
Databases 1

Daniel POP

Week 7/8

Database Design.

Theory

Agenda

• Database Design. Design Theory. An introduction

• Lossless join decomposition

• Functional dependencies. Attributes set closure

• Normal Forms. Normalization process

• 1NF. 2NF. 3NF

• BCNF

• Multi-valued dependencies

• 4NF

• 5NF

• De-normalization

Database design

• A major aim of a database system is to provide users

with an abstract view of data, hiding certain details of

how data is stored and manipulated.

• Can be complex

• Data first approach

• Poorly designed databases can have serious

repercussions for the organization

• Top-down vs. bottom-up

ANSI/X3 SPARC Architecture for databases

The ANSI/X3 SPARC DBMS Framework: Report of the Study Group on

Database Management Systems (1977)

Who are the users of the database

• Users are any application that accesses our database

– The Mobile Application for Student Registration

– The Web site used by teachers to enter students’ grades

– The video conferencing app that automatically stores

attendance data in the database

– The desktop application used by Accounting department to

record details about students’ grants

– The DBA using SQL Server Management Studio / pgAdmin /

Oracle Developer Suite / etc. to run database profiler or

denormalize some tables

– etc.

Reasons for separation

• Each user able to access the same data, but also able

to have a personalized view of the data

• A user can change its view of the data without

affecting other users

• Users should not have to deal directly with physical

implementation details

• A DBA should be able to change the DB structure

without affecting the users

• The internal structure of the database should not be

affected by changes to the physical aspects of storage

External level (schema)
• The user’s view of the database. This level describes the

part of the database that is relevant to each user

• Users’ requirements drive the model of the database;
problem is users don’t know what they need ☺

• Contains entities, attributes, and relationships that a
particular user is interested in

• Different views may have different representation of the
same data (e.g. US/UK/RO date representation)

• Universal relation: all information gathered from users

• Roles: Database Designer, Data Administrator

Conceptual level (schema)

• The community view of the database. This level describes what

data is stored in the database and the relationships among data.

• Complete view of data requirements of an organization,

containing:

– All entities, their attributes, and their relationships

– Constraints on the data

– Semantic information about the data

– Security and integrity information

• Does not contain any storage-dependent details

• Roles: Database Administrator, Data Administrator (security,

privacy), Database Designer

Internal level (schema)
• The physical representation of the database , an

implementation of conceptual level. This level describes
how the data is stored in the database: tables, indexes,
sequences, views etc.

• It covers the physical implementation (data structures, file
organizations) of the database to achieve optimal runtime
performance and storage space utilization, such as:
– Storage space allocation for data and indexes

– Record descriptions for storage

– Record placement

– Data compression and data encryption techniques

• This is the interface with the operating system

• Below this level there is a physical level managed by OS.

Schemas, Mappings and Instances

• Schemas: external (multiple) / conceptual (unique) /

internal (unique)

• Conceptual/internal mapping - enables a DBMS to find

a record or combination of records in physical storage

that forms a logical record in conceptual model.

• External/conceptual mapping – enables a DBMS to map

names in the user’s view onto the relevant parts of

the conceptual schema

Schemas, Mappings and Instances

Diagram taken from Database Systems - A Practical Approach to Design, Implementation, and Management (4th

edition) by Thomas Connolly and Carolyn Begg, Addison-Wesley, 2004

Data Independence

• Upper levels are not impacted by changes in lower

levels (ANSI / SPARC architecture)

• Logical data independence – refers to the immunity

of external schemas to changes in the conceptual

schema (addition or removal of new entities,

attributes or relationships)

• Physical data independence – refers to the immunity

of the conceptual schema to changes in the internal

schema (using different file organizations or storage

structures, different storage devices)

Database Design Theory

We shall focus on the Conceptual level

for the remainder of this chapter

Running example

Let’s consider the table below; this report has been provided

to IT Dept by the Student Help Center of our university.

