Lecture 12: Polynomials

Fast multiplication with the Fast Fourier Transform

January 2021

Polynomials

The problem

- Polynomials are a data structure used frequently in sciences and engineering.
- We look at efficient methods to add and multiply two univariate polynomials $A(x)$ and $B(x)$ of degree n :
- Straightforward methods: $\Theta(n)$ for addition; $\Theta\left(n^{2}\right)$ for multiplication
- Advanced method, based on Fast Fourier Transform (FFT): reduces time complexity of polynomial multiplication to $\Theta(n \log n)$
In this lecture we explain how FFT works for polynomial multiplication.

Preliminary notions

Polynomial in a variable x over an algebraic field $F=$ a formal sum

$$
A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}
$$

where $a_{0}, a_{1}, \ldots, a_{j-1} \in F$ are the coefficients of $A(x)$

- Usually, the field F is \mathbb{C}, \mathbb{R} or \mathbb{Q}.
- The degree of $A(x)$ is $\operatorname{deg}(a)=\max \left\{j \mid a_{j} \neq 0\right\}$.
- When $a_{j}=0$ for all $0 \leq j<n$, we assume $\operatorname{deg}(A)=0$.
- Note that $0 \leq \operatorname{deg}(A)<n$.
- A degree-bound of $A(x)$ is an integer $m>0$ such that $\operatorname{deg}(A)<m$.

Polynomial operations

For $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$ we define
Addition: If $C(x)=A(x)+B(x)$ then $C(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$ where $c_{j}=a_{j}+b_{j}$ for $0 \leq j<n$.
Multiplication: If $C(x)=A(x) B(x)$ then $C(x)=\sum_{j=0}^{2 n-2} c_{j} x^{j}$ where $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$ for $0 \leq k<2 n-1$.

Example

If $A(x)=2 x^{2}-3 x+3$ and $B(x)=x^{2}-7 x+9$ then

$$
\begin{aligned}
A(x)+B(x) & =3 x^{2}-10 x+12 \\
A(x) B(x) & =2 x^{4}-17 x^{3}+42 x^{2}-48 x+27
\end{aligned}
$$

Remarks:
(1) $\operatorname{deg}(A+B) \leq \max (\operatorname{deg}(A), \operatorname{deg}(B))$
(2) $\operatorname{deg}(A B)=\operatorname{deg}(A) \cdot \operatorname{deg}(B)$

Representing polynomials

The coefficient representation

The coefficient representation of the polynomial $A(x)=\sum_{j=0}^{n} a_{j} x^{j}$ is the vector of n coefficients $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
Example: The coefficient representation of $x^{3}-x+7$ is the vector $(7,-1,0,1)$.

- The coefficient representation is convenient when we want to
(1) add two polynomials with degree bound n :
$C(x)=A(x)+B(x)$ where $C(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$ with

$$
c_{j}=a_{j}+b_{j} \quad \text { for } 0 \leq j<n
$$

Runtime complexity: $\Theta(n)$
(2) evaluate $A(x)$ at a given point x_{0}, with Horner's rule:
$A\left(x_{0}\right)=V_{n}=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\ldots+x_{0}\left(a_{n-1}+x_{0}\left(a_{n-1}+x_{0} \cdot 0\right)\right) \ldots\right)\right)$
where $V_{0}=0$ and $V_{j}=a_{n-j}+x_{0} V_{j-1}$ for $1 \leq j \leq n$.
Runtime complexity: $\Theta(n)$

Representing polynomials

The point-value representation
A point-value representation of a polynomial $A(x)$ of degree-bound n is a set of n point-value pairs $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ such that

- $x_{i} \neq x_{j}$ whenever $0 \leq i<j<n$, and
- $y_{j}=A\left(x_{j}\right)$ for all $0 \leq j<n$.

Example (A point-value representation of $A(x)=x^{3}-x^{2}-6 x+6$)

Assumption: $A(x)$ is a polynomial of degree-bound n

1. The point-value representation $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ of $A(x)$ is not unique: we can choose any n distinct points $x_{0}, x_{1}, \ldots, x_{n-1}$
2. Computing $y_{i}=A\left(x_{i}\right)$ with Horner's rule takes $\Theta(n)$ time \Rightarrow conversion from coefficient representation to point-value representation takes $\Theta\left(n^{2}\right)$ time.
3. For every point-value representation $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ there is a unique polynomial $A(x)$ of degree-bound n.

