
Lecture 12: Polynomials
Fast multiplication with the Fast Fourier Transform

January 2021

Lecture 12: Polynomials



Polynomials
The problem

Polynomials are a data structure used frequently in sciences
and engineering.

We look at efficient methods to add and multiply two
univariate polynomials A(x) and B(x) of degree n:

Straightforward methods: Θ(n) for addition; Θ(n2) for
multiplication
Advanced method, based on Fast Fourier Transform (FFT):
reduces time complexity of polynomial multiplication to
Θ(n log n)

In this lecture we explain how FFT works for polynomial
multiplication.

Lecture 12: Polynomials



Preliminary notions

Polynomial in a variable x over an algebraic field F = a formal sum

A(x) =
n−1∑
j=0

aj x
j

where a0, a1, . . . , aj−1 ∈ F are the coefficients of A(x)

Usually, the field F is C, R or Q.

The degree of A(x) is deg(a) = max{j | aj 6= 0}.
When aj = 0 for all 0 ≤ j < n, we assume deg(A) = 0.
Note that 0 ≤ deg(A) < n.

A degree-bound of A(x) is an integer m > 0 such that
deg(A) < m.

Lecture 12: Polynomials



Polynomial operations

For A(x) =
∑n−1

j=0 aj x
j and B(x) =

∑n−1
j=0 bj x

j we define

Addition: If C (x) = A(x) + B(x) then C (x) =
∑n−1

j=0 cj x
j

where cj = aj + bj for 0 ≤ j < n.

Multiplication: If C (x) = A(x)B(x) then C (x) =
∑2 n−2

j=0 cj x
j

where cj =
∑j

k=0 ak bj−k for 0 ≤ k < 2n − 1.

Example

If A(x) = 2 x2 − 3 x + 3 and B(x) = x2 − 7 x + 9 then

A(x) + B(x) = 3 x2 − 10 x + 12

A(x)B(x) = 2 x4 − 17 x3 + 42 x2 − 48 x + 27

Remarks:

1 deg(A + B) ≤ max(deg(A), deg(B))

2 deg(AB) = deg(A) · deg(B)

Lecture 12: Polynomials



Representing polynomials
The coefficient representation

The coefficient representation of the polynomial A(x) =
∑n

j=0 aj x
j

is the vector of n coefficients (a0, a1, . . . , an−1).

Example: The coefficient representation of x3 − x + 7 is the
vector (7,−1, 0, 1).

The coefficient representation is convenient when we want to
1 add two polynomials with degree bound n:

C (x) = A(x) + B(x) where C (x) =
∑n−1

j=0 cj x
j with

cj = aj + bj for 0 ≤ j < n

Runtime complexity: Θ(n)
2 evaluate A(x) at a given point x0, with Horner’s rule:

A(x0) = Vn = a0+x0 (a1+x0 (a2+. . .+x0(an−1+x0 (an−1+x0·0)) . . .))

where V0 = 0 and Vj = an−j + x0 Vj−1 for 1 ≤ j ≤ n.

Runtime complexity: Θ(n)

Lecture 12: Polynomials



Representing polynomials
The point-value representation

A point-value representation of a polynomial A(x) of degree-bound
n is a set of n point-value pairs {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
such that

xi 6= xj whenever 0 ≤ i < j < n, and

yj = A(xj) for all 0 ≤ j < n.

Example (A point-value representation of A(x) = x3− x2− 6 x + 6)

Lecture 12: Polynomials



Properties of the point-value representation (1)

Assumption: A(x) is a polynomial of degree-bound n

1. The point-value representation
{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} of A(x) is not unique: we
can choose any n distinct points x0, x1, . . . , xn−1

2. Computing yi = A(xi ) with Horner’s rule takes Θ(n) time
⇒ conversion from coefficient representation to point-value
representation takes Θ(n2) time.

3. For every point-value representation
{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} there is a unique
polynomial A(x) of degree-bound n.

The coefficient representation of A(x) can be computed by
interpolation: we can use Lagrange’s formula:

A(x) =
n−1∑
k=0

yk

∏
j 6=k(x − xj)∏
j 6=k(xk − xj)

=
n−1∑
k=0

aj x
j where

aj = (can be computed in time Θ(n2); See [Cormen:2009])

Lecture 12: Polynomials



Properties of the point-value representation (2)

Assumptions: A(x) and B(x) have degree-bound n, and

an extended point-value representation of A(x) is
{(x0, y0), (x1, y1), . . . , (x2 n−1, y2 n−1)}
an extended point-value representation of B(x) is
{(x0, y

′
0), (x1, y

′
1), . . . , (x2 n−1, y

′
2 n−1)}

Then

1 A point-value representation of A(x) + B(x) is

{(x0, y0 + y ′0), (x1, y1 + y ′1), . . . , (xn−1, y2 n−1 + y ′2 n−1)}

2 A point-value representation of A(x)B(x) is

{(x0, y0 · y ′0), (x1, y1 · y ′1), . . . , (xn−1, y2 n−1 · y ′2 n−1)}

The runtime complexity of polynomial addition and
multiplication is Θ(n)

