
Databases 2: Introduction to Database
Management Systems

Ioan Dragan

Sept. 2020



The relational Model

1. Origins and history
2. Key concepts
3. Relational integrity
4. Relational algebra
5. SQL implementation
6. 12 + 1 Codd rules for a relational DBMS



History

1. Proposed by E.F. Codd in 1970 (A relational model of data
for large shared data banks)

• high degree of data independence
• dealing with data semantics, consistency and redundancy
• introduces the concept of normalization

2. System R developed by IBM at San Jose Research
Laboratory, California, late 1970s

• Led to the development of SQL
• Initiated the production of commercial RDBMs

3. INGRES (Interactive Graphics REtrieval System) at the
University of California at Berkley.



Genealogy of Relational Database Management
System

Figure: Source: hhttps:
//hpi.de/naumann/projects/rdbms-genealogy.html

hhttps://hpi.de/naumann/projects/rdbms-genealogy.html
hhttps://hpi.de/naumann/projects/rdbms-genealogy.html


Popular models used by DBMS

Figure: Source: https://db-engines.com/en/ranking

https://db-engines.com/en/ranking


Most popular models by major DBMS



Key characteristics

• Very simple model
• Ad-hoc query with high-level languages (SQL)
• Efficient implementations



Relational model concepts

• The relational model consists of the following:
1. Collection of relations
2. Set of operators to act on the relation
3. Data integrity for accuracy and consistency

• Intension (Schema) vs. Extension of a relational database
• Schema is a structural description of all relations
• Instance (extension) is the actual content at a given point in time of the

database



Terminology

• Relational Database = a collection of normalized relations
• Relation = a table with columns and rows
• Attribute = a named column of a relation

• Domain = a set of allowable values for one or more attributes
• SQL Data Types

• Tuple = a row of a relation
• Degree = the number of attributes contained in a relation
• Cardinality = the number of tuples of a relation



Relational Database Definition



Database relations

Relational schema = a relation name followed bu a set of
attribute and domain name pairs

R = {A1 : D1,A2 : D2, . . . ,An : Dn} (1)

Properties of relations
• The name is unique
• Each cell contains exactly one atomic value
• Attribute names are distinct
• The values of an attribute are all from the same domain
• The order of attributes has no significance
• The order of tuples has no significance

1NF - a relation satisfying these constraints



Running Example

Students should enroll in courses they want to attend. One
student may enrolls in up to 8 courses. In order for one course
to run it requires at least 10 enrolled students. As places in
courses are limited, for each enrollment request there will be a
decision associated whether the student is accepted or not in
the course.
Courses are offered by different departments of the university,
each course is uniquely identified by their title and each course
is credited a fixed number of credits. Students may enroll to
courses offered by different departments.



Example

Conceptual model



Example

A relational database for student enrollment:



Relational Keys

• Superkey = an attribute or set of attributes that uniquely
identifies a tuple within a relation

• Composite key = a key consisting of more than one
attribute

• Candidate key= a superkey such that no proper subset is a
superkey within the relation

• Uniqueness - the values of the candidate key uniquely identify each tuple
• Irreducibility - no proper subset of K has the uniqueness property

• Primary key = a candidate key selected by the database
designer to uniquely identify tuples within a relation

• Alternate key = all other candidate keys, except the one
elected to be the primary key

• Foreign key = an attribute or a set of attributes within one
relation that matches the candidate key of some (possibly
the same) relation



Exercise

Identify the superkeys, candidate keys, primary keys and
foreign keys in the previous example.



Exercise

Identify the superkeys, candidate keys, primary keys and
foreign keys in the previous example.



Example

Figure: Example from Database Systems - A practical approach to
Design, Implementation, and Management (4th edition)



Relational integrity

• Null = a value for an attribute that is currently unknown
(undefined)

• Integrity rules: next slides
• General constraints: additional rules specified by the data/

database administrators that define or constrain some
aspects of the enterprise.

• Domain constraints: actual constraints



Relational Integrity

• Entity integrity in a base relation, no attribute of a primary
key can be null.

• Referential integrity if a foreign key exists in a relation,
either the foreign key value must match a candidate key
value of some tuple in its home relation or the foreign key
value must be wholly null.