- The coefficient representation of $A(x)$ can be computed by interpolation: we can use Lagrange's formula:

$$
A(x)=\sum_{k=0}^{n-1} y_{k} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}=\sum_{k=0}^{n-1} a_{j} x^{j} \quad \text { where }
$$

$$
a_{j}=\left(\text { can be computed in time } \Theta\left(n^{2}\right) ; \text { See [Cormen:2009] }\right)
$$

Assumptions: $A(x)$ and $B(x)$ have degree-bound n, and

- an extended point-value representation of $A(x)$ is

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}\right)\right\}
$$

- an extended point-value representation of $B(x)$ is

$$
\left\{\left(x_{0}, y_{0}^{\prime}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{\prime}\right)\right\}
$$

Then
(1) A point-value representation of $A(x)+B(x)$ is

$$
\left\{\left(x_{0}, y_{0}+y_{0}^{\prime}\right),\left(x_{1}, y_{1}+y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{2 n-1}+y_{2 n-1}^{\prime}\right)\right\}
$$

(2) A point-value representation of $A(x) B(x)$ is

$$
\left\{\left(x_{0}, y_{0} \cdot y_{0}^{\prime}\right),\left(x_{1}, y_{1} \cdot y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{2 n-1} \cdot y_{2 n-1}^{\prime}\right)\right\}
$$

The runtime complexity of polynomial addition and multiplication is $\Theta(n)$

Polynomial multiplication

What did we learn so far?

| $a_{0}, a_{1}, \ldots, a_{n-1}$
 $b_{0}, b_{1}, \ldots, b_{n-1}$ | Time $\Theta\left(n^{2}\right)$ |
| :--- | :--- |\(\underset{\substack{Ordinary multiplication}}{\substack{

, c_{1}, ···, c_{2 n-1}

\hline}}\)

Evaluation

 Time $\Theta\left(n^{2}\right)$Interpolation
Time $\Theta\left(n^{2}\right)$

$$
\begin{aligned}
& A\left(x_{0}\right), B\left(x_{0}\right), \\
& A\left(x_{1}\right), B\left(x_{1}\right), \\
& \vdots \\
& A\left(x_{2 n-1}\right), B\left(x_{2 n-1}\right) \\
& \hline
\end{aligned}
$$

$$
\text { Time } \Theta(n)
$$

$$
\begin{aligned}
& C\left(x_{0}\right), \\
& C\left(x_{1}\right), \\
& \vdots \\
& C\left(x_{2 n-1}\right)
\end{aligned}
$$

Good news

We can choose $x_{0}, x_{1}, \ldots, x_{2 n-1}$ such that evaluation and interpolation can be performed in $\Theta(n \log n)$ time (see next slide)
\Rightarrow polynomial multiplication can be done in time $\Theta(n \log n)$

The complex roots of unity

Properties

The equation $z^{m}+1=0$ as m distinct complex roots
$\left\{\omega_{m}^{k} \mid 0 \leq k<m\right\}$ where $\omega_{m}=\cos \frac{2 \pi}{m}+i \sin \frac{2 \pi}{m}=e^{2 \pi i / m}$.

- ω_{m} is called the principal m-th root of unity
- $\omega_{m}^{k}=e^{2 \pi i k / m}=\cos \frac{2 k \pi}{m}+i \sin \frac{2 k \pi}{m}$
- These complex roots of unity are equally spaced around the circle of unit radius centered at the origin of the complex plane. For example, when $m=8$, the equation $z^{m}-1=z^{8}-1$ has 8 complex roots:

Given polynomial $A(x)=\sum_{j=1}^{n-1} a_{j} x^{j}$ (coefficient representation).
Compute $y_{k}=A\left(\omega_{n}^{k}\right) \in \mathbb{C}$ for $0 \leq k<n$

The discrete Fourier transform (DFT)

Given polynomial $A(x)=\sum_{j=1}^{n-1} a_{j} x^{j}$ (coefficient representation).
Compute $y_{k}=A\left(\omega_{n}^{k}\right) \in \mathbb{C}$ for $0 \leq k<n$

- This computation produces the point-value representation $\left\{\left(\omega_{n}^{0}, y_{0}\right),\left(\omega_{n}^{1}, y_{1}\right) \ldots,\left(\omega_{n}^{n-1}, y_{n-1}\right)\right\}$ of $A(x)$.
- The vector $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is called the discrete Fourier transform (DFT) of the vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
- We write $y=\operatorname{DFT}_{n}(a)$.

