
Advanced Data Structures

Summary

January 2021

We discussed, among others, about the following data structures and operations on them:

Binary search trees

1. What information must be stored in the nodes of a binary search tree?

2. Answer: the key of the node, a pointer to the parent node, a pointer to the left child, a
pointer to the right child, and satellite data.

3. What operations are of interest for binary search trees?

Answer:

(a) search(r,k): search the node with key k in the binary search tree with root r, and
return a pointer to it. If there is no node with key k, return null.

(b) minimum(r): return a pointer to the node with minimum key in the binary search
tree with root r. If the tree is empty (that is, r is null), return null.

(c) maximum(r): return a pointer to the node with maximum key in the binary search
tree with root r. If the tree is empty (that is, r is null), return null.

(d) successor(r,x): return a pointer to the successor of node x in the binary search
tree with root r. If node x has no successor, return null.

(e) predecessor(r,x): return a pointer to the predecessor of node x in the binary
search tree with root r. If node x has no predecessor, return null.

(f) delete(r,z): delete node z from the binary search tree with root r and return a
pointer to the root of the final binary search tree.

(g) insert(r,x): insert node x in the binary search tree with root r and return a pointer
to the root of the final binary search tree.. It is assumed that node p has no children.

4. What are the average and worst case runtime complexities of these operations when they
are performed on a binary search tree with n nodes?

Answer: All operations have average runtime complexity O(log n) and worst-case run-
time complexity O(n).
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5. How are the keys distributed in the nodes of a binary search tree?
Answer: For every node n is the tree, the keys of the nodes of the left subtree of n are
smaller than the key of n, and the keys of the nodes of the right subtree of n are larger
than the key of n.

6. Which of the following binary trees is a binary search tree?
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Answer: T2

7. Consider the binary search tree T2 from the previous exercise.

(a) Indicate the binary seach tree produced by the insertion of a node with key 11 in
T2.

(b) Indicate the binary serch tree produced by the deletion of the node with key 10 from
T2.

8. Consider binary search trees whose nodes are instances of the C++ class

struct Node {

int key; // key

Node *p; // pointer to parent

Node *left; // pointer to left child

Node *right; // pointer to right child

... // satellite data

}

You should be able to write down efficient implementations of the main operations on
binary search trees, for example:

Node* search(Node* r, int k) {

while(r!=null&&r->key!=k)

r=(k<r->key)?r->left:r->right;

return r;

}

Node* minimum(Node* r) {

if (r == null) return r;

while (r->left!=null) r=r->left;

return r;

}
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Node* maximum(Node* r) {

if (r == null) return r;

while (r->right!=null) r=r->right;

return r;

}

Node* insert(Node* r, Node* x) {

Node* u=r;

Node* v=null;

while(u!=null) {

v=u;

u=(x->key<u->key)?u->left:u->right;

}

x->p=v;

if(v==null) { // r was null

return x;

if(x->key<v->key) v->left=x;

else v->right=x;

return r;

}

Node* delete(Node* r, Node* z) {

Node* newroot = r;

Node* y=(z->left==null||z->right==null)?z:successor(r,z);

Node* x=(y->left!=null)?y->left:y->right;

if(x!=null) x->p=y->p;

if(y->p==null)

newroot=x;

else if(y==y->p->left)

y->p->left=x;

else

y->p->right=x;

if(y!=z) {

z->key=y->key;

// copy y’s satellite data into z

}

return newroot;

}

Node* successor(Node* r) {

if(r==null) return r;

if(r->right!=null) return minimum(r->right);

Node* y=x->p;

while((y!=null)&&(x==y->right)) {

x=y;
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y=y->p;

}

return y;

}

Red-black trees

1. Indicate the general structure of a balanced red-black tree, and the red-black properties.

Answer: the nodes of a balanced red-black tree have the same structure as the nodes
of a binary search tree, but they have an additional field which indicates the color of the
node: red or black.

A balanced red-black tree has five red-black properties: (1) every node is either red or
black, (2) the root is black, (3) every root Nil is black, (4) the children of a red node are
black, and (5) every path from a node to a descendant leaf contains the same number of
black nodes.

2. What are the main operations on red-black trees, and their worst case runtime complexity?

Answer: They are the same as for binary search trees. Their worst case runtime com-
plexity is O(log n)

3. What is the purpose and effect of the operations LeftRotate and RightRotate on
the nodes of red-black trees? You should be able to write down the pseudocode for these
operations.