Querying relational model

• Relational algebra : formal
• Structural Query Language (SQL) : de facto/implemented
• The query language also used for DML and DDL
• Some queries to pose, some more difficult
• Some easy to execute, others more difficult (expensive to

compute)



Examples

• List name and date of birth of all students with major in CS
• Relational algebra: Formal

ΠStudName,DoB(σMajor=′CS′(Students))

• Structured Query Language (SQL) - de facto/implemented
SELECT StudName, DoB
FROM Students
WHERE Major = ’CS’



Relational algebra

• Theoretical language with operations that work on one or
more relations

• Both the operands and the results are relations
• Closure = relations are closed under the algebra
• Operations (operators)

• Selection (filter)
• Projection (slice)
• Join (combine)
• Set-based operations

• Cartesian Product (cross-product)
• Union
• Set Difference
• Intersection

• Rename

• Remark: duplicated tuples are purged from the result
• Bold operators originally defined by E.F. Codd in 1970



Table name

• R
• The simplest query
• Returns the copy of the relation

• Examples:
• Students
• Enrollment



Selection

σpredicate(R): σP(R) := {t |t ∈ R ∧ R(t) = true}

• Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

• It is used to filter tuples of relation R based on a predicate
• Example:

• Students with Major in CS

: σMajor=′CS′ (Students)
• Students accepted in Database course:
σCourseTitle=′Databases′∧Decision=TRUE (Enrollments)



Selection

σpredicate(R): σP(R) := {t |t ∈ R ∧ R(t) = true}

• Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

• It is used to filter tuples of relation R based on a predicate
• Example:

• Students with Major in CS: σMajor=′CS′ (Students)

• Students accepted in Database course:
σCourseTitle=′Databases′∧Decision=TRUE (Enrollments)



Selection

σpredicate(R): σP(R) := {t |t ∈ R ∧ R(t) = true}

• Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

• It is used to filter tuples of relation R based on a predicate
• Example:

• Students with Major in CS: σMajor=′CS′ (Students)
• Students accepted in Database course

:
σCourseTitle=′Databases′∧Decision=TRUE (Enrollments)



Selection

σpredicate(R): σP(R) := {t |t ∈ R ∧ R(t) = true}

• Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

• It is used to filter tuples of relation R based on a predicate
• Example:

• Students with Major in CS: σMajor=′CS′ (Students)
• Students accepted in Database course:
σCourseTitle=′Databases′∧Decision=TRUE (Enrollments)



Projection

Πcol1,col2,...,coln(R) : πβ(R) := {tβ|t ∈ R}

• Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

• Example:
• Name and major of all students:

ΠStudName,Major (Students)

• Remark:
• In Relation Algebra, duplicates are ELIMINATED (set theory)
• In SQL, duplicates are not!!! rightarrow in order to eliminate there is

SELECT DISTINCT command;



Projection

Πcol1,col2,...,coln(R) : πβ(R) := {tβ|t ∈ R}

• Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

• Example:
• Name and major of all students: ΠStudName,Major (Students)

• Remark:
• In Relation Algebra, duplicates are ELIMINATED (set theory)
• In SQL, duplicates are not!!! rightarrow in order to eliminate there is

SELECT DISTINCT command;



Projection

Πcol1,col2,...,coln(R) : πβ(R) := {tβ|t ∈ R}

• Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

• Example:
• Name and major of all students: ΠStudName,Major (Students)

• Remark:
• In Relation Algebra, duplicates are ELIMINATED (set theory)
• In SQL, duplicates are not!!! rightarrow in order to eliminate there is

SELECT DISTINCT command;



Selection and projection

Examples:

• Name and date of birth of students with Major in CS

ΠStudName,DoB(σMajor=′CS′(Students)

• Course title and number of credits of all courses offered by
CS department

ΠCourseTitle,Credits(σDepartment=′CS′(Courses))



Selection and projection

Examples:

• Name and date of birth of students with Major in CS

ΠStudName,DoB(σMajor=′CS′(Students)

• Course title and number of credits of all courses offered by
CS department

ΠCourseTitle,Credits(σDepartment=′CS′(Courses))



Assignment statements

• Complex queries may be broken down into simpler
expressions

• Example:
ΠStudName,DoB(σMajor=′CS′(Students))
is equivalent to
R1 = σMajor=′CS′(Students)
R2 := ΠStudName,DoB(R1)



Cartesian/ Cross-Product

R × S := {(a1,a2, . . . ,an,b1,b2, . . . ,bm)|(a1,a2, . . . ,an) ∈
R ∧ (b1,b2,∧,bm) ∈ S}

• Returns a new relation that is the concatenation of every
tuple of relation R with each tuple of realtion S

• Schemas are unified
• How many tuples in the Cartesian product R × S?
• Example: Name and Major of students accepted in English

course.
ΠStudName,Major (σStudents.StudId=Enrollment.StudID∧CourseTitle=English∧Decision=TRUE (Students ×

Enrollments))



Rename

ρR(A1,...,An)(Exp)

• Usage: Disambiguation in self-joins
• Example: Pairs of courses offered by the same department

σD1=D2(ρC1(CT1,D1,C1)(Courses)× ρC2(CT2,D2,C2)(Courses))



Exercise

Which of the following expressions does NOT return the name
and major of students born in Timisoara who applied for
Databases course and were rejected?

