Databases 2: Introduction to Database
Management Systems

loan Dragan

Sept. 2020

o

FMI

The relational Model

o

FMI

I o

Origins and history

Key concepts

Relational integrity

Relational algebra

SQL implementation

12 + 1 Codd rules for a relational DBMS

History

o

FMI

. Proposed by E.F. Codd in 1970 (A relational model of data

for large shared data banks)

e high degree of data independence

e dealing with data semantics, consistency and redundancy

e introduces the concept of normalization
System R developed by IBM at San Jose Research
Laboratory, California, late 1970s

e Led to the development of SQL
e |nitiated the production of commercial RDBMs

INGRES (Interactive Graphics REtrieval System) at the
University of California at Berkley.

Genealogy of Relational Database Management
System

Genealogy of Relational Database |

gure: Source: hhttps:
/hpi.de/naumann/projects/rdbms—genealogy.html

FN

hhttps://hpi.de/naumann/projects/rdbms-genealogy.html
hhttps://hpi.de/naumann/projects/rdbms-genealogy.html

Popular models used by DBMS

359 systems in ranking, October 2020

Rank Score

oct sep oct | DBMS Database Model oct sep oct
2020 2020 2019 2020 2020 2019
1. 1, 1. Oracle Relational, Multi-model @ 1368.77 -0.59 +12.89
2. 2 2. MysSQLE Relational, Multi-model g 1256.38 -7.87 -26.69
3. 3. 3. Microsoft SQL Server Relational, Multi-model 1043.12 -19.64 -51.60
4. 4. 4. PostgreSQL 3 Relational, Multi-model 542.40 +0.12 +58.49
5. 5 5. MongoDB Document, Multi-model @ 448.02 +1.54 +35.93
6. [6. IBM Db2 Relational, Multi-model 161.90 +0.66 -8.87
7. A8 7 Elasticsearch 3 Search engine, Multi-model g 153.84 +3.35 +3.67
8. 7. 8. Redis Key-value, Multi-medel 153.28 +1.43 +10.37
9. 9. #1l. SQlite @ Relational 125.43 -1.25 +2.80
10. 10. 10. Cassandra Wide column 119.10 -0.08 -4.12

Figure: Source: https://db—engines.com/en/ranking

oY

FMI

https://db-engines.com/en/ranking

Most popular models by major DBMS

Document stores 3.6%
Craph DEMS 0.2%

Key-value stores 2%

Wide column stores 1.6%

Search engines 1.3%

Relational DEMS 90.8% Wide column stores 3. Document stores 8.3%

© 2013, DB-Engines.com Time Series DBMS 0.4% Graph DBMS 1.4%

Search engines 4.7% Key-value stores 4.8%
Native XML DBMS 0.3%

RDF stores 0.3%

Relational DBMS(76%

FN

B-Engines.com

Key characteristics

¢ Very simple model
e Ad-hoc query with high-level languages (SQL)
¢ Efficient implementations

o

FMI

Relational model concepts

e The relational model consists of the following:
1. Collection of relations
2. Set of operators to act on the relation
3. Data integrity for accuracy and consistency
¢ Intension (Schema) vs. Extension of a relational database

e Schema is a structural description of all relations
® |nstance (extension) is the actual content at a given point in time of the
database

o

FMI

Terminology

Relational Database = a collection of normalized relations

Relation = a table with columns and rows
Attribute = a named column of a relation

e Domain = a set of allowable values for one or more attributes
e SQL Data Types

Tuple = a row of a relation
Degree = the number of attributes contained in a relation
Cardinality = the number of tuples of a relation

o

FMI

Relational Database Definition

PEialase

A2BIENNSMEREN

NabletNames

o

FMI

DA

Database relations

Relational schema = a relation name followed bu a set of
attribute and domain name pairs

R={A;:Di,A:Do,...,An: Dp} (1)

Properties of relations
¢ The name is unique
Each cell contains exactly one atomic value
Attribute names are distinct
The values of an attribute are all from the same domain
The order of attributes has no significance
The order of tuples has no significance
N 1NF - a relation satisfying these constraints

FMI

Running Example

Students should enroll in courses they want to attend. One
student may enrolls in up to 8 courses. In order for one course
to run it requires at least 10 enrolled students. As places in
courses are limited, for each enrollment request there will be a
decision associated whether the student is accepted or not in
the course.

