Lecture 12: Polynomials

Fast multiplication with the Fast Fourier Transform

January 2021

Polynomials
The problem

@ Polynomials are a data structure used frequently in sciences
and engineering.
@ We look at efficient methods to add and multiply two
univariate polynomials A(x) and B(x) of degree n:
o Straightforward methods: ©(n) for addition; ©(n?) for
multiplication
o Advanced method, based on Fast Fourier Transform (FFT):
reduces time complexity of polynomial multiplication to
O(nlogn)
In this lecture we explain how FFT works for polynomial
multiplication.

Lecture 12: Polynomials

Preliminary notions

Polynomial in a variable x over an algebraic field F = a formal sum

n—1
A(x) = Z ajx!
=0

where ag, ar,...,aj—1 € F are the coefficients of A(x)
@ Usually, the field F is C, R or Q.
@ The degree of A(x) is deg(a) = max{j | a; # 0}.
o When a; =0 for all 0 < j < n, we assume deg(A) = 0.
o Note that 0 < deg(A) < n.

@ A degree-bound of A(x) is an integer m > 0 such that
deg(A) < m.

Lecture 12: Polynomials

Polynomial operations

For A(x) = J’Zol ajx) and B(x) = Zfz_ol b; x/ we define
Addition: If C(x) = A(x) + B(x) then C(x) = Y_1—5 ¢;
where ¢; = aj + bj for 0 < j < n.
Multiplication: If C(x) = A(x) B(x) then C(x) = Zz 2 X
where ¢; = ZJI.(:O ag bj_y for 0 < k <2n—1.

If A(x) =2x2—3x+3and B(x) = x? —7x+9 then

A(x) + B(x) =3x* —10x 4 12
A(x) B(x) =2x* — 17x3 +42x% — 48 x + 27

Remarks:
Q deg(A+ B) < max(deg(A),deg(B))
@ deg(AB) = deg(A) - deg(B)

Lecture 12: Polynomials

Representing polynomials
The coefficient representation

The coefficient representation of the polynomial A(x) =37 a X
is the vector of n coefficients (ag, a1, ..., an—1).

ExAMPLE: The coefficient representation of x3 — x + 7 is the
vector (7,—1,0,1).
@ The coefficient representation is convenient when we want to
© add two polynomials with degree bound n:
C(x) = A(x) + B(x) where C(x) = ZJ":_OI ¢; X with
¢G=aj+b for0<j<n
Runtime complexity: ©(n)
@ evaluate A(x) at a given point xo, with Horner's rule:

A(Xo) =V, = ap+xo (31+X0 (22+. . .+X0(an,1+X0 (a,,,l-ﬁ-Xo-O)) ..))

where Vg =0and V; =a,_j+x Vj_1 for 1 <j < n.

Runtime complexity: ©(n)

Lecture 12: Polynomials

Representing polynomials
The point-value representation

A point-value representation of a polynomial A(x) of degree-bound

n is a set of n point-value pairs {(xo, ¥0), (X1, ¥1); - - -+ (Xn—1,¥n—1)}
such that

® x; # x; whenever 0 </ < j < n, and
o y;=A(x) forall 0 <j < n.

Example (A point-value representation of A(x) = x> —x2 —6x +6)

/—«(1,10} 10
o
\s{ove)

-2.6

Lecture 12: Polynomials

Properties of the point-value representation (1)

ASSUMPTION: A(x) is a polynomial of degree-bound n

1. The point-value representation
{(x0,¥0), (x1,¥1), -+, (Xn—1,¥n—1)} of A(x) is not unique: we
can choose any n distinct points xp, X1, ..., Xp—1

2. Computing y; = A(x;) with Horner's rule takes ©(n) time
= conversion from coefficient representation to point-value
representation takes ©(n?) time.

3. For every point-value representation

{(x0,¥0), (x1,¥1), -+, (Xn—1,¥n—1)} there is a unique
polynomial A(x) of degree-bound n.

o The coefficient representation of A(x) can be computed by
interpolation: we can use Lagrange's formula:

n—1
A(x) = Zyknﬁéki Z ajx’ where
k=0

J;ék(xk - XJ

aj = (can be computed in time @(?); See [Cormen:2009])

Lecture 12: Polynomials

Properties of the point-value representation (2)

ASSUMPTIONS: A(x) and B(x) have degree-bound n, and
@ an extended point-value representation of A(x) is
{(XO,}/O)7 (Xl,)/1); T (X2 n—1,Y2 n—l)}
@ an extended point-value representation of B(x) is
{(X07y6)7 (X17 }’{)7 SRR (X2 n—lvyén—l)}
Then

@ A point-value representation of A(x) 4+ B(x) is
{(X07.y0 + yé)? (X17Y1 + y{)a ey (Xn—17)/2 n—1 + _yé nfl)}
@ A point-value representation of A(x) B(x) is

{(X07_y0 : .y(/))7 (X17}/1 .)/{)7 sy (Xn—17y2n—1 : .yén—l)}

The runtime complexity of polynomial addition and
multiplication is ©(n)

Lecture 12: Polynomials

Polynomial multiplication
What did we learn so far?