CNP Student Name Course Name Major Faculty Hobbies

1234567890

012

Ionescu

Andrei Databases I CS FMI

surfing,

skiing

1234567890

012

Ionescu

Andrei Algebra CS FMI football

1114567890

012

Popa

Alexandra Databases I MATH FMI cooking

1114567890

034

Ionescu

Andrei

History of

British Art PAINTING FAD volleyball

Modification anomalies

Anomalies of this design:

• Redundancy (CNP is associated to a particular student many times)

• Update anomaly: Updating one fact in a relation requires us to update

multiple tuples => update facts differently in different places (not all

tuples are correctly updated) => inconsistencies (Ex: update the name

of student with a specified CNP)

• Deletion anomaly: Deleting one fact or data point from a relation

results in other information being lost. Ex: deleting all tuples with

hobby Biking -> it will delete all students and we will lose all

information about those students; but, if a student has several

hobbies, he will still remain in the database

• Insertion Anomaly: Inserting a new fact or tuple into a relation

requires we have information from two or more entities – this situation

might not be feasible. Ex: in order to insert a new class enrolment we

need to supply the major and faculty, although this information may

already be available in the database.

Running example

Students enrollment – modified version

Enrollments(CNP, StudentName, CourseName, Major, Faculty,

Hobby)

Students(CNP, Name, Address, MajorCode, MajorName,

Faculty, TotalCredits, Priority)

Enrollments(CNP, CourseName, Dept, Date)

Running example

It seems to be better, but

- How good is it? Should we further decompose the

tables?

- What anomalies still manifests?

- Lack of a formal background

- Lack of an algorithm for decomposition (repeatability)

Database Design Theory

- set a formal framework for database

design

- useful to assess the quality of

database design

Normalization (Design by decomposition)
Relational design by decomposition (Role: Database designer)

- Initially “mega” relations and properties of data we are

storing

- Decomposition of these mega relations based on properties

(semantics)

- Results a new set of relations that satisfies some normal

forms (i.e. no anomalies, no data is lost)

Lossless join decomposition of a relation

Let R(A1, A2, …., An), R1(B1, …, Bk) and R2(C1, …, Cm) be three

relation. We note A* = {A1, A2, …., An}, B* = {B1, …, Bk} and

C*={C1, …, Cm} the set of attributes of three relations,

respectively.

DEF: R1 and R2 are a lossless join decomposition of R iff:

A* = B* U C* and R1 R2 = R (- natural join)

R1 = P B*(R) and R2 = P C*(R)
A*

A1 A2 A3 …. …. …. An

B* C*

common attributes to join

Dependencies

- Functional dependencies

- Multivalued dependencies

Functional dependencies

A Functional Dependency (FD) describes a relationship

between the attributes within a single relation.

DEF: Given a relation R, an attribute B is functionally

dependent on another attribute A (and we write A -> B) if we

can use the value of attribute A to determine the value of B.

We also say that “A determines B”

DEF: Formally, given R a relation, A and B attributes of R,

and t, u tuples, then A -> B iff:

i.e. if two tuples agree on values of A they will agree on values of B as well

i.e. if values of A attribute are the same on one tuple, values for B will be the

same as well.

Functional dependencies

Remarks:

• A FD is a knowledge of a real world that is being captured

in our model.

• All tuples of a relation must adhere to all FDs.

Functional dependencies

Source: https://en.wikipedia.org/wiki/Injective_function

https://en.wikipedia.org/wiki/Injective_function

Functional dependencies

Source: https://en.wikipedia.org/wiki/Injective_function

Functional Dependency

https://en.wikipedia.org/wiki/Injective_function

Functional dependencies. Example

Students(CNP, Name, Address, MajorCode, MajorName, Faculty, TotalCredits,

Priority)

Enrollments(CNP, CourseName, Dept, Date)

Suppose that student’s priority is determined by his/her TotalCredits as follows:

50 <= TotalCredits then Priority = 1

40 <= TotalCredits < 50 then Priority = 2

TotalCredits < 40 then Priority = 3

Based on this relationship we can say that “two tuples with same TotalCredits

have same Priority” and write this as a FD: TotalCredits -> Priority

Find other FD in Student and Enrollment relations.

Functional dependencies

DEF: ҧ𝐴 → ത𝐵 is trivial if ഥ𝐵 ⊂ ҧ𝐴

DEF: ҧ𝐴 → ത𝐵 is non-trivial if ഥ𝐵 ⊄ ҧ𝐴

DEF: ҧ𝐴 → ത𝐵 is completely non-trivial if ഥ𝐵 ∩ ഥ𝐴 is empty.

Armstrong’s axioms

Reflexivity:

if B ⊆ A then Ā→ B

Augmentation:

if ҧ𝐴 → ത𝐵 then 𝐴𝐶 → 𝐵𝐶 for any C

Transitivity:

if ҧ𝐴 → ത𝐵 and ഥ𝐵 → ҧ𝐶 then ҧ𝐴 → ҧ𝐶

Pseudo-transitivity
if Ā → ത𝐵 and 𝐵𝐷 → ҧ𝐶 then ĀD→ ഥ𝐶 for any D

Note: Transitivity is a special case of pseudo-transitivity when D is null.