The fast Fourier transform (FFT)

FFT $=$ divide-and-conquer method to compute $\operatorname{DFT}_{n}(a)$ in time $\Theta(n \log n)$, as opposed to the $\Theta\left(n^{2}\right)$ time of the method of evaluation based on Horner's rule.

- Works well when n is a power of 2 . If $n=2^{N}$ then $A(x)=A^{[0]}(x)+x A^{[1]}\left(x^{2}\right)$ where

$$
\begin{aligned}
& A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2}-1 \\
& A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2}-1
\end{aligned}
$$

- to evaluate $A\left(\omega_{n}^{k}\right)$, we must evaluate $A^{[0]}\left(\omega_{n}^{2 k}\right)$ and $A^{[1]}\left(\omega_{n}^{2 k}\right)$ for $0 \leq k<n$.
- n is even $\Rightarrow\left\{\omega_{n}^{2 k} \mid 0 \leq k<n\right\}=\left\{\omega_{n / 2}^{k} \mid 0 \leq k<n / 2\right\}$
$\Rightarrow \mathrm{DFT}_{n}(\ldots)$ computation can be reduced recursively to two $\mathrm{DFT}_{n / 2}(\ldots)$ computations.

Recursive-FFT (a)

```
\(1 n=\) a.length \(\quad / / n\) is a power of 2
2 if \(n==1\)
return \(a\)
\(4 \quad \omega_{n}=e^{2 \pi i / n}\)
\(5 \omega=1\)
\(6 a^{[0]}=\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)\)
\(7 a^{[1]}=\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)\)
\(8 y^{[0]}=\operatorname{RECURSIVE-FFT}\left(a^{[0]}\right)\)
\(9 y^{[1]}=\operatorname{RECURSIVE-FFT}\left(a^{[1]}\right)\)
10 for \(k=0\) to \(n / 2-1\)
\(11 \quad y_{k}=y_{k}^{[0]}+\omega y_{k}^{[1]}\)
12
13
    \(y_{k+(n / 2)}=y_{k}^{[0]}-\omega y_{k}^{[1]}\)
    \(\omega=\omega \omega_{n}\)
```

14 return y
// y is assumed to be a column vector

Properties and applications

It can be proved with the Master Theorem that the runtime complexity of Recursive-FFT(a) is $\Theta(n \log n)$ where $n=$ a.length

Properties and applications

It can be proved with the Master Theorem that the runtime complexity of RECURSIVE-FFT(a) is $\Theta(n \log n)$ where $n=$ a.length
$\Rightarrow \mathrm{DFT}_{n}(a)$ can be computed in time $\Theta(n \log n)$

It can be proved with the Master Theorem that the runtime complexity of RECURSIVE-FFT(a) is $\Theta(n \log n)$ where $n=$ a.length
$\Rightarrow \operatorname{DFT}_{n}(a)$ can be computed in time $\Theta(n \log n)$
\Rightarrow If we choose $x_{0}, x_{1}, \ldots, x_{n-1}$ to be the n complex roots of unity, we can compute the pointwise representation

$$
\left\{\left(\omega_{n}^{0}, y_{0}\right),\left(\omega_{n}^{1}, y_{1}\right) \ldots,\left(\omega_{n}^{n-1}, y_{n-1}\right)\right\}
$$

of $A(x)$ in time $\Theta(n \log n)$

Properties and applications

It can be proved with the Master Theorem that the runtime complexity of Recursive-FFT(a) is $\Theta(n \log n)$ where $n=$ a.length
$\Rightarrow \operatorname{DFT}_{n}(a)$ can be computed in time $\Theta(n \log n)$
\Rightarrow If we choose $x_{0}, x_{1}, \ldots, x_{n-1}$ to be the n complex roots of unity, we can compute the pointwise representation

$$
\left\{\left(\omega_{n}^{0}, y_{0}\right),\left(\omega_{n}^{1}, y_{1}\right) \ldots,\left(\omega_{n}^{n-1}, y_{n-1}\right)\right\}
$$

of $A(x)$ in time $\Theta(n \log n)$

- We remaining problem to solve is:

How to perform interpolation at the complex roots of unity in time $\Theta(n \log n)$?