Ordinary multiplication

da0,4d1,...,4dn-1
b07 b17 R} bn—l
Evaluation
Time ©(n?)

Time O(n?)

A(x0), B(xo),
A(Xl), B(Xl),

;4(X2 n—1), B(x2n-1)

Pointwise multiplication C(Xl)y

~{ €0,Cly---5C2n-1 ‘

y

Interpolation
Time ©(n?)

C(x0),

Time ©(n)

Good news

Clx2n_1)

We can choose xp, x1, .

.., X2 n_1 such that evaluation and

interpolation can be performed in ©(n log n) time (see next slide)

= polynomial multiplication can be done in time ©(n log n)

Lecture 12: Polynomials

The complex roots of unity

Properties

The equation z"+1=0as m distinct complex roots
{wk |0 < k < m} where wp, = cos 2T + i sin 2T = 27i/m,

@ wn, is called the principal m-th root of umty
o wk = e2mik/m — cos —2,’;” + i sin —257”

@ These complex roots of unity are equally spaced around the
circle of unit radius centered at the origin of the complex
plane. For example, when m = 8, the equation

m _ 1 =28 —1 has 8 complex roots:

[4 W
wi 4B wg
wq w§ = w§
-1 1
7
wg’ 6 Wg

Lecture 12: Polynomials

The discrete Fourier transform (DFT)

Given polynomial A(x) = Zj";ll ajxI

(coefficient representation).
Compute yx = A(wk) e Cfor0< k< n

Lecture 12: Polynomials

The discrete Fourier transform (DFT)

Given polynomial A(x) = Zj";ll ajxI
(coefficient representation).
Compute yx = A(wk) e Cfor0< k< n

@ This computation produces the point-value representation
{(@D:y0)s (Whyy1) -5 (Wi yn—1)} of A(x).

@ The vector y = (yo,y1,-..,Yn—1) is called the discrete Fourier
transform (DFT) of the vector a = (ag, a1, ..., an—1).

e We write y = DFT,(a).

Lecture 12: Polynomials

The fast Fourier transform (FFT)

FFT = divide-and-conquer method to compute DFT,(a) in time
O(n log n), as opposed to the ©(n?) time of the method of
evaluation based on Horner's rule.

@ Works well when n is a power of 2.
If n=2N then A(x) = Al%(x) 4 x All(x?) where

A[O](X) =ap+axx—+ a4x2 +...+ 3n_2x”/2 —1,
All(x) = a1 +a3x + a5 x® + ...+ ap_1x"? — 1.

> to evaluate A(wX), we must evaluate Al%(w2¥) and Altl(w?2k)
for 0 < k < n.
> niseven:>{w,%k]O§k<n}:{w5/2\0§k<n/2}
= DFT,(...) computation can be reduced recursively to two
DFT, 5(...) computations.

Lecture 12: Polynomials

The fast Fourier transform (FFT)

Pseudocode based on our previous remarks

RECURSIVE-FFT (a)

1 n = a.length // n is a power of 2
2 ifn==1

3 return a

4 W, = eZni/n

5 w=1

6 al = (ag,a,,...,a,_)

7 aV = (ay,as,...,a,1)

8 yl = RECURSIVE-FFT (a!®))

9 ylll = RECURSIVE-FFT (a!1)
10 fork =0ton/2—1

[0] [1]

11 Ve =Y twy;
12 YVit@n/2) = J’;[co] _wyl[cl]
13 w = 0w,

14 return y // y is assumed to be a column vector

Lecture 12: Polynomials

Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of RECURSIVE-FFT(a) is ©(n log n) where
n = a.length

Lecture 12: Polynomials

Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of RECURSIVE-FFT(a) is ©(n log n) where
n = a.length

= DFT,(a) can be computed in time ©(n log n)

Lecture 12: Polynomials

Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of RECURSIVE-FFT(a) is ©(n log n) where
n = a.length