Rules derived from Armstrong’s axioms

Splitting (decomposition) rule:

if Ā→ {B1, B2, …, Bn} then Ā→ B1, Ā→ B2, …, Ā→ Bn

Combining (union) rule:

if Ā→ B1, Ā→ B2, …, Ā→ Bn then Ā→ {B1, B2, …, Bn}

Question: If {A1, A2, …, An} → B then A1→ B, A2→ B, …, An

→ B is it true?

Time for a Quiz

Attributes Set Closure

DEF [Closure of attributes] Given R, a set of FDs and Ā = a

set of attributes from R. The closure of Ā (Ā+) is the set of

all attributes B such that Ā → B, i.e. all attributes

functionally determined by the set Ā.

Algorithm to compute the closure:

1. start with the set Ā+ = Ā = {A1, A2, …, An}

2. repeat until no change

if ത𝑋 → ത𝐵 andഥ𝑋 is in the closure Ā+ then add ത𝐵 to Ā+

Remark: A subset Ā functionally determines another subset
ഥ𝐵 if ഥ𝐵 ⊂ Ā+

Exercise

Compute the closure {CNP, MajorCode}+ for relation Student.

Exercise

Compute the closure {CNP, MajorCode}+ for relation Students.

Answer: {CNP, MajorCode}+ = Students*

Keys

DEF: [Superkey] If Ā+ is the set of all attributes of a relation R

(R*) then Ā is a superkey in R.

How can we find the candidate keys (= irreducible superkey)

given all FD?

Keys

DEF: [Superkey] If Ā+ is the set of all attributes of a relation R

(R*) then Ā is a superkey in R.

How can we find the candidate keys (= irreducible superkey)

given all FD?

Algorithm to compute the candidate keys of a relation:

1. Consider every subset Ā of R in increasing size (first Ā is

the set composed of each attribute, then consider 2-

attribute subsets etc.)

2. Compute set’s closure, i.e. Ā+

3. If Ā+ = R* then Ā is a candidate key

4. If Ā is the last subset of its cardinality class (i.e. number

of attributes in the set) then stop; otherwise go to 1

Functional dependencies and keys

Remark: Given a relation R, for any key K or R, K → R* (all

other attributes). Thus, FD are generalizations of keys

because any key functionally determines all other

attributes

Remark: Not all determinants of a FD are necessarily keys

(e.g. TotalCredits -> Priority and TotalCredits is not a key)

DEF: [non-prime attribute] A non-prime attribute of a

relation is an attribute that is not a part of any candidate

key of the relation.

Reasoning with FD

DEF: [Follows from] If S1 and S2 are two sets of FDs, S2

follows from S1 if every instance satisfying S1 also satisfies

S2.

Example: For Students relation, if

S1 = {CNP->TotalCredits, TotalCredits->Priority},

S2 = {CNP->Priority}

then S2 follows from S1

Q: How to test whether a FD ҧ𝐴 → ത𝐵 follows from a given set

of functional dependencies S?

A: Compute Ā+ using only the FDs in S

If ത𝐵 is a subset of Ā+ then ҧ𝐴 → ത𝐵 follows from S

Non-key FD’s

DEF: A non-trivial FD ҧ𝐴 → B where ҧ𝐴 is not a super key is

called non-key FD.

Since ҧ𝐴 is not a super key, there are some attributes (say C)

that are not functionally determined by ҧ𝐴.

Non-key FD cause:

• redundancy,

• update anomaly,

• deletion anomaly

Functional dependencies

The Holly Grail is to find the minimal set of

completely non-trivial FD such that all FD’s

that hold on the relation follow from the FD

in this set.

FD are useful for:

- Relational design by decomposition (FD => BCNF)

- Data storage (compression)

- Query optimizations

Exercise

Consider relation R(A, B, C, D, E) with the following

functional dependencies: D → C, CE → A, D → A, AE → D.

Which of the following attribute sets is a superkey of R?

a) {D}

b) {A, B}

c) {A, B, E}

d) {C, D, E}

Exercise

Consider relation R(A, B, C, D, E) with the following

functional dependencies: D → C, CE → A, D → A, AE → D.