Lecture 12: Polynomials



Polynomial multiplication
What did we learn so far?

a0, a1, . . . , an−1

b0, b1, . . . , bn−1
c0, c1, . . . , c2 n−1

A(x0),B(x0),
A(x1),B(x1),
...
A(x2 n−1),B(x2 n−1)

C (x0),
C (x1),
...
C (x2 n−1)

Evaluation
Time Θ(n2)

Interpolation
Time Θ(n2)

Ordinary multiplication

Time Θ(n2)

Pointwise multiplication

Time Θ(n)

Good news

We can choose x0, x1, . . . , x2 n−1 such that evaluation and
interpolation can be performed in Θ(n log n) time (see next slide)

⇒ polynomial multiplication can be done in time Θ(n log n)

Lecture 12: Polynomials



The complex roots of unity
Properties

The equation zm + 1 = 0 as m distinct complex roots
{ωk

m | 0 ≤ k < m} where ωm = cos 2π
m + i sin 2π

m = e2π i/m.

ωm is called the principal m-th root of unity

ωk
m = e2π i k/m = cos 2 k π

m + i sin 2 k π
m

These complex roots of unity are equally spaced around the
circle of unit radius centered at the origin of the complex
plane. For example, when m = 8, the equation
zm − 1 = z8 − 1 has 8 complex roots:

−i

ω1
8ω3

8

ω5
8 ω7

8ω6
8

i ω2
8

ω0
8 = ω8

8

1

ω4
8

-1

Lecture 12: Polynomials



The discrete Fourier transform (DFT)

Given polynomial A(x) =
∑n−1

j=1 aj x
j

(coefficient representation).

Compute yk = A(ωk
n ) ∈ C for 0 ≤ k < n

This computation produces the point-value representation
{(ω0

n, y0), (ω1
n, y1) . . . , (ωn−1

n , yn−1)} of A(x).

The vector y = (y0, y1, . . . , yn−1) is called the discrete Fourier
transform (DFT) of the vector a = (a0, a1, . . . , an−1).

We write y = DFTn(a).

Lecture 12: Polynomials



The discrete Fourier transform (DFT)

Given polynomial A(x) =
∑n−1

j=1 aj x
j

(coefficient representation).

Compute yk = A(ωk
n ) ∈ C for 0 ≤ k < n

This computation produces the point-value representation
{(ω0

n, y0), (ω1
n, y1) . . . , (ωn−1

n , yn−1)} of A(x).

The vector y = (y0, y1, . . . , yn−1) is called the discrete Fourier
transform (DFT) of the vector a = (a0, a1, . . . , an−1).

We write y = DFTn(a).

Lecture 12: Polynomials



The fast Fourier transform (FFT)

FFT = divide-and-conquer method to compute DFTn(a) in time
Θ(n log n), as opposed to the Θ(n2) time of the method of
evaluation based on Horner’s rule.

Works well when n is a power of 2.

If n = 2N then A(x) = A[0](x) + x A[1](x2) where

A[0](x) = a0 + a2 x + a4 x
2 + . . . + an−2x

n/2 − 1,

A[1](x) = a1 + a3 x + a5 x
2 + . . . + an−1x

n/2 − 1.

I to evaluate A(ωk
n ), we must evaluate A[0](ω2k

n ) and A[1](ω2 k
n )

for 0 ≤ k < n.

I n is even ⇒ {ω2 k
n | 0 ≤ k < n} = {ωk

n/2 | 0 ≤ k < n/2}
⇒ DFTn(...) computation can be reduced recursively to two
DFTn/2(...) computations.

Lecture 12: Polynomials



The fast Fourier transform (FFT)
Pseudocode based on our previous remarks

Lecture 12: Polynomials



Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of Recursive-FFT(a) is Θ(n log n) where
n = a.length

⇒ DFTn(a) can be computed in time Θ(n log n)

⇒ If we choose x0, x1, . . . , xn−1 to be the n complex roots of
unity, we can compute the pointwise representation

{(ω0
n, y0), (ω1

n, y1) . . . , (ωn−1
n , yn−1)}

of A(x) in time Θ(n log n)

We remaining problem to solve is:
How to perform interpolation at the complex roots of
unity in time Θ(n log n)?

Lecture 12: Polynomials



Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of Recursive-FFT(a) is Θ(n log n) where
n = a.length

⇒ DFTn(a) can be computed in time Θ(n log n)

⇒ If we choose x0, x1, . . . , xn−1 to be the n complex roots of
unity, we can compute the pointwise representation

{(ω0
n, y0), (ω1

n, y1) . . . , (ωn−1
n , yn−1)}

of A(x) in time Θ(n log n)

We remaining problem to solve is:
How to perform interpolation at the complex roots of
unity in time Θ(n log n)?

