Lecture 12: Polynomials Fast multiplication with the Fast Fourier Transform

January 2021

Lecture 12: Polynomials

- Polynomials are a data structure used frequently in sciences and engineering.
- We look at efficient methods to add and multiply two univariate polynomials A(x) and B(x) of degree *n*:
 - Straightforward methods: Θ(n) for addition; Θ(n²) for multiplication
 - Advanced method, based on Fast Fourier Transform (FFT): reduces time complexity of polynomial multiplication to $\Theta(n \log n)$

In this lecture we explain how FFT works for polynomial multiplication.

Polynomial in a variable x over an algebraic field F = a formal sum

$$A(x) = \sum_{j=0}^{n-1} a_j x^j$$

where $a_0, a_1, \ldots, a_{j-1} \in F$ are the coefficients of A(x)

- Usually, the field F is \mathbb{C} , \mathbb{R} or \mathbb{Q} .
- The degree of A(x) is deg $(a) = \max\{j \mid a_j \neq 0\}$.
 - When $a_j = 0$ for all $0 \le j < n$, we assume deg(A) = 0.
 - Note that $0 \leq \deg(A) < n$.
- A degree-bound of A(x) is an integer m > 0 such that deg(A) < m.

Polynomial operations

For
$$A(x) = \sum_{j=0}^{n-1} a_j x^j$$
 and $B(x) = \sum_{j=0}^{n-1} b_j x^j$ we define
Addition: If $C(x) = A(x) + B(x)$ then $C(x) = \sum_{j=0}^{n-1} c_j x^j$
where $c_j = a_j + b_j$ for $0 \le j < n$.
Multiplication: If $C(x) = A(x) B(x)$ then $C(x) = \sum_{j=0}^{2n-2} c_j x^j$
where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$ for $0 \le k < 2n - 1$.

Example

If
$$A(x) = 2x^2 - 3x + 3$$
 and $B(x) = x^2 - 7x + 9$ then

$$A(x) + B(x) = 3x^{2} - 10x + 12$$

$$A(x) B(x) = 2x^{4} - 17x^{3} + 42x^{2} - 48x + 27$$

Remarks:

•
$$\deg(A+B) \leq \max(\deg(A), \deg(B))$$

$$e g(AB) = deg(A) \cdot deg(B)$$

æ

⊡ ► < ≣ ►

Representing polynomials

The coefficient representation

The coefficient representation of the polynomial $A(x) = \sum_{j=0}^{n} a_j x^j$ is the vector of *n* coefficients $(a_0, a_1, \dots, a_{n-1})$.

EXAMPLE: The coefficient representation of $x^3 - x + 7$ is the vector (7, -1, 0, 1).

• The coefficient representation is convenient when we want to

add two polynomials with degree bound *n*:

$$C(x) = A(x) + B(x)$$
 where $C(x) = \sum_{j=0}^{n-1} c_j x^j$ with

$$c_j = a_j + b_j$$
 for $0 \le j < n$

Runtime complexity: $\Theta(n)$

2 evaluate A(x) at a given point x_0 , with Horner's rule:

$$A(x_0) = V_n = a_0 + x_0 (a_1 + x_0 (a_2 + \ldots + x_0 (a_{n-1} + x_0 (a_{n-1} + x_0 \cdot 0)) \ldots))$$

where $V_0 = 0$ and $V_j = a_{n-j} + x_0 V_{j-1}$ for $1 \le j \le n$.

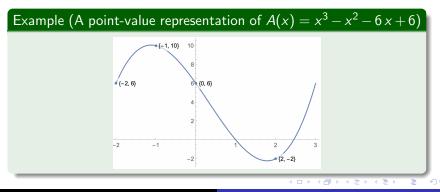
Runtime complexity: $\Theta(n)$

Representing polynomials

The point-value representation

A point-value representation of a polynomial A(x) of degree-bound n is a set of n point-value pairs $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ such that

- $x_i \neq x_j$ whenever $0 \leq i < j < n$, and
- $y_j = A(x_j)$ for all $0 \le j < n$.



Lecture 12: Polynomials

Properties of the point-value representation (1)

ASSUMPTION: A(x) is a polynomial of degree-bound *n*

- 1. The point-value representation $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ of A(x) is not unique: we can choose any *n* distinct points x_0, x_1, \dots, x_{n-1}
- 2. Computing $y_i = A(x_i)$ with Horner's rule takes $\Theta(n)$ time \Rightarrow conversion from coefficient representation to point-value representation takes $\Theta(n^2)$ time.
- For every point-value representation
 {(x₀, y₀), (x₁, y₁), ..., (x_{n-1}, y_{n-1})} there is a unique
 polynomial A(x) of degree-bound n.
 - The coefficient representation of A(x) can be computed by interpolation: we can use Lagrange's formula:

