
Databases 1

Daniel POP

Week 11

Database

Performance. An

Introduction

Agenda

1. Index design

1. What indexes to create

2. Dbms support for index performance analysis

3. Best practices

2. Query analysis

1. Execution plan analysis

2. Query resource consumption

3. Table statistics

4. Database partitioning

When to create indexes

- Cost vs. benefits analysis

- Indexes inquire costs related to:

- Disk spaces required

- RAM

- Fragmentation

- Slows down INSERT/UPDATE/DELETE operations

- Benefits of an index depends on:

- Size of table

- Data distribution

- Query vs. update load

When to create indexes

- Advices

- Bigger the table, index is more valuable

- If not often SELECT then the cost of index maintenance may

be greater than the benefits

- Data distribution – do not create indexes on Boolean or fixed

set values (e.g. days of week etc)

Physical Design Advisor

- Help users to choose what indexes to create based on (usually a sampling of)

database and workload (i.e. the set of queries and updates)

- The output is a recommended set of indexes that overall optimizes performance

the best

- Uses Query Optimizer to do the job.

Query Optimizer

• Component of DBMS

• It’s used by Physical Design Adviser

Database

(statistics)

Workload

(frequent SQL

queries)

(set of)

Indexes

Query

Optimize

r Best Execution

Plan (incl.

cost)

• Missing indexes
• Advice about what index MIGHT be missing

• Index usage
• How and if the indexes are used
• How can we tell how useful an index is?

Dynamic Management Views

DEMO

select

'Missing indices' as Output_Type

, db.name as database_name

, m.name as schema_name

, o.name as object_name

, [total_cost_savings] =

round(s.avg_total_user_cost * s.avg_user_impact * (s.user_seeks + s.user_scans),0) /100

, s.avg_total_user_cost

, s.avg_user_impact

, s.user_seeks

, s.user_scans

, unique_compiles

, last_user_seek

, last_user_scan

--, last_system_seek

--, last_system_scan

, d.equality_columns

, d.inequality_columns

, d.included_columns

from sys.dm_db_missing_index_groups g

inner join sys.dm_db_missing_index_group_stats s on s.group_handle = g.index_group_handle

inner join sys.dm_db_missing_index_details d on d.index_handle = g.index_handle

inner join sys.objects o on o.object_id = d.object_id

inner join sys.schemas m on m.schema_id = o.schema_id

inner join sys.databases db on db.database_id = d.database_id

order by total_cost_savings desc

-- Index usage

SELECT sc.name as schema_name

, o.name as object_name

, s.object_id

, indexname=i.name

, i.index_id

, user_seeks

, user_scans

, user_lookups

, user_updates

, user_seeks + user_scans + user_lookups as total_reads

FROM sys.dm_db_index_usage_stats s

JOIN sys.indexes i ON i.object_id = s.object_id AND i.index_id = s.index_id

join sys.objects o on o.object_id = i.object_id

join sys.schemas sc on sc.schema_id = o.schema_id

WHERE o.type = 'U' -- user table

and user_seeks + user_scans + user_lookups < 20

ORDER BY (user_seeks + user_scans + user_lookups) ASC

Recommendations

- Delete unused indexes

- Transform indexes (from clustered to non-

clustered/columnar) to better suite the workload

- For a massive import operation, disable the impacted

indexes before running the ingest process and rebuild

them afterwards

Query analysis

- What are the under-performant queries?

- Why is that? Where is the time spent? How can optimize them?

Execution plans

• How we execute the query (data flow)

• What methods we use to extract the data

• Runtime stats

• Statistic estimations

Graphical Showplan Flow

Outer Table

Inner table

Resultset 1 and 2 are joined using a nested loops join, creating resultset 3

1

2

3

4

Resultset 3 and 4 are joined using a hash match join, creating resultset 5

5

6

Resultset 5 and 6 are joined using a nested loops join, creating a resultset for the

Select clause

• Query resource consumption
• Check for under performing queries

Dynamic Management Views

DEMO

-- Top 10 resource consuming Queries

SELECT TOP 10

execution_count,

statement_start_offset AS stmt_start_offset,

total_logical_reads / execution_count AS avg_logical_reads,

total_logical_writes / execution_count AS avg_logical_writes,

total_physical_reads / execution_count AS avg_physical_reads,

total_elapsed_time / (execution_count * 1000) AS avg_duration_ms,

total_worker_time / (execution_count * 1000) AS avg_CPU_ms,

total_rows / execution_count AS avg_rows_retuned,

t.TEXT ,

qp.query_plan

FROM

sys.dm_exec_query_stats AS s

CROSS APPLY sys.dm_exec_sql_text(s.sql_handle) AS t

CROSS APPLY sys.dm_exec_query_plan(s.plan_handle) AS qp

ORDER BY

avg_duration_ms DESC

Statistics

• What are statistics?
• Distribution of values within a column
• Density, Cardinality

• Why are statistics important?
• Execution plan calculation

• Update statistics

DEMO

Partitioning
• Breaking a single table\index in multiple parts
• Horizontal partitioning
• Single column as partitioning key
• Per-partition management options
• Data placement on different storage
• Piecemeal backup / restore
• Dynamic scheme

Partitioned table

Partitioning
• Each partition has its own indexes (filtered index - create a

index only for some records, e.g. from one partition only)

Partition function, scheme, table

DEMO

-- Adds four new filegroups database

ALTER DATABASE PartiotionDemo

ADD FILEGROUP test1fg;

GO

-- etc...

-- Adds one file for each filegroup.

ALTER DATABASE PartiotionDemo

ADD FILE

(

NAME = test1dat1,

FILENAME = 'C:\Program Files\Microsoft SQL

Server\MSSQL14.SQL17\MSSQL\DATA\t1dat1.ndf',

SIZE = 5MB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB

)

TO FILEGROUP test1fg;

GO

-- etc...

-- Creates a partition function called myRangePF1 that

will partition a table into four partitions

CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000) ;

GO

-- Creates a partition scheme called myRangePS1 that

applies myRangePF1 to the four filegroups created above

CREATE PARTITION SCHEME myRangePS1

AS PARTITION myRangePF1

TO (test1fg, test2fg, test3fg, test4fg) ;

GO

-- Creates a partitioned table called PartitionTable

that uses myRangePS1 to partition col1

CREATE TABLE PartitionTable (col1 int PRIMARY KEY, col2

char(10))

ON myRangePS1 (col1) ;

GO

Summary

- Indexes are the primary mechanism to improve the

performance

- Implemented as hash tables or search trees

- Run a cost/benefit analysis to decide what indexes are

needed

- Query planning and optimization – an important activity in

relational database design

- Query Optimizer

- Table partitioning may improve the query execution time and

implement a piecemeal backup strategy