Which of the following attribute sets is a superkey of R?

a) {D}

b) {A, B}

c) {A, B, E}

d) {C, D, E}

Normal Forms (NF)

Normal Form: A class of relations which are free from a

certain set of modification anomalies.

• First normal form (1NF)

• Second normal form (2NF)

• Third normal form (3NF)

• Boyce-Codd normal form (BCNF)

• Fourth normal form (4NF)

• Fifth normal form (5NF)

These forms are cumulative. A relation in 3NF is also in 2NF

and 1NF.

Normalization Process

The Normalization Process for a given relation consists of:

1. Compute the functional dependencies (FD) of the

relation. (Remark: Sample data (tuples) for the relation

can assist with this step.)

2. Compute the candidate keys of the relation

3. Apply the definition of each normal form (starting with

1NF).

4. If a relation fails to meet the definition of a normal

form, change the relation (most often by

decomposing the relation into two new relations) until

it meets the definition.

5. Re-test the modified/new relations to ensure they

meet the definitions of each normal form.

First Normal Form (1NF)

DEF: A relation is in first normal form if it meets the

definition of a relation.

Definition of a relation:

1. Each attribute (column) value must be a single value only.

2. All values for a given attribute (column) must be of the

same type (domain).

3. Each attribute (column) name must be unique.

4. The order of attributes (columns) is insignificant

5. No two tuples (rows) in a relation can be identical.

6. The order of the tuples (rows) is insignificant.

If you have a key defined for the relation, then you can meet

the unique row requirement.

Normalization to 1NF
Example 1: Enrollments(CNP, StudentName, CourseName, Major, Faculty,

Hobby)

1900101110011, Andrei, …., {Biking, Soccer}
1910104150011, Elena, …., {Reading, Biking}

TO 1NF

1900101110011, Andrei, …., Biking
1900101110011, Andrei, …., Soccer
1910104150011, Elena, …., Reading
1910104150011, Elena, …., Biking

Example 2: Employees(ID, Name, Position)

1, Ionescu, {Designer, Programmer}

2, Vasile, {Accountant, Economist}

Compare the keys of the

original and modified

relations.

Running example – revised version

Enrollments(CNP, StudentName, CourseName, Major, Faculty,

Hobby)

Students(CNP, Name, Address, MajorCode, MajorName,

Faculty, TotalCredits, Priority)

Enrollments(CNP, CourseName, Dept, Date)

Second Normal Form (2NF)

DEF: A relation is in second normal form (2NF) if it is in 1NF

and it does not have any non-prime attribute that is

functionally dependent on any proper subset of any

candidate key of the relation.

• Another way to say this: A relation is in 2NF if it is free from partial-

key dependencies against any of the candidate keys.

Examples:

• Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

• Stocks(Company, Symbol, Headquarters, Date, ClosePrice)

Second Normal Form (2NF)

DEF: A relation is in second normal form (2NF) if it is in 1NF

and it does not have any non-prime attribute that is

functionally dependent on any proper subset of any

candidate key of the relation.

• Another way to say this: A relation is in 2NF if it is free from partial-

key dependencies against any of the candidate keys (CK).

Examples:

• Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

• not in 2NF because CNP -> {Name, Address} and the candidate key

is {CNP, MajorCode}

• Stocks(Company, Symbol, Headquarters, Date, Close_Price)

• not in 2NF because Symbol -> {Company, Headquarters} and the CK

is {Symbol, Date}

Normalization to 2NF
• List all FD

• Test all FD against all CKs to all discover violations (i.e., partial key

dependencies)

• If A1 -> X is a partial key dependency then decompose the original

relation in 2 relations (using lossless join decomposition):

• R(A1, A2, X, Y) => R1(A1, A2, Y) and R2(A1, X)

• Check for 1NF and 2NF compliance of new relations

Normalization to 2NF - Example
• Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

• Using PKD: MajorCode -> {MajorName, Faculty} decompose Students in:

• =>Students1(CNP, Name, Address, MajorCode, TotalCredits,

Priority) – not in 2NF

• =>Students2(MajorCode, MajorName, Faculty) – in 2NF

• Using PKD: CNP -> {Name, Address, TotalCredits, Priority} decompose

Students1 in:

• => Students1_1(CNP, MajorCode) – in 2NF

• => Students1_2(CNP, Name, Address, TotalCredits, Priority) – in

2NF

Second Normal Form (2NF). Discussion
• Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

• What if I add a surrogate candidate key, ID, to Students table, which

becomes Students(ID, CNP, Name, Address, MajorCode, MajorName,

Faculty, TotalCredits, Priority), is it in 2NF now?