Courses are offered by different departments of the university,
each course is uniquely identified by their title and each course
is credited a fixed number of credits. Students may enroll to
courses offered by different departments.

o

FMI

Example

Conceptual model

Student

takes0 ..

o

FMI

Course

Example

A relational database for student enroliment:

Courses(CourseTitle:NVARCHAR(50), Department:NVARCHAR(Z20),
Credits:INTEGER)

Students(StudID:INTEGER, StudName:NVARCHAR(50), DoB:DATE,
PoB:NVARCHAR(50), Majo r:NVARCHAR (40))

Enrollments(StudID:INTEGER, CourseTitle:NVARCHAR(50),
EnrollmentDate:DATE, Decision:BOOLEAN)

o

FMI

Relational Keys

o

FMI

Superkey = an attribute or set of attributes that uniquely
identifies a tuple within a relation

Composite key = a key consisting of more than one
attribute

Candidate key= a superkey such that no proper subset is a
superkey within the relation

e Uniqueness - the values of the candidate key uniquely identify each tuple
e |Irreducibility - no proper subset of K has the uniqueness property

Primary key = a candidate key selected by the database
designer to uniquely identify tuples within a relation
Alternate key = all other candidate keys, except the one
elected to be the primary key

Foreign key = an attribute or a set of attributes within one

relation that matches the candidate key of some (possibly
the same) relation

Exercise

Identify the superkeys, candidate keys, primary keys and
foreign keys in the previous example.

Courses(CourseTitle:NVARCHAR(50), Department:NVARCHAR(Z20),
Credits:INTEGER)

Students(StudID:INTEGER, StudName:NVARCHAR(50), DoB:DATE,
PoB:NVARCHAR(50), Major :NVARCHAR (40))

Enrollments(StudID:INTEGER, CourseTitle:NVARCHAR(50),
EnrollmentDate:DATE, Decision:BOOLEAN)

o

FMI

Exercise

Identify the superkeys, candidate keys, primary keys and
foreign keys in the previous example.

Courses(CourseTitle:CHAR(50), Department:CHAR(20),
Credits:INTEGER)

Students(StudID:INTEGER, StudName:CHAR(50), DoB:DATE,
PoB:CHAR(50), Major:CHAR(40))

Enrollments(StudID: INTEGER, CourseTitle:CHAR(50),
EnrolImentDate:DATE, Decision:BOOLEAN)

o

FMI

Example

Branch (branchNo, street, city, postcode)

Staff (staffNo, fName, IName, position, sex, DOB, salary, branchNo)

PropertyForRent (properyNo, street, city, postcode, type, rcoms, rent, ownerNo, staffiNo,
branchNa)

Client (clientNo, fName, IName, telNo, prefType, maxRent)

PrivateCwner (ownerMo, fName, IName, address, telNa)

Viewing (clientNo, propertyMo, viewDate, comment)

Regisiration (clientNo, branchNo, staffNo, dateJoined)

Figure: Example from Database Systems - A practical approach to
Nesign, Implementation, and Management (41 edition)

FMI

Relational integrity

e Null = a value for an attribute that is currently unknown
(undefined)

¢ Integrity rules: next slides

e General constraints: additional rules specified by the data/
database administrators that define or constrain some
aspects of the enterprise.

e Domain constraints: actual constraints

o

FMI

Relational Integrity

e Entity integrity in a base relation, no attribute of a primary
key can be null.

e Referential integrity if a foreign key exists in a relation,
either the foreign key value must match a candidate key
value of some tuple in its home relation or the foreign key
value must be wholly null.

o

FMI

Querying relational model

Relational algebra : formal

Structural Query Language (SQL) : de facto/implemented
The query language also used for DML and DDL