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)} = \sum_{k=0}^{n-1} a_j x^j \quad \text{where}$$
$$a_j = (\text{can be computed in time } \Theta(n^2); \text{ See [Cormen:2009]})$$

Properties of the point-value representation (2)

ASSUMPTIONS: A(x) and B(x) have degree-bound *n*, and

- an extended point-value representation of A(x) is $\{(x_0, y_0), (x_1, y_1), \dots, (x_{2n-1}, y_{2n-1})\}$
- an extended point-value representation of B(x) is $\{(x_0, y'_0), (x_1, y'_1), \dots, (x_{2n-1}, y'_{2n-1})\}$

Then

• A point-value representation of A(x) + B(x) is

$$\{(x_0, y_0 + y'_0), (x_1, y_1 + y'_1), \dots, (x_{n-1}, y_{2n-1} + y'_{2n-1})\}$$

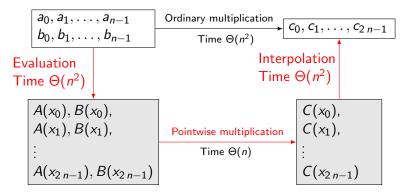
2 A point-value representation of A(x) B(x) is

$$\{(x_0, y_0 \cdot y_0'), (x_1, y_1 \cdot y_1'), \dots, (x_{n-1}, y_{2n-1} \cdot y_{2n-1}')\}$$

The **runtime complexity** of polynomial addition and multiplication is $\Theta(n)$

Polynomial multiplication

What did we learn so far?



Good news

We can choose $x_0, x_1, \ldots, x_{2n-1}$ such that evaluation and interpolation can be performed in $\Theta(n \log n)$ time (see next slide)

 \Rightarrow polynomial multiplication can be done in time $\Theta(n \log n)$

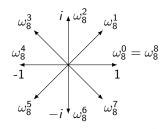
The complex roots of unity Properties

The equation $z^m + 1 = 0$ as *m* distinct complex roots $\{\omega_m^k \mid 0 \le k < m\}$ where $\omega_m = \cos \frac{2\pi}{m} + i \sin \frac{2\pi}{m} = e^{2\pi i/m}$.

• ω_m is called the principal *m*-th root of unity

•
$$\omega_m^k = e^{2\pi i k/m} = \cos \frac{2k\pi}{m} + i \sin \frac{2k\pi}{m}$$

• These complex roots of unity are equally spaced around the circle of unit radius centered at the origin of the complex plane. For example, when m = 8, the equation $z^m - 1 = z^8 - 1$ has 8 complex roots:



The discrete Fourier transform (DFT)

Given polynomial $A(x) = \sum_{j=1}^{n-1} a_j x^j$ (coefficient representation).

Compute $y_k = A(\omega_n^k) \in \mathbb{C}$ for $0 \le k < n$

The discrete Fourier transform (DFT)

Given polynomial $A(x) = \sum_{j=1}^{n-1} a_j x^j$ (coefficient representation).

Compute $y_k = A(\omega_n^k) \in \mathbb{C}$ for $0 \le k < n$

- This computation produces the point-value representation $\{(\omega_n^0, y_0), (\omega_n^1, y_1) \dots, (\omega_n^{n-1}, y_{n-1})\}$ of A(x).
- The vector y = (y₀, y₁,..., y_{n-1}) is called the discrete Fourier transform (DFT) of the vector a = (a₀, a₁,..., a_{n-1}).
- We write $y = DFT_n(a)$.

The fast Fourier transform (FFT)

 $FFT = divide-and-conquer method to compute DFT_n(a) in time <math>\Theta(n \log n)$, as opposed to the $\Theta(n^2)$ time of the method of evaluation based on Horner's rule.

• Works well when *n* is a power of 2.

If $n = 2^N$ then $A(x) = A^{[0]}(x) + x A^{[1]}(x^2)$ where

$$A^{[0]}(x) = a_0 + a_2 x + a_4 x^2 + \ldots + a_{n-2} x^{n/2} - 1,$$

$$A^{[1]}(x) = a_1 + a_3 x + a_5 x^2 + \ldots + a_{n-1} x^{n/2} - 1.$$

▶ to evaluate $A(\omega_n^k)$, we must evaluate $A^{[0]}(\omega_n^{2k})$ and $A^{[1]}(\omega_n^{2k})$ for $0 \le k < n$.

► *n* is even \Rightarrow { $\omega_n^{2k} \mid 0 \le k < n$ } = { $\omega_{n/2}^k \mid 0 \le k < n/2$ }

 \Rightarrow DFT_n(...) computation can be reduced recursively to two DFT_{n/2}(...) computations.