Lecture 12: Polynomials



Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of Recursive-FFT(a) is Θ(n log n) where
n = a.length

⇒ DFTn(a) can be computed in time Θ(n log n)

⇒ If we choose x0, x1, . . . , xn−1 to be the n complex roots of
unity, we can compute the pointwise representation

{(ω0
n, y0), (ω1

n, y1) . . . , (ωn−1
n , yn−1)}

of A(x) in time Θ(n log n)

We remaining problem to solve is:
How to perform interpolation at the complex roots of
unity in time Θ(n log n)?

Lecture 12: Polynomials



Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of Recursive-FFT(a) is Θ(n log n) where
n = a.length

⇒ DFTn(a) can be computed in time Θ(n log n)

⇒ If we choose x0, x1, . . . , xn−1 to be the n complex roots of
unity, we can compute the pointwise representation

{(ω0
n, y0), (ω1

n, y1) . . . , (ωn−1
n , yn−1)}

of A(x) in time Θ(n log n)

We remaining problem to solve is:
How to perform interpolation at the complex roots of
unity in time Θ(n log n)?

Lecture 12: Polynomials



Interpolation at the complex roots of unity

Given y0, y1, . . . , yn−1 ∈ C
Find a0, a1, . . . , an−1 such that

1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω

2 (n−1)
n

1 ω3
n ω6

n ω9
n · · · ω

3 (n−1)
n

...
...

...
...

. . .
...

1 ωn−1
n ω

2 (n−1)
n ω

3 (n−1)
n · · · ω

(n−1)(n−1)
n


︸ ︷︷ ︸

Vandermonde matrix Vn



a0

a1

a2

a3
...

an−1


=



y0

y1

y2

y3
...

yn−1



⇒ aj =
1

n

n−1∑
k=0

yk ω
−k j
n for all 0 ≤ j < n.

Question: How fast can be compute the vector of coefficients
a = (a0, a1, . . . , an−1) with this formula?

Lecture 12: Polynomials



Interpolation at the complex roots of unity

Given y0, y1, . . . , yn−1 ∈ C
Find a0, a1, . . . , an−1 such that

1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω

2 (n−1)
n

1 ω3
n ω6

n ω9
n · · · ω

3 (n−1)
n

...
...

...
...

. . .
...

1 ωn−1
n ω

2 (n−1)
n ω

3 (n−1)
n · · · ω

(n−1)(n−1)
n


︸ ︷︷ ︸

Vandermonde matrix Vn



a0

a1

a2

a3
...

an−1


=



y0

y1

y2

y3
...

yn−1



⇒ aj =
1

n

n−1∑
k=0

yk ω
−k j
n for all 0 ≤ j < n.

Question: How fast can be compute the vector of coefficients
a = (a0, a1, . . . , an−1) with this formula?

Lecture 12: Polynomials



Interpolation with the inverse Fourier transform

We can compute

yj = A(ωj
n) =

n−1∑
k=0

ak ω
k j
n

for all 0 ≤ j < n in time Θ(n log n) with Recursive-FFT(a).

⇒ we can compute

aj =
1

n

n−1∑
k=0

yk ω
−k j
n

for all 0 ≤ j < n in time Θ(n log n) with Inverse-FFT(y)
obtained by changing Recursive-FFT(a) as follows:

1 switch the roles of a and y
2 replace ωn by ω−1

n
3 divide each element by n

⇒ runtime complexity of Inverse-FFT(y): O(n log n)

Lecture 12: Polynomials



Interpolation with the inverse Fourier transform

We can compute

yj = A(ωj
n) =

n−1∑
k=0

ak ω
k j
n

for all 0 ≤ j < n in time Θ(n log n) with Recursive-FFT(a).

⇒ we can compute

aj =
1

n

n−1∑
k=0

yk ω
−k j
n

for all 0 ≤ j < n in time Θ(n log n) with Inverse-FFT(y)
obtained by changing Recursive-FFT(a) as follows:

1 switch the roles of a and y
2 replace ωn by ω−1

n
3 divide each element by n

⇒ runtime complexity of Inverse-FFT(y): O(n log n)

Lecture 12: Polynomials



Exercises

1 Write down the pseudocode of Inverse-FFT(y) by
modifying the pseudocode of Recursive-FFT(a) as
suggested on the previous slide.

2 Suppose a = (a0, a1, . . . , an−1) is the coefficient
representation of a polynomial A(x) with degree-bound n, and
B(x) = (x − b)A(x).

(a) Write down the pseudocode of Multiply1(a, b) which
computes in time Θ(n) the coefficient representation
(b0, b1, . . . , bn) of polynomial B(x).

(b) Write down the pseudocode of Quotient1(a, b) which
computes in time Θ(n) the coefficient representation
(b0, b1, . . . , bn−2) of the quotient of dividing A(x) by x − b.

(c) Write down the pseudocode of Remainder1(a, b) which
computes in time Θ(n) the remainder of dividing A(x) by
x − b.

Remark: the remainder is the value of A(b).

Lecture 12: Polynomials



References

[Cormen:2009] Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, Clifford Stein: Introduction to Algorithms.
Third Edition. The MIT Press. 2009.

Chapter 30: Polynomials and FFT.

Lecture 12: Polynomials