Some queries to pose, some more difficult

Some easy to execute, others more difficult (expensive to
compute)

o

FMI

Examples

e List name and date of birth of all students with major in CS
¢ Relational algebra: Formal
M studName, DoB (O Major= cs' (Students))

e Structured Query Language (SQL) - de facto/implemented
SELECT StudName, DoB
FROM Students
WHERE Major = ’CS’

o

FMI

Relational algebra

Theoretical language with operations that work on one or
more relations

Both the operands and the results are relations

Closure = relations are closed under the algebra

Operations (operators)
Selection (filter)
Projection (slice)
Join (combine)
Set-based operations
e Cartesian Product (cross-product)
e Union
e Set Difference
e |Intersection

e Rename

e Remark: duplicated tuples are purged from the result

e Bold operators originally defined by E.F. Codd in 1970

FMI

Table name

e R
The simplest query
Returns the copy of the relation

Examples:

e Students
e Enroliment

o

FMI

Selection

Opredicate(R): op(R) := {t|t € R A R(t) = true}

e Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

¢ |t is used to filter tuples of relation R based on a predicate
e Example:
e Students with Major in CS

o

FMI

Selection

Opredicate(R): op(R) := {t|t € R A R(t) = true}

e Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

¢ |t is used to filter tuples of relation R based on a predicate
e Example:
o Students with Major in CS: o yjor—r cs (Students)

o

FMI

Selection

Opredicate(R): op(R) := {t|t € R A R(t) = true}

e Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

¢ |t is used to filter tuples of relation R based on a predicate
e Example:

o Students with Major in CS: o yjor—r cs/ (Students)
e Students accepted in Database course

o

FMI

Selection

Opredicate(R): op(R) := {t|t € R A R(t) = true}

e Works on a single relation R and returns the subset of
relation R that contains only those tuples satisfying the
specified condition (predicate)

¢ |t is used to filter tuples of relation R based on a predicate
e Example:

o Students with Major in CS: o yjor—r cs/ (Students)
e Students accepted in Database course:
O CourseTitle=' Databases’ A Decision=TRUE (Enrollments)

o

FMI

Projection

Meont col2.....con(R) - ng(R) == {ts|t € R}

e Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

e Example:

e Name and major of all students:

o

FMI

Projection

Meont col2.....con(R) - ng(R) == {ts|t € R}

e Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

e Example:

e Name and major of all students: Nsyaname, Major (Students)

o

FMI

Projection

Meont col2.....con(R) - ng(R) == {ts|t € R}

e Works on a single relation R and returns a new relation
that contains a vertical subset of R, extracting the values of
specified attributes and eliminating duplicates.

e Example:

e Name and major of all students: Nsyaname, Major (Students)
¢ Remark:

e |n Relation Algebra, duplicates are ELIMINATED (set theory)
e |n SQL, duplicates are not!!! rightarrow in order to eliminate there is
SELECT DISTINCT command;

o

FMI

Selection and projection

Examples:

e Name and date of birth of students with Major in CS

¢ Course title and number of credits of all courses offered by
CS department

o

FMI

Selection and projection

Examples:
e Name and date of birth of students with Major in CS

N stugname, o (T Major— cs' (Students)
e Course title and number of credits of all courses offered by
CS department

M CourseTitle,Credits (O Department='CS'’ (Courses))

o

FMI

Assignment statements

e Complex queries may be broken down into simpler
expressions

e Example:

M StudName,DoB(U Major='CS’ (StUdentS))
is equivalent to

R1 = O'Major:/CSI(StUdentS)
Rz := Nstyaname,poB(R1)

o

FMI

Cartesian/ Cross-Product

RxS:= {(a1,a2,...,an,b1,b2,...,bm)](a1,ag,...,an)e
R/\(bhbg.//\,bm) S S}

o

FMI

Returns a new relation that is the concatenation of every
tuple of relation R with each tuple of realtion S

Schemas are unified
How many tuples in the Cartesian product R x S?

Example: Name and Major of students accepted in English
course.

N studName, Major (7 Students. Studld— Enroliment. StudiD A CourseTitle=English A Decision—TRUE (Students x

Enrollments))

Rename

PR(A.....Ar) (EXD)
¢ Usage: Disambiguation in self-joins
e Example: Pairs of courses offered by the same department

op,=0,(Pcy(cT1,01,01)(COUrSES) X pc,(cT2,p2,02)(COUrSES))

o

FMI

Exercise

Which of the following expressions does NOT return the name
and major of students born in Timisoara who applied for
Databases course and were rejected?