The fast Fourier transform (FFT)

Pseudocode based on our previous remarks

RECURSIVE-FFT(a)

1
$$n = a.length$$
 // n is a power of 2
2 if $n == 1$
3 return a
4 $\omega_n = e^{2\pi i/n}$
5 $\omega = 1$
6 $a^{[0]} = (a_0, a_2, ..., a_{n-2})$
7 $a^{[1]} = (a_1, a_3, ..., a_{n-1})$
8 $y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]})$
9 $y^{[1]} = \text{RECURSIVE-FFT}(a^{[1]})$
10 for $k = 0$ to $n/2 - 1$
11 $y_k = y_k^{[0]} + \omega y_k^{[1]}$
12 $y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}$
13 $\omega = \omega \omega_n$
14 return y // y is assumed to be a column vector

Lecture 12: Polynomials

 \Rightarrow DFT_n(a) can be computed in time $\Theta(n \log n)$

- \Rightarrow DFT_n(a) can be computed in time $\Theta(n \log n)$
- ⇒ If we choose $x_0, x_1, \ldots, x_{n-1}$ to be the *n* complex roots of unity, we can compute the pointwise representation

$$\{(\omega_n^0, y_0), (\omega_n^1, y_1) \dots, (\omega_n^{n-1}, y_{n-1})\}$$

of A(x) in time $\Theta(n \log n)$

- \Rightarrow DFT_n(a) can be computed in time $\Theta(n \log n)$
- ⇒ If we choose $x_0, x_1, \ldots, x_{n-1}$ to be the *n* complex roots of unity, we can compute the pointwise representation

$$\{(\omega_n^0, y_0), (\omega_n^1, y_1) \dots, (\omega_n^{n-1}, y_{n-1})\}$$

of A(x) in time $\Theta(n \log n)$

We remaining problem to solve is:
 How to perform interpolation at the complex roots of unity in time Θ(n log n)?

▶ < ≣ ▶ <</p>

Interpolation at the complex roots of unity



Lecture 12: Polynomials

Interpolation at the complex roots of unity

Given
$$y_0, y_1, \dots, y_{n-1} \in \mathbb{C}$$

Find a_0, a_1, \dots, a_{n-1} such that

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$Vandermonde matrix V_n

$$\Rightarrow a_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \, \omega_n^{-kj} \quad \text{for all } 0 \leq j < n.$$
Question: How fast can be compute the vector of coefficients $a = (a_0, a_1, \dots, a_{n-1})$ with this formula?$$

Lecture 12: Polynomials

伺 ト イヨト イヨト

Interpolation with the inverse Fourier transform

We can compute

$$y_j = A(\omega_n^j) = \sum_{k=0}^{n-1} a_k \, \omega_n^{kj}$$

for all $0 \le j < n$ in time $\Theta(n \log n)$ with RECURSIVE-FFT(a).

 \Rightarrow we can compute

$$a_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \, \omega_n^{-kj}$$

for all $0 \le j < n$ in time $\Theta(n \log n)$ with INVERSE-FFT(y) obtained by changing RECURSIVE-FFT(a) as follows:

- **1** switch the roles of a and y
- 2 replace ω_n by ω_n^{-1}
- 3 divide each element by *n*

Interpolation with the inverse Fourier transform

We can compute

$$y_j = A(\omega_n^j) = \sum_{k=0}^{n-1} a_k \, \omega_n^{kj}$$

for all $0 \le j < n$ in time $\Theta(n \log n)$ with RECURSIVE-FFT(a).

⇒ we can compute

$$a_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \, \omega_n^{-kj}$$

for all $0 \le j < n$ in time $\Theta(n \log n)$ with INVERSE-FFT(y) obtained by changing RECURSIVE-FFT(a) as follows:

- **(1)** switch the roles of a and y
- 2 replace ω_n by ω_n^{-1}
- divide each element by n

 \Rightarrow runtime complexity of INVERSE-FFT(y): $O(n \log n)$

Exercises

- Write down the pseudocode of INVERSE-FFT(y) by modifying the pseudocode of RECURSIVE-FFT(a) as suggested on the previous slide.
- Suppose a = (a₀, a₁,..., a_{n-1}) is the coefficient representation of a polynomial A(x) with degree-bound n, and B(x) = (x b) A(x).
 - (a) Write down the pseudocode of MULTIPLY1(a, b) which computes in time $\Theta(n)$ the coefficient representation (b_0, b_1, \ldots, b_n) of polynomial B(x).
 - (b) Write down the pseudocode of QUOTIENT1(a, b) which computes in time Θ(n) the coefficient representation (b₀, b₁,..., b_{n-2}) of the quotient of dividing A(x) by x b.
 (c) Write down the pseudocode of REMAINDER1(a, b) which computes in time Θ(n) the remainder of dividing A(x) by
 - х b.
 - Remark: the remainder is the value of A(b).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

[Cormen:2009] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: INTRODUCTION TO ALGORITHMS. THIRD EDITION. The MIT Press. 2009.

Chapter 30: Polynomials and FFT.