Answer:

4. What are the height and black height of a node x in a balanced red-black tree? You
should be able to write down the pseudocode for these operations.

Answer: The height of x is the number of edges of a longest path from x to a leaf node.
The black-height is the number of black nodes (including Nil) on the path from x to a
leaf, not counting x.

Suppose the nodes of the tree are instances of the class Node where
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enum Color {RED, BLACK};
struct Node {

int key;

Node *l, *r, *p; // pointers to left child, right child, and parent
Color c; // color
... // satellite data

}

Then the height and black height of a node x in the tree can be computed efficiently as
follows:

int h(Node* x) {

if (x==nil) return 0;

int h1=h(x->left), h2=h(x->right);

return 1+(h1>h2)?h1:h2;

}

int bh(Node* x) {

int blacks=0;

if (x==nil) return 0;

if(x->color==BLACK) blacks--;

while(true) {

if (x->color==BLACK) blacks++;

x=x->left;

if (x==nil) break;

}

return blacks+1;

}

If the tree with root x has n nodes then

(a) h(x) has worst case runtime complexity O(n)

(b) bh(x) has worst case runtime complexity O(log n)

5. Consider the following trees:
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(a) Which of them are balanced red-black trees?

(b) For the trees which are not balanced red-black trees, indicate the conditions which
are not satisfied.

(c) For the balanced red-black trees, indicate their black-height.

6. Draw the balanced red-black tree produced by the insertion of a node with key 11 in the
balanced red-black tree (d) from the previous exercise.

7. Draw the balanced red-black tree produced by the removing the node with key 10 from
the balanced red-black tree (d) from the previous exercise.

Binomial heaps

1. What is a binomial tree?

2. Indicate a typical C++ class for the left-child, right-sibling representation of binomial trees.
(Indicate the meanings of the fields of this class.) Indicate the additional condition that
must be fulfilled by a heap-ordered binomial tree.

3. What is a binomial heap, and how can it be represented in C++?

4. Consider the binomial heap H depicted below:

H.head 25 5 6

37 18 8 14 29

42 11 17 38

27

(a) Draw the binomial heap that results after deleting the node with minimum key from
H.

(b) Draw the binomial heap that results after decreasing key 27 to 7.
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5. Draw the binomial heap that results by merging the binomial heaps H1 and H2 depicted
below:

H1.head 25

39

15

36 19

41

H2.head 1

3

5 6

37 18 8 14 29

42 11 17 38

27

6. Write down the pseudocode for the operation merge(H1, H2) which computes a binomial
heap H by merging the binomial heaps H1 and H2 (which are possibly destroyed).

What is the time-complexity of this operation, if we assume that m and n are the
lengths of the root lists of H1 and H2?

7. Write down the pseudocode for the operation min(H) which computes the minimum key in
a binomial heap H with n key. What is the worst-case time complexity of this operation?

Disjoint-set structures

1. What operations are well-supported by a disjoint-set structure?

2. Indicate how can we compute the connected components of an undirected graph G with
a disjoint-set structure.

3. Indicate a C++ structure for the linked-list representation of a disjoint-set structure, to-
gether with its main operations.

4. Indicate a C++ structure for the rooted-tree representation of a disjoint-set structure,
together with its main operations.

Amortised Analysis

1. What is amortised analysis and how does it differ from average-case time analysis?

2. Indicate the most common techniques for amortised analysis.

3. A k-digit ternary counter counts upward from 0, by keeping the base-3 representation of
a number in an array A[0..k − 1] of digits between 0 and 2. Assume that
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I the lowest-order digit is stored in A[0] and the highest-order digit is stored in A[k−1],

thus it represents the number x =

k−1∑
i=0

A[i] · 3i.

I The initial number stored in the k-digit ternary counter is 0, thus A[0] = . . . =
A[k − 1] = 0.

(a) Write down the pseudocode for the operation Increment(A) which adds 1 modulo
3 to the counter.

(b) Use amortised analysis to show that the amortised cost of a sequence of n increment
operations on an initially 0 counter of this kind takes O(1) time.

Computational geometry

1. Suppose points in plane are represented in C++ as instances of the class

struct Point { float x, y; };

(a) Define the function

float area(Point A, Point B, Point C)

which takes as inputs three distinct points A, B, C and returns the area of triangle
ABC.

(b) Suppose we have two rectangles whose edges are parallel with the axes of coordinates.
Let

A, B be the lower-left and upper-right corners of the first rectangle, and

C, D be the lower-left and upper-right corners of the second rectangle.