1. NstuaName, Major (o Students. Studid=Enroliment. StudiD (& PoB=Timisoara(Students) x
O CourseTitle— Databases A Decision=False (ENroliments))

2. NsydName ,Major (o students. StudiD=StudID A PoB=TimisoaraA CourseTitle—DB A Decision—False(Students x
N studentiD, CourseTitle, Decision(Enroliments)))

3. Tstudents. Studld—Enroliment. StudiD (M StudName, Major (7 PoB=Timisoara(Students x
O CourseTitle= DB A Decision—FALSE (Enrollments))))

o

FMI

Join Operations

e Typically we only need a susbset of the Cartesian product
¢ Types of join:
e Theta join
e Equijoin
e Natural join
o No additional power to Relational Algebra as there are
shortened forms of other expressions.

o

FMI

Theta join

Rap S defined R>pep S := {rus|r e RAs e SAry0s}

Returns a new relation that contains tuples satisfying the
predicate F from the Cartesian product of R and S.

The predicate F is of the form
F= R.a,-@S.b,-
where # may be one of the comparison operators:

<> 5 2= <>

A Theta join is a shorthand form of:

A] Rir S=0r(R x S)

FMI

Equi Join

R i< S where Fis like R.a; = S.b;
Riipep S:={ruslre RAse SNy =S}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

¢ All enroliments with their name, major, date and place of
birth

o

FMI

Equi Join

R i< S where Fis like R.a; = S.b;
Riipep S:={ruslre RAse SNy =S}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

¢ All enroliments with their name, major, date and place of
birth
R1 = Enrollment ™Enroliment. StudentlD=Students. StudID Students

o

FMI

Equi Join

R < S where F is like R.a; = S.b;
Ri<peop S:={ruslre RAs&€ SN =spg}
A Equi Join is a Theta join where the operator is = in all
expressions.
Example:
¢ All enroliments with their name, major, date and place of

birth
Ry = Enrollment >gpsoiment. StudentlD=Students. Studip Students

¢ Name and major of all enrollments in Networks intro.

o

FMI

Equi Join

R S where Fis like R.a; = S.b;
Ri<ipop S:={rUuslre RAs¢€ S/\I’[A]ZS[B]}

A Equi Join is a Theta join where the operator is = in all
expressions.
Example:

¢ All enroliments with their name, major, date and place of
birth
Ry = Enrollment >gpsoiment. StudentlD=Students. Studip Students

¢ Name and major of all enrollments in Networks intro.
R2 =Tl Sz‘udName,Mezjor(J CourseTitle=" Networks" (R 1)) }

o

FMI

Natural Join

R S:={rusci..calr € RNSE SAp1. Bn = S[B1..Bn}

The natural join is an equi-join of the two relations R and S over
all common attributes. One occurrence of each common
attribute is removed from the result.

SQL Inner Join

o

FMI

Natural Join

R S:={ruUsci.calr € RNSE SAp1. Bn = S[B1..Bn}

The natural join is an equi-join of the two relations R and S over
all common attributes. One occurrence of each common
attribute is removed from the result.

Example: Name and major of students enrolled in Networks.

M StudName,Major(U CourseTitle=' Networks' (Students >a Enroliments))

o

FMI

Set Union

e RUS:RUS:={tlite Rvte S}
The union of two relations R and S with | and J tuples
respectively, is obtained by concatenating them into one
relation with a maximum of I+J tuples, duplicates being
eliminated.

e R and S must be union compatible. The schema match, in
other words, they have the same number of attributes with
matching domains.

e Example: List of course titles and majors.

o

FMI

Set Union

e RUS:RUS:={tlite Rvte S}
The union of two relations R and S with | and J tuples
respectively, is obtained by concatenating them into one
relation with a maximum of I+J tuples, duplicates being
eliminated.

e R and S must be union compatible. The schema match, in
other words, they have the same number of attributes with
matching domains.

e Example: List of course titles and majors.

McourseTitle(Courses) U Mpyajor (Students)

o

FMI

Set Difference

e R—-S
Defines a relation consisting of the tuples that are in
relation R, but notin S. R and S must be union compatible.

e Example: IDs of students who did not enroll in any course

o

FMI

Set Difference

e R—-S
Defines a relation consisting of the tuples that are in
relation R, but notin S. R and S must be union compatible.

e Example: IDs of students who did not enroll in any course
MNstaip(Students) — Mgyqip(Enrollments)

o

FMI

Set Difference

e R—S
Defines a relation consisting of the tuples that are in
relation R, but notin S. R and S must be union compatible.

e Example: IDs of students who did not enroll in any course
MNstaip(Students) — Mgyqip(Enrollments)

