) keys of the relations.

Students(SID, Name)

Courses(CID, Title)

TAs(TID, Name)

Enroll(SID, CID, TID)

Table Diagram. Examples

Translating IS-A (Inheritance Mapping)

• Mapped Superclass

• Single Table

• Table per Class

• Joined Table

https://thorben-janssen.com/complete-guide-inheritance-strategies-jpa-hibernate/

https://thorben-janssen.com/complete-guide-inheritance-strategies-jpa-hibernate/

Inheritance Mapping. Mapped Superclass

• Maps each subclass to its own table (includes attributes from

superclass)

• There is no table for superclass

• Not possible to represent relationships for superclass (base

class), e.g. author-publication relationship

Inheritance Mapping. Table per class

• Maps each subclass to its own relation (includes attributes from

superclass)

• There is no table for superclass

• Maps the relationship Authors-Write-Publications to a relation

• Retrieval of authors-publications details rely on complex and

expensive queries involving UNION

Inheritance Mapping. Table per class

SELECT

PA.*, P.*

FROM

PublicationAuthor PA

INNER JOIN

(SELECT *, 1 as Type from Book UNION ALL

SELECT *, 2 as Type from BlogPost) P ON PA.publicationId = P.id

WHERE PA.authorId=?

Inheritance Mapping. Joined table

• Maps each subclass to its own relation (does not include

attributes from superclass) + FK to parent’s relation

• Maps the superclass to a relation as well

• Maps the relationships to a relation

• More joins are required as attributes are split between super

class and subclasses

• Queries exhibit a better performance, but still complex

Inheritance Mapping. Joined table

SELECT

PA.*, P.id, P.publishingDate, P.title, P.version, B.pages, BP.url

FROM

PublicationAuthor PA

INNER JOIN Publication P ON PA.publicationId = P.id
LEFT OUTER JOIN Book B ON P.id = B.id

LEFT OUTER JOIN BlogPost BP ON P.id = BP.id

WHERE

PA.authorId = ?

Inheritance Mapping. Single table

• Maps all entities of the inheritance structure to the same

relation

• Easy to include in relationships; queries have best performance

• Drawbacks: lots of NULLs => data integrity may break

• An additional discriminator column is needed for the type

Inheritance Mapping. Single table

SELECT

PA.*, P.*

FROM

PublicationAuthor PA

INNER JOIN Publication P ON PA.publicationId = P.id

WHERE

PA.authorId = ?

Comparison of the four approaches

Mapped

superclass

Table per

class

Single

table

Joined

Attributes are scattered No No No Yes

Entity instances are

scattered

Yes Yes No Yes

Polymorphic queries /

Does the superclass gets

its own table

No Yes Yes Yes

Choosing an approach

• If you require the best performance and need to use

relationships, you should choose the single table strategy. But

be aware, that you can’t use not null constraints on subclass

attributes which increase the risk of data inconsistencies.

• If data consistency is more important than performance and

you need relationships, the joined strategy is probably your

best option.

• If you don’t need relationships, the table per class strategy is

most likely the best fit. It allows you to use constraints to

ensure data consistency and provides an (inefficient) option

to express relationships.

• Use Mapped Superclass when the superclass factors out

common properties of otherwise unrelated entities (e.g.

auditing details – createdBy, createdAt, modifiedBy,

modifiedAt, version)

IS-A (Inheritance) relationships

Table Diagram. Examples

with Single table

Time for a Quiz

Case study 1

Case study 1. First design

Case study 1. Second design

Case study 1. Second design discussion

• Database Schema

States(Name)

Counties(Name, Area, StateName)

Cities(Name, Population, CountyName, StateName)

CapitalOf(CityName, CountyName, StateName)

• Which NF?

• Is it anomalies free?

Case study 1. Second design discussion

0 to many

This diagram has been exported from Microsoft SQL Server Studio and the

notation differs a bit comparing to E-R symbols.

Case study 1. Third design

• Introduce surrogate PK

• Represent Capital in States

This diagram has been exported from Microsoft SQL Server Studio and the

notation differs a bit comparing to E-R symbols.

Cycle in design

Case study 2

Case study 2. First design

Case study 2. Second design

Case study 2. Second design relational
mapping

Case study 2. Second design refinement

Case study 2. Third design

Practical Design Recommendations

Practical Design Recommendations
• Avoid redundancy

• Everything should depend on the entire key and nothing but the

key

• Carefully design the keys => BIG impact on performance, hence

use integer type, introduce surrogates if necessary; capture

natural keys as unique constraints

• Capture essential constraints; don’t introduce unnecessary ones

• Manage indexes

• Choose data types carefully

• Code style

Data types in selected DBMS

SQL Data Types

• Exact numerics

• BIGINT/INT/SMALLINT/TINYINT/

BIT

• SMALLMONY/MONEY - precision

• DECIMAL/NUMERIC(p, s) -

fractions

• Approximate numerics – floating

point numeric data

• FLOAT/REAL

• Character strings

• CHAR(n)/VARCHAR(n)/TEXT –

ASCII characters

(VAR = variable-size)

• Collation controls the code page

that is used to store the

character data

• n defines the string length

in bytes not the number of

characters

• Character strings

• National character strings

• NCHAR(n)/NVARCHAR(n)/NTEX

T - for everything else

• n defines the string length

in byte-pairs not the number

of characters

• Date and tine

• DATE, TIME, TIMESTAMP

• Binary strings

• BINARY/VARBINARY/IMAGE

• Other data types

• UNIQUEIDENTIFIER – 16-byte

GUID, replication, hide next

key, performance

• XML – subset of XQuery

language

• Spatial geometry/geography

types

• Avoid using reserved words for naming tables, fields, constraints (even

variables

• Use schema to group the tables and stored procedures of a specific part of the

application (e.g. instead of using [dbo].[SalesCustomer], use

[Sales].[Customer])

• Table names

• use singular nouns (e.g. use employee instead of employees)

• use a single word that describes the table (if it is possible)

• Field names

• do not use a table name into field names

• keep them as short as possible

• Constraints (PK / FK / etc)

• preferably use id to name a single Primary Key or a word to describe its

unicity

• use the name of the tables in a Foreing Key name

(FK_<TargetTable>_<SourceTable>)

• the name of a composite FK should contain all keys

Code Conventions

Bibliography (recommended)

Teoria generala a

bazelor de date,

I. Despi, G.

Petrov, R. Reisz,

A. Stepan,

Mirton, 2000

Cap 3

Database Systems - A

Practical Approach to

Design, Implementation,

and Management (4th

edition) by Thomas

Connolly and Carolyn

Begg, Addison-Wesley,

2004

Chapter 11, 12

References

• Mapping inheritance to Relational Model
• https://www.thoughts-on-java.org/complete-guide-inheritance-

strategies-jpa-hibernate/

• SQL Coding Style & Best Practices
• https://www.red-gate.com/simple-talk/sql/t-sql-programming/sql-

code-smells/
• https://www.red-gate.com/simple-talk/sql/t-sql-programming/basics-

good-t-sql-coding-style/

https://www.thoughts-on-java.org/complete-guide-inheritance-strategies-jpa-hibernate/
https://www.red-gate.com/simple-talk/sql/t-sql-programming/sql-code-smells/
https://www.red-gate.com/simple-talk/sql/t-sql-programming/basics-good-t-sql-coding-style/