Second Normal Form (2NF). Discussion
• Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

• What if I add a surrogate candidate key, ID, to Students table, which

becomes Students(ID, CNP, Name, Address, MajorCode, MajorName,

Faculty, TotalCredits, Priority), is it in 2NF now?

• A: NO, because {CNP, MajorCode} is still a CK and all previous

violations still stands!

• Relations that have only one single-attribute CK are automatically in

2NF. This is one of the reasons why artificial identifiers, i.e. surrogate

keys, are used as candidate/primary keys.

• Reference: https://en.wikipedia.org/wiki/Second_normal_form

https://en.wikipedia.org/wiki/Second_normal_form

Third Normal Form (3NF)

DEF: A relation is in third normal form (3NF) it is in 2NF and

every non-prime attribute is non-transitively dependent on

every key of the relation.

DEF: Given relation R(A, … B, …, C), where A, B and C are

three attributes. A, B and C are in a transitive dependency if

A->B and B->C then A->C.

Examples:

Students(CNP, Name, Address, TotalCredits, Priority)

Companies(Company, Symbol, Headquarters)

Third Normal Form (3NF)

DEF: A relation is in third normal form (3NF) it is in 2NF and

every non-prime attribute is non-transitively dependent on

every key of the relation.

DEF: Given relation R(A, … B, …, C), where A, B and C are

three attributes. A, B and C are in a transitive dependency if

A->B and B->C then A->C.

Examples:

Students(CNP, Name, Address, TotalCredits, Priority)

• not in 3NF, CNP -> TotalCredits and TotalCredits -> Priority

Companies(Company, Symbol, Headquarters)

• not in 3NF, Symbol -> Company and Company -> Headquarters

Normalization to 3NF
• List all FD

• Test all FD to discover any transitive dependencies

• If K -> X1 and X1 -> X2 is a transitive dependency then decompose the

original relation R in 2 relations using lossless join decomposition

• R(K, X1, X2, X3) => R1 (K,X1,X3) si R2 (X1, X2)

• Check for 1NF, 2NF and 3NF compliance of new relations

Normalization to 3NF - Example
• Example: Students1_2 (CNP, Name, Address, TotalCredits, Priority)

• FD: TotalCredits->Priority

• => Students1_2_1(CNP, Name, Address, TotalCredits) – in 3 NF

• => Students1_2_2(TotalCredits, Priority) – in 3 NF

Second Normal Form (3NF). Discussion
• Every non-key attribute must provide a fact about the key, the whole

key, and nothing but the key (Bill Kent, 1983)

• => a relation is in 3NF if all the attributes are functionally dependent

on solely the primary key.

• Most the 3NF relations are free of update, insertion, and deletion

anomalies. Certain types of 3NF tables, rarely met with in practice,

are affected by such anomalies. (will see an example later)

• Reference: https://en.wikipedia.org/wiki/Third_normal_form

https://en.wikipedia.org/wiki/Third_normal_form

Boyce-Codd Normal Form (BCNF / 3.5NF)

DEF: A relation R is in Boyce-Codd normal form (BCNF) iff for

every FD ҧ𝐴 → ത𝐵, at least one of the following holds

• ҧ𝐴 → ത𝐵 is a trivial FD

• ҧ𝐴 is a superkey of R

• Another way to say it: every determinant ҧ𝐴 of a FD ҧ𝐴 → ത𝐵 is a

candidate key

• If a relation is in BCNF then all redundancy based has been

remove.

BCNF separates a relation so that we capture each piece of

information exactly once.

Boyce-Codd Normal Form (BCNF / 3.5NF)

DEF: A relation R is in Boyce-Codd normal form (BCNF) iff for

every FD ҧ𝐴 → ത𝐵, at least one of the following holds

• ҧ𝐴 → ത𝐵 is a trivial FD

• ҧ𝐴 is a superkey of R

Examples:

• Students(CNP, Name, Address, MajorCode, MajorName,

Faculty, TotalCredits, Priority)

• Students(CNP, Name, Address, TotalCredits, Priority)

• Enrollments(CNP, CourseName, Dept, Date)

Normalization to BCNF
• Given R

• List all of determinants (Ā) of FD (Ā -> B)

• See if each determinant (Ā) can act as a CK, by computing Ā+

• For any determinant that is not a CK, create a new relation R1 from

the FD. Retain the determinant in the original relation.