¢ |Ds and names of students who did not enroll in any
course.

o

FMI

Set Intersection

RNS
Consists of the set of all tuples that are both in R and in S.
R and S must be union compatible

Example: Nouns that are both Course titles and majors

Not additional expressiveness to Relational Algebra:
e RNS=R-(R-S)
e RNS=Rx~S

o

FMI

Exercise

Which of the following English sentences describes the result of
the following expression?
I_ICourseTil‘le(Courses) - I_ICourseTitle(Enm”menf >
(N stuaip (o PoB=' Timisoara (Students)) N
M StudlD(aDecision: TRUE (Enrollmen ts)))
¢ All courses where all students either were born in
Timisoara or were accepted in any course

e All courses with no Timisoara-born students who were
accepted at any course

¢ All courses with no Timisoara-born students or rejected

students
A

FMI

Extensions to Relational Algebra

Left/Right outer join
Full outer join
Left/Right semi join

Anti join
Division
Extended projection

® Aggregations
e Groupings

o

FMI

Left / Right Outer Join
R >= S

The left outer join is a join in which tuples from R that do not have
matching values in the common columns of S are also included in the
result relation

Missing values in the second relation (S) are set to null.
Preserves tuples that would have been lost with other types of join.

Example: List of all students and for each one what courses he/she
enrolled into.

N Students =<1 Enrollments

FMI

Full Outer Join

R > §
The result of the full outer join is the set of all combinations of tuples
in R and S that are equal on their common attribute names, in addition

to tuples in S that have no matching tuples in R and tuples in R that
have no matching tuples in S in their common attribute names.

Missing values are set to null.

o

FMI

o

FMI

Left /Right Semi Join

RS Rx S:={rlre RAs€ SATp, . B =3B,..B}

Returns a relation that contains the tuples of R
that participate in the join of R with S

RIXS=TT,, ,.[RDAS), where R(A,, ..., A,)

Example: Full details of students who are accepted
in the Networks course.

o

FMI

Left /Right Semi Join

RS Rx S:={rlrec RAs€ SATp, B, = 5B, B}

Returns a relation that contains the tuples of R
that participate in the join of R with S

RIXS=TT, . (R>XS), whereR(A,, ..., A)

Example: Full details of students who are accepted
in the Networks course.

STUdenT D((GiiourseTiﬂe:‘NeTWorks' AND Decision=T (EnronmenTS”

Anti Join
R s

Returns a relation that contains the tuples in R for
which there is no tuple in S that is equal on their
common attribute names

R Ds: R-(R I 5)
Example: Full details of students who are not
accepted in the Networks course.

o

FMI

Division
R =S R:S:=mg(R)-mg((mg(R)xS)-R)

Defines a relation over the attributes C that
consists of the set of tuples from R that match the
combination of every tuple in S.

T, « I1.(R)

T: « rl.-_:(l':— X 3)— H‘J

T«T,—-T,
Example: Identify all students who enrolled to all
courses offered by CS department.

0
II StudID, CourseTitle (EnrollmenfSI).— II CourseTitle (G Dept='CS’ (COUrseS))

There is No equivalent SQL command! Have a look at below for details

o
FMI 1https:

//gregorulm.com/relational-division-in-sgl-the-easy=way?

https://gregorulm.com/relational-division-in-sql-the-easy-way/
https://gregorulm.com/relational-division-in-sql-the-easy-way/

Aggregate

Sa(R) Applies the aggregate function list, AL, to the relation R to define a relation
over the aggregate list. AL contains one or more (<aggregate_function=,
<attribute>) pairs.

The main aggregate functions are:

- COUNT - returns the number of values in the associated attribute.
- SUM - returns the sum of the values in the associated attribute.

- AVG - returns the average of the values in the associated attribute.
- MIN - returns the smallest value in the associated attribute.

- MAX - returns the largest value in the associated attribute.