1. ΠStudName,Major (σStudents.StudId=Enrollment.StudID(σPoB=Timisoara(Students)×
σCourseTitle−Databases∧Decision=False(Enrollments))

2. ΠStudName,Major (σStudents.StudID=StudID∧PoB=Timisoara∧CourseTitle=DB∧Decision=False(Students ×
ΠStudentID,CourseTitle,Decision(Enrollments)))

3. σStudents.StudId=Enrollment.StudID(ΠStudName,Major (σPoB=Timisoara(Students ×
σCourseTitle=DB∧Decision=FALSE (Enrollments))))



Join Operations

• Typically we only need a susbset of the Cartesian product
• Types of join:

• Theta join
• Equi join
• Natural join

• No additional power to Relational Algebra as there are
shortened forms of other expressions.



Theta join

R ./F S defined R ./AΘB S := {r ∪ s|r ∈ R ∧ s ∈ S ∧ r[A]Θs[B]}

Returns a new relation that contains tuples satisfying the
predicate F from the Cartesian product of R and S.

The predicate F is of the form

F = R.aiΘS.bi

where θ may be one of the comparison operators:

<,>,≤,≥,=, <>

A Theta join is a shorthand form of:

R ./F S = σF (R × S)



Equi Join

R ./F S where F is like R.ai = S.bi
R ./AΘB S := {r ∪ s|r ∈ R ∧ s ∈ S ∧ r[A] = s[B]}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

• All enrollments with their name, major, date and place of
birth



Equi Join

R ./F S where F is like R.ai = S.bi
R ./AΘB S := {r ∪ s|r ∈ R ∧ s ∈ S ∧ r[A] = s[B]}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

• All enrollments with their name, major, date and place of
birth
R1 = Enrollment ./Enrollment .StudentID=Students.StudID Students



Equi Join

R ./F S where F is like R.ai = S.bi
R ./AΘB S := {r ∪ s|r ∈ R ∧ s ∈ S ∧ r[A] = s[B]}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

• All enrollments with their name, major, date and place of
birth
R1 = Enrollment ./Enrollment .StudentID=Students.StudID Students

• Name and major of all enrollments in Networks intro.



Equi Join

R ./F S where F is like R.ai = S.bi
R ./AΘB S := {r ∪ s|r ∈ R ∧ s ∈ S ∧ r[A] = s[B]}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

• All enrollments with their name, major, date and place of
birth
R1 = Enrollment ./Enrollment .StudentID=Students.StudID Students

• Name and major of all enrollments in Networks intro.
R2 = ΠStudName,Major (σCourseTitle=”Networks”(R1))}



Natural Join

R ./ S := {r ∪ sC1...Cn|r ∈ R ∧ s ∈ S ∧ r[B1...Bn] = s[B1...Bn]}
The natural join is an equi-join of the two relations R and S over
all common attributes. One occurrence of each common
attribute is removed from the result.



Natural Join

R ./ S := {r ∪ sC1...Cn|r ∈ R ∧ s ∈ S ∧ r[B1...Bn] = s[B1...Bn]}
The natural join is an equi-join of the two relations R and S over
all common attributes. One occurrence of each common
attribute is removed from the result.

Example: Name and major of students enrolled in Networks.

ΠStudName,Major (σCourseTitle=′Networks′(Students ./ Enrollments))



Set Union

• R ∪ S : R ∪ S := {t |t ∈ R ∨ t ∈ S}
The union of two relations R and S with I and J tuples
respectively, is obtained by concatenating them into one
relation with a maximum of I+J tuples, duplicates being
eliminated.

• R and S must be union compatible. The schema match, in
other words, they have the same number of attributes with
matching domains.

• Example: List of course titles and majors.

ΠCourseTitle(Courses) ∪ ΠMajor (Students)



Set Union

• R ∪ S : R ∪ S := {t |t ∈ R ∨ t ∈ S}
The union of two relations R and S with I and J tuples
respectively, is obtained by concatenating them into one
relation with a maximum of I+J tuples, duplicates being
eliminated.

• R and S must be union compatible. The schema match, in
other words, they have the same number of attributes with
matching domains.

• Example: List of course titles and majors.

ΠCourseTitle(Courses) ∪ ΠMajor (Students)



Set Difference

• R − S
Defines a relation consisting of the tuples that are in
relation R, but not in S. R and S must be union compatible.

• Example: IDs of students who did not enroll in any course

ΠStudID(Students)− ΠStudID(Enrollments)

• IDs and names of students who did not enroll in any
course.