Define the function

bool inside(Point A, Point B,Point C, Point D)

which returns true if the first rectangle is inside the second rectangle, and false

otherwise. For example, (A) depicts a situation when the function call should return
true, and (B) indicates a situation when the function call should return false.

A

B

C

D

(A)

A

B

C

D

(B)

2. Let P1, . . . , Pn be the enumeration of the points of a convex polygon, in clockwise order,
and P another point.
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(a) Write down an algorithm that tests if P is on any of the bordering segments of this
polygon.

(b) Write down an algorithm which tests if P is in the interior of the convex polygon.

String matching

1. What is a keyword tree for a set P of patterns? How can it be used to find fast the
occurrences of a pattern from P in a text T?

2. You should be able to compute and draw the keyword tree for a set of patterns, together
with its failure links.

3. Let P = abcab, and δ : {0, 1, 2, 3, 4, 5}×{a, b, c} → {0, 1, 2, 3, 4, 5} the transition function
of the matching automaton AP . Remember that, for every 0 ≤ i ≤ 5 and x ∈ {a, b, c},
δ(i, x) = j if and only if P [1..j] is the longest prefix of P that is a suffix of P [1..j]x.

(a) Fill in the following table with the values of δ(i, x):

δ(i, x) x = a x = b x = c

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5

(b) What is the value of δ∗(ababc)?

Answer:

(a) 0 1 2 3 4 5a b c a b

δ(i, x) x = a x = b x = c

i = 0 1 0 0
i = 1 1 2 0
i = 2 1 0 3
i = 3 4 0 0
i = 4 1 5 0
i = 5 1 0 3

(b) Remember that δ∗(ε) = 0 and δ∗(wx) = δ(δ∗(w), x). Thus

δ∗(a) = δ(δ∗(ε), a) = δ(0, a) = 1,
δ∗(ab) = δ(δ∗(a), b) = δ(1, b) = 2,
δ∗(aba) = δ(δ∗(ab), a) = δ(2, a) = 1,
δ∗(abab) = δ(δ∗(aba), b) = δ(1, b) = 2,
δ∗(ababc) = δ(δ∗(abab), c) = δ(2, c) = 3.
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4. The following is a keyword tree without failure links for thee set of patterns {poet, popo, pope, to}.
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o

Indicate the failure links that should be added to this keyword tree,

Answer: 0→ 0, 7→ 0, 8→ 0, 9→ 0, 4→ 0, 6→ 0, 5→ 7, 1→ 8, 2→ 0, 3→ 9.

Tree traversals

1. Let G be the graph depicted below:

0 1

2 3

5

6

7 8 9

1011

4

and represented with the adjacency lists

adj[0] = [1, 2] adj[1] = [0, 3, 5, 6, 7] adj[2] = [0, 3] adj[3] = [1, 2]

adj[4] = [6, 7, 8] adj[5] = [1, 7] adj[6] = [1, 4, 7] adj[7] = [1, 4, 5, 6, 8, 11]

adj[8] = [4, 7, 9, 10] adj[9] = [8] adj[10] = [8, 11] adj[11] = [7, 10]

(a) Draw the search tree produced by breadth-first traversal from source node 11. Fill in
the table below with the representation with predecessors of this breadth-first search
tree:

Node x 0 1 2 3 4 5 6 7 8 9 10 11
p[x] nil

2. Consider the following graph represented with adjacency lists

0

5

1 2 6

3 9 10

8

7

11 12
4

adj[0] = [1, 5, 6], adj[1] = [0], adj[2] = [4],

adj[3] = [4, 5], adj[4] = [2, 3, 5, 6], adj[5] = [0, 3, 4],

adj[6] = [0, 4], adj[7] = [8], adj[8] = [7],

adj[9] = [10, 11, 12], adj[10] = [9], adj[11] = [9, 12],

adj[12] = [9, 11].
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(a) Draw the search trees produced by the breadth-first traversal of all nodes of this
graph. We assume that the nodes are enumerated in the order

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

(b) Draw the search trees produced by the breadth-first traversal of all nodes of this
graph. We assume that the nodes are enumerated in the order

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

(c) Write the lists that enumerate the nodes of the graph in the preorder/postorder and
reverse postorder produced by the depth-first traversal performed before.