= DFT,(a) can be computed in time ©(n log n)

= If we choose xp, x1,...,Xn—1 to be the n complex roots of
unity, we can compute the pointwise representation

{(wn,y0), (wWpy1) .- (Wi yne1)}

of A(x) in time ©(n log n)

Lecture 12: Polynomials

Properties and applications

It can be proved with the Master Theorem that the runtime
complexity of RECURSIVE-FFT(a) is ©(n log n) where

n = a.length
= DFT,(a) can be computed in time ©(n log n)
= If we choose xp, x1,...,Xn—1 to be the n complex roots of

unity, we can compute the pointwise representation

{(wn,y0), (wWpy1) .- (Wi yne1)}

of A(x) in time ©(n log n)

@ We remaining problem to solve is:
How to perform interpolation at the complex roots of
unity in time ©(n log n)?

Lecture 12: Polynomials

Interpolation at the complex roots of unity

Given Yo, Y1, ¥Yn—1 € C

Find ag,ai1,...,an_1 such that

! ! 12 13 r}fl 4 Yo
1 w, wy, w;, wp a1 ¥
1 2 4 6 2(n—1)

ws Wh Wn Wn a2 Y2

—-1 =

1w wb w; ,37(n) as y3
1wt w%(nfl) u)g(nfl) . wgnfl)(nfl) an—1 Yn—1

Vandermonde matrix V,

-1
14 ; ,
éajzzg yew K forall0<j < n.
k=0

Lecture 12: Polynomials

Interpolation at the complex roots of unity

Given Yo, Y1, ¥Yn—1 € C

Find ag,ai1,...,an_1 such that

! ! 12 13 r}fl 4 Yo
1 w, wy, w;, wp a1 ¥
1 2 4 6 2(n—1)

ws Wh Wn Wn a2 Y2

—-1 =

1wl w® w? wi(”) as y3
1wt u}r21("*1) u)g(nfl) . wgnfl)(nfl) an—1 Yn—1

Vandermonde matrix V,

~1
1< ’ _
éajzzg yew K forall0<j < n.
k=0

Question: How fast can be compute the vector of coefficients
a=(ap,a1,...,an—1) with this formula?

Lecture 12: Polynomials

Interpolation with the inverse Fourier transform

We can compute

n—1
i =AWh) =) akwy’
k=0

for all 0 <j < nin time ©(nlog n) with RECURSIVE-FFT(a).

= we can compute
1 n—1
J n n
k=0

for all 0 < j < nin time ©(n log n) with INVERSE-FFT(y)
obtained by changing RECURSIVE-FFT(a) as follows:

© switch the roles of a and y

@ replace w, by w, !

© divide each element by n

Lecture 12: Polynomials

Interpolation with the inverse Fourier transform

We can compute

n—1
i =AWh) =) akwy’
k=0

for all 0 <j < nin time ©(nlog n) with RECURSIVE-FFT(a).

= we can compute
1 n—1
J n n
k=0

for all 0 < j < nin time ©(n log n) with INVERSE-FFT(y)
obtained by changing RECURSIVE-FFT(a) as follows:

© switch the roles of a and y

@ replace w, by w, !

© divide each element by n

= runtime complexity of INVERSE-FFT(y): O(n logn)

Lecture 12: Polynomials

Exercises

@ Write down the pseudocode of INVERSE-FEFT(y) by
modifying the pseudocode of RECURSIVE-FFT(a) as
suggested on the previous slide.

@ Suppose a = (ag, a1, . . .,an—1) is the coefficient
representation of a polynomial A(x) with degree-bound n, and
B(x) = (x — b) A(x).

(a) Write down the pseudocode of MULTIPLY1(a, b) which
computes in time ©(n) the coefficient representation
(bo, b1, - .., b,) of polynomial B(x).
(b) Write down the pseudocode of QUOTIENT1(a, b) which
computes in time ©(n) the coefficient representation
(bo, b1, ..., by—2) of the quotient of dividing A(x) by x — b.
(c) Write down the pseudocode of REMAINDER1(a, b) which
computes in time ©(n) the remainder of dividing A(x) by
x — b.

o Remark: the remainder is the value of A(b).

Lecture 12: Polynomials

References

[Cormen:2009] Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, Clifford Stein: INTRODUCTION TO ALGORITHMS.
THIRD EDITION. The MIT Press. 2009.

Chapter 30: Polynomials and FFT.

Lecture 12: Polynomials