• R(Ā, B, rest) => R1(Ā, B) and R2(Ā, rest)

Normalization to BCNF. Example
Students(CNP, Name, Address, MajorCode, MajorName, Faculty,

TotalCredits, Priority)

FD1: CNP -> {Name, Address, TotalCredits, Priority},

FD2: MajorCode -> {MajorName, Faculty},

FD3: TotalCredits -> Priority

- Using FD2

 S1(CNP, Name, Address, MajorCode, TotalCredits, Priority)

 S2(MajorCode, MajorName, Faculty)

- Using FD3 to normalize S1

 S1_1(TotalCredits, Priority)

S1_2(CNP, Name, Address, MajorCode, TotalCredits)

- Using FD1 to normalize S1_2

 S1_2_1(CNP, Name, Address, TotalCredits)

 S1_2_2(CNP, MajorCode)

Rename relations S2,

S1_1, S1_2_1 and S1_2_2

to something meaningful…

BCNF vs. 3NF Discussion

Person ShopType NearestShop

Davidson Optician Eagle Eye

Davidson Hairdresser Snippets

Wright Bookshop Merlin Books

Fuller Bakery Doughy's

Fuller Hairdresser Sweeney Todd's

Fuller Optician Eagle Eye

A 3NF table that does not have multiple overlapping candidate keys is

guaranteed to be in BCNF. Depending on what its functional dependencies are,

a 3NF table with two or more overlapping candidate keys may or may not be in

BCNF.

BCNF vs. 3NF Discussion

Person ShopType NearestShop

Davidson Optician Eagle Eye

Davidson Hairdresser Snippets

Wright Bookshop Merlin Books

Fuller Bakery Doughy's

Fuller Hairdresser Sweeney Todd's

Fuller Optician Eagle Eye

Reference: https://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form

• FDs: {Person, ShopType} -> NearestShop, NearestShop -> ShopType (assuming one

shop has only one shopping type)

• Candidate keys: {Person, ShopType}, {Person, NearestShop}

• The table is in 3NF (no transitive dependencies) but not in BCNF because

ShopType is dependent on a non-superkey (NearestShop)

• What anomalies may arise?

• BCNF decomposition

• R1(Person, NearestShop)

• R2(NearestShop, ShopType)

https://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form

Multivalued dependencies

DEF: Multivalued Dependency: A type of functional

dependency where the determinant can determine more

than one value.

In other words, given R(A, B, C, ….) a relation with at least

three attributes A, B and C all the following holds:

• Given A, one can determine multiple values of B.

• Given A, one can determine multiple values of C.

• B and C are independent of one another.

Multivalued dependencies
Examples:

1. Enrollments(CNP, CourseName, Hobby)

• MVD1: A student may enroll into one or more courses (CNP ->>

CourseName)

• MVD2: A student may have one or more hobbies (CNP ->> Hobby)

• College and Hobby are independent

2. Students(CNP, Name, Address, MajorCode, TotalCredits)

• MVD1: A student may study one or more majors (CNP ->>

MajorCode)

• MVD2: A student may have one or more addresses (CNP ->>

Address)

• Major and address are totally unrelated

Multivalued dependencies

Restaurant Pizza Variety Delivery Area

A1 Pizza Thick Crust Springfield

A1 Pizza Thick Crust Shelbyville

A1 Pizza Thick Crust Capital City

A1 Pizza Stuffed Crust Springfield

A1 Pizza Stuffed Crust Shelbyville

A1 Pizza Stuffed Crust Capital City

Elite Pizza Thin Crust Capital City

Elite Pizza Stuffed Crust Capital City

Vincenzo's

Pizza
Thick Crust Springfield

Vincenzo's

Pizza
Thick Crust Shelbyville

Vincenzo's

Pizza
Thin Crust Springfield

Vincenzo's

Pizza
Thin Crust Shelbyville

{Restaurant} ->> {Pizza Variety}

{Restaurant} ->> {Delivery Area}

Multivalued dependencies
Enrollments(CNP, CourseName, Hobby)

• MVD1: A student may enroll into one or more courses (CNP ->>

CourseName)

• MVD2: A student may have one or more hobbies (CNP ->> Hobby)

• College and Hobby are independent

• FD: none

• Candidate key: {CNP, CourseName, Hobby}

• It is in BCNF

• Is it a good design? Anomalies:

• Removing an enrollment will also remove hobbies

• Cannot add hobbies without enrollments

• etc.