3. Consider the digraph G represented with the adjacency lists

adj[0] = [1] adj[1] = [2] adj[2] = [3, 4] adj[3] = [0]

adj[4] = [5] adj[5] = [6] adj[6] = [4, 7] adj[7] = []

(a) What are the values of x, y, z, t if the following is a representation with adjacency
lists of the reverse digraph Gr:

adj[0] = [x] adj[1] = [0] adj[2] = [1] adj[3] = [2]

adj[4] = [2, y] adj[5] = [4] adj[6] = [z] adj[7] = [t]

(b) Draw the trees produced by the depth first traversal of all nodes in Gr. We assume
that the nodes of the tree are enumerated in the order

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

(c) Write the lists L that enumerate the nodes of the graph in the reverse postorder
produced by the previous depth-first tree traversal of all nodes of Gr.

(d) Draw search trees produced by the depth-first traversal of all nodes of G, if we assume
that the nodes are enumerated in the order given by the previously computed list L.

(e) How many strong components has G? Indicate them.

Dijkstra algorithm

Example:

1. Consider the following weighted digraph:

0
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3

4

5
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70

1060
20
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Indicate the representation with predecessors of the tree of paths with minimum weight
computed by Dijkstra algorithm from source node 0, and draw that tree.

Answer: Remember that Dijkstra algorithm computes progressively the values of 2 arrays:

• d[x]: the weighted distance from source node (which, in this example is 0) to node x

• p[x]: the predecessor (or parent) of x in the tree of paths with minimum weight from
source node to x.

It works as follows.

1. Arrays p and d are initialized as follows:

Node x 0 1 2 3 4 5
p[x] null 0 0 0 0 0
d[x] 0 ∞ ∞ ∞ ∞ ∞

Tee initialization step is followed by 5 rounds of relaxation steps (In general, number of
rounds = number of nodes in the graph). Every relaxation round selects an unmarked
node, marks it, and relaxes all edges from the selected node to unmarked nodes.

The first relaxation round selects node 0, because d[x] has minimum value for the

unmarked node x = 0. We relax the edges 0
25−→ 1 and 0

35−→ 2:

0

1

2

3

4

5

0

∞

∞

∞

∞

∞

25

35

90

1550

50

30

70

1060
20

After this round, arrays p and d have values

Node x 0∗ 1 2 3 4 5
p[x] null 0 0 0 0 0
d[x] 0 25 35 ∞ ∞ ∞

The second relaxation round selects node 1, because d[x] has minimum value for the

unmarked node x = 1. We relax the edges 1
15−→ 2 and 1

90−→ 3:

0

1

2

3

4

5

0

25

35

∞

∞

∞

25

35
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After this round, p and d have values

Node x 0∗ 1∗ 2 3 4 5
p[x] null 0 0 1 0 0
d[x] 0 25 35 115 ∞ ∞

The third relaxation round selects node 2, because d[x] is minimum for the unmarked

node x = 2. We relax the edges 2
30−→ 3 and 2

50−→ 4:

0
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5

0
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After this round, p and d have values

Node x 0∗ 1∗ 2∗ 3 4 5
p[x] null 0 0 2 2 0
d[x] 0 25 35 65 85 ∞

The fourth relaxation round selects node 3, because d[x] is minimum for the unmarked

node x = 3. We relax the edges 3
10−→ 4 and 3

70−→ 5:
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After this round, p and d have values

Node x 0∗ 1∗ 2∗ 3∗ 4 5
p[x] null 0 0 2 3 3
d[x] 0 25 35 65 75 135

The fifth relaxation round selects node 4, because d[x] is minimum for the unmarked

node x = 4. We relax the edge 4
20−→ 5:
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After this round, p and d have values

Node x 0∗ 1∗ 2∗ 3∗ 4∗ 5
p[x] null 0 0 2 3 4
d[x] 0 25 35 65 75 95

These are the final values of arrays p and d.

2. The representation with predecessors of the tree of paths with minimum weights from
source node 0, computed with Dijkstra algorithm is

Node x 0∗ 1∗ 2∗ 3∗ 4∗ 5
p[x] null 0 0 2 3 4

This tree looks as follows:

0

1 2
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4

5

25 35

30
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20

Working with polynomials

1. Suppose a = (a0, a1, . . . , an−1) is the coefficient representation of a polynomial

A(x) = a0 + a1 x+ . . .+ an−1x
n−1

with degree-bound n.

Write the pseudocode of the operation deriv(a) which computes the coefficient represen-
tation of the polynomial

A′(x) = a1 + 2 a2 x+ 3 a3 x
2 + . . .+ (n− 1) an−1x

n−2

and indicate the runtime complexity of your implementation.

14