Example: Find the number of students born in Timisoara.

r‘q
;!' COUNT studid (O PoB="Timisoara’ (STUde n TS))

o

FMI

Grouping

eaSa(R) Groups the tuples of relation R by the grouping attributes, GA, and then
applies the aggregate function list AL to define a new relation. AL contains
one or more (<aggregate_function=, <attribute>) pairs. The resulting rela-

tion contains the grouping attributes, GA, along with the results of each of
the aggregate functions.

a11 EQ, “ssg aﬂ 8 A:Agﬂp:-,-:Aq Hqs,...‘eﬂi dr> (R)

vrxa(R) = U vrem (044 (R))

teR
Examples: Find the number of students born in
each city

PR (PlaceOfBirth, Nbstudents) (PoB S COUNT studid (STUdenTs)

o

FMI

SQL Implementation of relation model (short)
Relations are mapped to SQL tables

CREATE TABLE Students (

studID int NOT NULL,
studName varchar(50),
DoB date,

PoB varchar(50),
Major varchar(40));

ALTER TABLE - change table’s schema: add/remove columns, add
constraints etc.

o

FMI

SQL Implementation of relation model (short)

Setting up Primary Key in different ways:
While creating the table for single-attribute primary keys
CREATE TABLE Students (
StudID int NOT NULL PRIMARY KEY,
While creating the table for composed primary keys
CREATE TABLE Students (

o

CONSTRAINT PKComposed PRIMARY KEY (StudentName, DoB, PoB));

Later on by modifying table’s structure:
ALTER TABLE Students
ADD PRIMARY KEY (StudentID)

ALTER TABLE Students
ADD CONSTRAINT PKComposed PRIMARY KEY (StudentName, DoB, POB)

Removing Primary Key
ALTER TABLE Students
DROP PRIMARY KEY

ALTER TABLE Students
DROP CONSTRAINT PKComposed

o

FMI

SQL Implementation of relation model (short)

Setting up Alternate Key (Unique constraint) in different ways:
While creating the table for single-attributed unique constraint
CREATE TABLE Students (
someColumn int NOT NULL UNIQUE,
.25

While creating the table for composed unique constraints
CREATE TABLE Students (

ey
CONSTRAINT UNComposed UNIQUE (StudentName, DoB, PoB));
Later on by modifying table’s structure:
ALTER TABLE Students
ADD UNIQUE (SomecColumn)

ALTER TABLE Students
ADD CONSTRAINT UNComposed UNIQUE (StudentName, DoB, PoB)

Removing Primary Key

ALTER TABLE Students
DROP CONSTRAINT UNComposed

o

FMI

SQL Implementation of relation model (short)

Setting up Foreign Key in different ways:
While creating the table for single-attribute foreign keys
CREATE TABLE Enrollments (
studID int FOREIGN KEY REFERENCES Students(StudID),
L)

While creating the table for composed foreign keys
CREATE TABLE Enrollments (
CONSTRAINT FKCourse
FOREIGN KEY (CourseTitle)
REFERENCES Courses(CourseTitle))

Later on by modifying table’s structure:
ALTER TABLE Enrollments
ADD FOREIGN KEY (StudID) REFERENCE Students(StudID)

ALTER TABLE Enrollments
ADD CONSTRAINT FKComposed

FOREIGN KEY (CourseTitle)
REFERENCES Courses(CourseTitle)

Removing Foreign Key

ALTER TABLE Enrollments
DROP CONSTRAINT FKComposed

o

FMI

o

FMI

SQL Implementation of relation model (short)
* Relational algebra is implement by SELECT

SELECT StudName, DoB, PoB {—— Projection
FROM Students

WHERE Major=‘cs’ {——= selection

SELECT StudName, Major {———= Projection
FROM Students, Enrollments ;tC:::::j Join (equi)
WHERE Students.StudID=Enrollments.StudIiD

. s , Selection
AND CourseTitle=‘Databases

Mapping relational operators to SQL
[Relational operator [sqLswpport]

S prodicate (R) SELECT * FROM R WHERE predicate
Meon... con(R) SELECT coll, ..., coln FROM R
Priay. ... ay) (EXP) AS (e.g. coll AS Alor Tablel AS T1)
RUS R UNION'S

R UNION ALL S
R-S R EXCEPTS

R MINUS S

SELECT DISTINCT R.* FROM (R LEFT OUTER JOIN S ON
R.ID=S.ID) WHERE S.ID IS NULL

RnS R INTERSECT §
SELECT * FROM R (INNER | NATURAL) JOIN S
RxS SELECT * FROMR, §

SELECT * FROM R CROSS JOIN §

o

FMI

Mapping relational operators to SQL
[Relational operator [sQusupport]