Multivalued dependencies

ҧ𝐴 ത𝐵 𝑟𝑒𝑠𝑡
t ത𝑎 ഥ𝑏1 ഥ𝑟1

u ത𝑎 ഥ𝑏2 ഥ𝑟2

v ത𝑎 ഥ𝑏1 ഥ𝑟2

: : :

w ത𝑎 ഥ𝑏2 ഥ𝑟1

DEF: Given ҧ𝐴 = {A1, A2, …, Aj} and ത𝐵 = {B1, B2, …, Bk} two

attribute sets of R, ҧ𝐴 multivalued determines ത𝐵 (ҧ𝐴 −≫ ത𝐵)

iff:

∀𝑡, 𝑢 ∈ 𝑅: 𝑡. 𝐴 = 𝑢. 𝐴 𝑡ℎ𝑒𝑛 ∃𝑣 ∈ 𝑅:

𝑣 𝐴 = 𝑡. 𝐴 𝑎𝑛𝑑 𝑣. 𝐵 = 𝑡. 𝐵 𝑎𝑛𝑑 𝑣. 𝑟𝑒𝑠𝑡 = 𝑢. 𝑟𝑒𝑠𝑡

Multivalued dependencies

DEF: The MVD Ā −≫ B is trivial iff B ⊆ Ā or Ā U B = R*.

DEF: The MVD Ā −≫ B is non-trivial if it is a MVD, which is not

trivial.

Lemma: Each FD is a MVD: if Ā -> B then Ā ->> B.

Demo:

ҧ𝐴 ത𝐵 𝑟𝑒𝑠𝑡
t ത𝑎 ഥ𝑏1 ഥ𝑟1

u ത𝑎 ഥ𝑏2 ഥ𝑟2

v ത𝑎 ഥ𝑏1 ഥ𝑟2
: : :

: : :

Complete FD and MVD rules

• FD reflexivity, augmentation, and transitivity

• MVD complementation:

If A ->> B, then A ->> attrs(R) – A – B

• MVD augmentation:

If A ->> B and V ⊆ W, then AW ->> BV

• MVD transitivity:

If A ->> B and B ->> Z, then A ->> Z – B

• Replication (FD is MVD):

If A → B, then A ->> B

• Coalescence:

If A ->> B and Z ⊆ B and there is some W disjoint from B

such that W → Z, then A → Z

Fourth Normal Form (4NF)

DEF: A relation is in fourth normal form (4NF) iff for every

non-trivial MVD Ā ->> B, Ā is a superkey (either a CK or a

superset thereof).

Normalization to 4NF

• Let Ā −≫ B be a non-trivial MVD

• Split R in two new relations R1(Ā, B) and R2(Ā, rest)

• Apply the decomposition algorithm for R1 and R2

Normalization to 4NF. Example

1. Enrollments(CNP, CourseName, Hobby)

 S1(CNP, CourseName)

 S2(CNP, Hobby)

2. Students(CNP, Name, Address, MajorCode, TotalCredits)

 S1(CNP, Name, Address)

 S2(CNP, MajorCode, TotalCredits)

Normalization to 4NF. Discussion

• In a study of 40 organizational databases, over 20% contained one or

more tables that violated 4NF while meeting all lower normal forms

[Wu, M. S. et al – 1992]

• Only in rare situations does a 4NF table not conform to the higher

normal form 5NF. These are situations in which a complex real-world

constraint governing the valid combinations of attribute values in the

4NF table is not implicit in the structure of that table.

References: https://en.wikipedia.org/wiki/Fourth_normal_form

https://en.wikipedia.org/wiki/Fourth_normal_form

Fifth Normal Form (5NF)

• DEF: A relation is in fifth normal form (5NF) iff

every non-trivial join dependency in that table is

implied by the candidate keys.

• DEF: A join dependency {A, B, … Z} on R is implied

by the candidate key(s) of R if and only if each of

A, B, …, Z is a superkey for R

• DEF: A relation is in fifth normal form (5NF) if it

cannot be split in 2 or more relations so that the

join uniquely reconstructs the original relation (a

relation cannot be reassembled back to original

form)

Fifth Normal Form (5NF). Example

Traveling Salesman Brand Product Type

Jack Schneider Acme Vacuum Cleaner

Jack Schneider Acme Breadbox

Mary Jones Robusto Pruning Shears

Mary Jones Robusto Vacuum Cleaner

Mary Jones Robusto Breadbox

Mary Jones Robusto Umbrella Stand

Louis Ferguson Robusto Vacuum Cleaner

Louis Ferguson Robusto Telescope

Louis Ferguson Acme Vacuum Cleaner

Louis Ferguson Acme Lava Lamp

Louis Ferguson Nimbus Tie Rack

Traveling Salesman Product Availability By Brand

Products of the type designated by Product Type, made by the brand designated by Brand,

are available from the traveling salesman designated by Traveling Salesman.