Interpolation at the complex roots of unity

Given $y_{0}, y_{1}, \ldots, y_{n-1} \in \mathbb{C}$
Find $a_{0}, a_{1}, \ldots, a_{n-1}$ such that
$\underbrace{\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\ 1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\ 1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}\end{array}\right)}_{\text {Vandermonde matrix } V_{n}}\left(\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n-1}\end{array}\right)=\left(\begin{array}{c}y_{0} \\ y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{n-1}\end{array}\right)$

$$
\Rightarrow a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-k j} \quad \text { for all } 0 \leq j<n
$$

Interpolation at the complex roots of unity

Given $y_{0}, y_{1}, \ldots, y_{n-1} \in \mathbb{C}$
Find $a_{0}, a_{1}, \ldots, a_{n-1}$ such that
$\underbrace{\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\ 1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\ 1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}\end{array}\right)}_{\text {Vandermonde matrix } V_{n}}\left(\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n-1}\end{array}\right)=\left(\begin{array}{c}y_{0} \\ y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{n-1}\end{array}\right)$

$$
\Rightarrow a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-k j} \quad \text { for all } 0 \leq j<n .
$$

Question: How fast can be compute the vector of coefficients $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ with this formula?

Interpolation with the inverse Fourier transform

We can compute

$$
y_{j}=A\left(\omega_{n}^{j}\right)=\sum_{k=0}^{n-1} a_{k} \omega_{n}^{k j}
$$

for all $0 \leq j<n$ in time $\Theta(n \log n)$ with Recursive-FFT(a).
\Rightarrow we can compute

$$
a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-k j}
$$

for all $0 \leq j<n$ in time $\Theta(n \log n)$ with Inverse-FFT (y) obtained by changing Recursive-FFT(a) as follows:
(1) switch the roles of a and y
(2) replace ω_{n} by ω_{n}^{-1}
(3) divide each element by n

Interpolation with the inverse Fourier transform

We can compute

$$
y_{j}=A\left(\omega_{n}^{j}\right)=\sum_{k=0}^{n-1} a_{k} \omega_{n}^{k j}
$$

for all $0 \leq j<n$ in time $\Theta(n \log n)$ with Recursive-FFT(a).
\Rightarrow we can compute

$$
a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-k j}
$$

for all $0 \leq j<n$ in time $\Theta(n \log n)$ with Inverse-FFT(y) obtained by changing Recursive-FFT(a) as follows:
(1) switch the roles of a and y
(2) replace ω_{n} by ω_{n}^{-1}
(3) divide each element by n
\Rightarrow runtime complexity of INVERSE-FFT(y): $O(n \log n)$
(1) Write down the pseudocode of Inverse-FFT (y) by modifying the pseudocode of RECURSIVE-FFT(a) as suggested on the previous slide.
(2) Suppose $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is the coefficient representation of a polynomial $A(x)$ with degree-bound n, and $B(x)=(x-b) A(x)$.
(a) Write down the pseudocode of $\operatorname{Multiply}(a, b)$ which computes in time $\Theta(n)$ the coefficient representation $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ of polynomial $B(x)$.
(b) Write down the pseudocode of Quotient1 (a, b) which computes in time $\Theta(n)$ the coefficient representation ($b_{0}, b_{1}, \ldots, b_{n-2}$) of the quotient of dividing $A(x)$ by $x-b$.
(c) Write down the pseudocode of Remainder1 (a, b) which computes in time $\Theta(n)$ the remainder of dividing $A(x)$ by $x-b$.

- Remark: the remainder is the value of $A(b)$.

References

[Cormen:2009] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to Algorithms. Third Edition. The MIT Press. 2009.

Chapter 30: Polynomials and FFT.