RIS SELECT * FROM R, S WHERE F

R ><1S SELECT * FROM R NATURAL JOIN §
SELECT * FROM R INNER JOIN S

R >1S SELECT * FROM R LEFT OUTER JOIN S ON R.commonAttrs
= S.commonAttrs

R><cS SELECT * FROM R FULL OUTER JOIN S ON R.commonAttrs
= S.commonAttrs

RIS SELECT R.* FROM R NATURAL JOIN' S

R D SELECT * FROM R WHERE R.commonAtr NOT IN (SELECT
S.commonAttr FROM S WHERE F)

R=+S

S A (R) SELECT <AL> FROM R

on@a (R) SELECT GAT, ..., GAn <AL> FROM R GROUP BY GAT, ...,
GAn

Logical Query Processing Order

The logical query processing order is the logical order in which
the clauses that make up a SELECT statement are processed.
The following mnemonic can help remember the order:

Fast Walking Giants Have Smelly Odours

FROM Clause
WHERE Clause
GROUP BY Clause
HAVING Clause
SELECT Clause
ORDER BY Clause

o

FMI

Logical Query Processing Order

To add to the above list there are two keywords used in the
SELECT clauses that are processed after the ORDER BY
when they are present.

They are logically processed in the following order:

DISTINCT - Removes all duplicate records after the data has
been ordered

TOP - Returns the TOP number or percentage of rows after the
data has been ordered and duplicates have been removed
when DISTINCT is present.

o

FMI

When do we call DBMS relational?

The 12 + 1 Codd rules
Foundational rules
Structural rules
Integrity rules

Data manipulation rules

Data independence rules

o

FMI

Foundational rules

¢ Rule 0: The system must be able to manage databases
entirely through its relational capabilities

¢ Rule 12 (non-subversion): If a relational system has a low
level (single-record-at-a-time) language, that low level
cannot be used to subvert or bypass the integrity rules and
constraints expressed in the higher level relational
language (multiple-records-at-a-time).

o

FMI

Structural rules

e Rule 1 (information representation): All information is
represented explicitly at the logical level and in exactly one
way - by values in tables

e Rule 6 (view updating): All views that are theoretically
updatable are also updatable by the system

o

FMI

Integrity rules

¢ Rule 3 (systematic treatment of null values): Null values
are supported for representing missing information and
inapplicable information in a systematic way, independent
of data types.

e Rule 10 (integrity independence): Integrity constraints
specific to a particular relational database must be
definable in the relational data sublanguage and storable in
the catalog, not in applications.

o

FMI

Data Manipulation rules

o

FMI

Rule 2 (guaranteed access): Each and every atomic value
in a relational database is guaranteed to be logically
accessible by resorting to a combination of table name,
primary key value and column name.

Rule 4 (dynamic online catalog based on the relational
model): The database description is represented at the
logical level in the same way as ordinary data, so that
authorized users can apply the same relational language
to its interrogation as they apply to regular data

Rule 5 (comprehensive data sublanguage): There must be
at least one language whose statements can express all of
the following items: data definition, view definition, data
manipulation, integrity constraints, authorization,
transaction boundaries.

Rule 7 (high level insert, update, delete): The capability of
handling a base relation or a derived relation as a single
operand applies not only to data retrieval but also to the
insertion, update, and deletion of data.

Data independence rules

¢ Rule 8 (physiscal data independence): Apps remain
logically unimpaired whenever any changes are made in
either storage representations or access methods.

e Rule 9 (logical data independence): Apps remain logically
unimpaired when information-preserving changes of any
kind that permit unimpairment are made to base tables

e Rule 11 (distribution independence): The DML must
enable apps to remain logically the same whether and
whenever data are physically centralized or distributed.

o

FMI

Bibliography (recommended)

WIRSE IN

DATABASE SYSTEMS AHABASE

SYSTEM

A Practical Approach to Design,
Implementation, and Management

Jefirwy D (ibeman
Jervifer Waom

el FOURTH EDITION o

A First Course in Database Systems A
Practical Approach to
Database Systems Design, Implementation,

(39 edition) by and Management (4th
Jeffrey Ullman and edition) by Thomas
N Jennifer Widom, Connolly and Carolyn

Prentice Hall, 2007 Eggi Addison-Wesley,

FMI Chapter 2 Chapter 3 & 4