Fifth Normal Form (5NF). Example

Traveling Salesman Brand Product Type

Jack Schneider Acme Vacuum Cleaner

Jack Schneider Acme Breadbox

Mary Jones Robusto Pruning Shears

Mary Jones Robusto Vacuum Cleaner

Louis Ferguson Robusto Vacuum Cleaner

Louis Ferguson Robusto Telescope

… … …

Traveling Salesman Product Availability By Brand

• FD: none

• MVD: none

• CK/PK: {Travelling Salesman, Brand, Product Type}

• It is in 4NF

Fifth Normal Form (5NF). Example

Traveling Salesman Product Availability By Brand

If the following rule applies
“A Traveling Salesman has certain Brands and certain Product Types in their

repertoire. If Brand B1 and Brand B2 are in their repertoire, and Product

Type P is in their repertoire, then (assuming Brand B1 and Brand B2 both

make Product Type P), the Traveling Salesman must offer products of

Product Type P those made by Brand B1 and those made by Brand B2.”

then it is possible to split the table as follows:

• R1(Travelling Salesman, Product Type)

• R2(Travelling Salesman, Brand)

• R3(Brand, Product Type)

Fifth Normal Form (5NF). Discussion

• Only in rare situations does a 4NF table not conform to

5NF. These are situations in which a complex real-world

constraint governing the valid combinations of attribute

values in the 4NF table is not implicit in the structure of

that table.

• If such a table is not normalized to 5NF, the burden of

maintaining the logical consistency of the data within the

table must be carried partly by the application responsible

for insertions, deletions, and updates to it; and there is a

heightened risk that the data within the table will become

inconsistent. In contrast, the 5NF design excludes the

possibility of such inconsistencies.

References: https://en.wikipedia.org/wiki/Fifth_normal_form

https://en.wikipedia.org/wiki/Fifth_normal_form

Final remarks
Normalization process transforms a dependency

(partial key dependency, functional dependency,

multivalued dependency transitive dependency) into

a join relationship between two tables.

• PKD => 2NF

• TD => 3NF

• FD => BCNF

• MVD => 4NF

Attributes that are copied from one relation to

another during decomposition become keys: PK in

new relation and FK in the old relation.

3NF, BCNF, 4NF

De-Normalization
Shortcomings with normalized relations:

- Performance penalties

- Increased schema complexity

DEF: De-normalization: the process of re-assembly

the original relations.

Examples:

1. Students relation in which we keep TotalCredits and

Priority (for example, TotalCredits value may change

after student issued his/her enrollment request)

2. Order_Line contains the Price of an item (due to

contractual constraints)

Normalization recap

• Normalization is a process in which we systematically examine

relations for anomalies and, when detected, remove those anomalies

by splitting up the relation into two new, related, relations.

• Normalization is an important part of the database development

process: during normalization, the database designers get their first

real look into how the data are going to interact in the database.

• Finding problems with the database structure at this stage is strongly

preferred to finding problems further along in the development

process because at this point it is fairly easy to cycle back to the

conceptual model and make changes.

• Normalization can also be thought of as a trade-off between data

redundancy and performance. Normalizing a relation reduces data

redundancy but introduces the need for joins when all of the data is

required by an application such as a report query.

Bibliography (recommended)

A First Course in

Database Systems

(3rd edition) by

Jeffrey Ullman and

Jennifer Widom,

Prentice Hall, 2007

Chapter 3

Teoria generala a

bazelor de date,

I. Despi, G.

Petrov, R. Reisz,

A. Stepan,

Mirton, 2000

Cap 6

Database Systems - A

Practical Approach to

Design, Implementation,

and Management (4th

edition) by Thomas

Connolly and Carolyn

Begg, Addison-Wesley,

2004

Chapter 13 & 14

References

• Database Normalization

http://holowczak.com/database-normalization

• All-in-One Database Normalization Example

http://holowczak.com/database-normalization/12/

http://holowczak.com/database-normalization
http://holowczak.com/database-normalization/12/