Set Difference

• R − S
Defines a relation consisting of the tuples that are in
relation R, but not in S. R and S must be union compatible.

• Example: IDs of students who did not enroll in any course
ΠStudID(Students)− ΠStudID(Enrollments)

• IDs and names of students who did not enroll in any
course.



Set Difference

• R − S
Defines a relation consisting of the tuples that are in
relation R, but not in S. R and S must be union compatible.

• Example: IDs of students who did not enroll in any course
ΠStudID(Students)− ΠStudID(Enrollments)

• IDs and names of students who did not enroll in any
course.



Set Intersection

• R ∩ S
• Consists of the set of all tuples that are both in R and in S.
• R and S must be union compatible
• Example: Nouns that are both Course titles and majors
• Not additional expressiveness to Relational Algebra:

• R ∩ S = R − (R − S)
• R ∩ S = R ./ S



Exercise

Which of the following English sentences describes the result of
the following expression?
ΠCourseTitle(Courses)− ΠCourseTitle(Enrollment ./
(ΠStudID(σPoB=′Timisoara′(Students)) ∩
ΠStudID(σDecision=TRUE (Enrollments)))

• All courses where all students either were born in
Timisoara or were accepted in any course

• All courses with no Timisoara-born students who were
accepted at any course

• All courses with no Timisoara-born students or rejected
students



Extensions to Relational Algebra

• Left/Right outer join
• Full outer join
• Left/Right semi join
• Anti join
• Division
• Extended projection

• Aggregations
• Groupings













1
1https:

//gregorulm.com/relational-division-in-sql-the-easy-way/

https://gregorulm.com/relational-division-in-sql-the-easy-way/
https://gregorulm.com/relational-division-in-sql-the-easy-way/




















Logical Query Processing Order

The logical query processing order is the logical order in which
the clauses that make up a SELECT statement are processed.
The following mnemonic can help remember the order:

Fast Walking Giants Have Smelly Odours

FROM Clause
WHERE Clause
GROUP BY Clause
HAVING Clause
SELECT Clause
ORDER BY Clause



Logical Query Processing Order

To add to the above list there are two keywords used in the
SELECT clauses that are processed after the ORDER BY
when they are present.
They are logically processed in the following order:

DISTINCT - Removes all duplicate records after the data has
been ordered

TOP - Returns the TOP number or percentage of rows after the
data has been ordered and duplicates have been removed
when DISTINCT is present.



When do we call DBMS relational?

• The 12 + 1 Codd rules
• Foundational rules
• Structural rules
• Integrity rules
• Data manipulation rules
• Data independence rules



Foundational rules

• Rule 0: The system must be able to manage databases
entirely through its relational capabilities

• Rule 12 (non-subversion): If a relational system has a low
level (single-record-at-a-time) language, that low level
cannot be used to subvert or bypass the integrity rules and
constraints expressed in the higher level relational
language (multiple-records-at-a-time).



Structural rules

• Rule 1 (information representation): All information is
represented explicitly at the logical level and in exactly one
way - by values in tables

• Rule 6 (view updating): All views that are theoretically
updatable are also updatable by the system



Integrity rules

• Rule 3 (systematic treatment of null values): Null values
are supported for representing missing information and
inapplicable information in a systematic way, independent
of data types.

• Rule 10 (integrity independence): Integrity constraints
specific to a particular relational database must be
definable in the relational data sublanguage and storable in
the catalog, not in applications.



Data Manipulation rules
• Rule 2 (guaranteed access): Each and every atomic value

in a relational database is guaranteed to be logically
accessible by resorting to a combination of table name,
primary key value and column name.

• Rule 4 (dynamic online catalog based on the relational
model): The database description is represented at the
logical level in the same way as ordinary data, so that
authorized users can apply the same relational language
to its interrogation as they apply to regular data

• Rule 5 (comprehensive data sublanguage): There must be
at least one language whose statements can express all of
the following items: data definition, view definition, data
manipulation, integrity constraints, authorization,
transaction boundaries.

• Rule 7 (high level insert, update, delete): The capability of
handling a base relation or a derived relation as a single
operand applies not only to data retrieval but also to the
insertion, update, and deletion of data.



Data independence rules

• Rule 8 (physiscal data independence): Apps remain
logically unimpaired whenever any changes are made in
either storage representations or access methods.

• Rule 9 (logical data independence): Apps remain logically
unimpaired when information-preserving changes of any
kind that permit unimpairment are made to base tables

• Rule 11 (distribution independence): The DML must
enable apps to remain logically the same whether and
whenever data are physically centralized or distributed.



Bibliography (recommended)


