Lecture 11: Weighted graphs Paths with minimum weight. Algorithms: Bellman-Ford, Dijkstra, Floyd-Warshall

december 2020

Lecture 11: Weighted graphs

A weighted graph is a graph G = (V, E) with a function

 $w: E \to \mathbb{R}$ which assigns a weight w(e) to every edge $e \in E$.

- Weights can represent distances between node, but also other metrics, like costs, penalties, losses or other quantities that accumulate in a linear fashion along a path and we wish to minimize.
- We will study only simple weighted graphs, that is, graphs
 - without loops
 - with at most one edge from a node to another node
- We will write w(x, y) instead of w(e) if e is the edge x−y or arc x→y.
- Also, we will assume that w(x, x) = 0 and w(x, y) = +∞ if there is no edge from x to y.

• • = • • = •

We write $x \stackrel{\pi}{\rightsquigarrow} y$ to indicate the fact that π is a list of nodes starting with x and ending with y.

We write $x \stackrel{\pi}{\leadsto} y$ to indicate the fact that π is a list of nodes starting with x and ending with y.

Weight of a list $\pi = [x_1, x_2, \dots, x_k]$ is

$$\operatorname{length}_w(\pi) = \sum_{i=1}^{k-1} w(x_i, x_{i+1}).$$

If k = 1 then $\pi = [x_1]$ and $\text{length}_w(\pi) = 0$.

Weighted distance from x to y in G is

 $\delta_w(x,y) = \min\{\operatorname{length}_w(\pi) \mid x \stackrel{\pi}{\leadsto} y\}.$

Lecture 11: Weighted graphs

• • = • • = •

Example

$d \xrightarrow{1} c$	$\delta_w(x,y)$	y = a	y = b	y = c	y = d						
	x = a	0	1	4	3						
8 6	x = b	4	0	3	2						
5	<i>x</i> = <i>c</i>	$+\infty$	$+\infty$	0	$+\infty$						
a b	x = d	$+\infty$	$+\infty$	$+\infty$	0						
4	_										
$length_w([a, b, c])$	= 7,										
$\operatorname{length}_{w}([a, d, c]) = 9,$											
$length_w([a, b, d, d))$	c]) = 4.										

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

We will describe algorithmic solutions for the following problems:

- Find paths with minimum weight from a source node s to all nodes that can be reached from s.
- Find paths with minimum weight from x to y for all pairs of connected nodes x ~> y.

We will describe algorithmic solutions for the following problems:

- Find paths with minimum weight from a source node s to all nodes that can be reached from s.
- ② Find paths with minimum weight from x to y for all pairs of connected nodes x → y.

Remark

If $\pi = [x_1, x_2, ..., x_k]$ is a path from x_1 to x_k with length_w(π) = $\delta_w(x_1, x_k)$, then for all $1 \le i \le j \le n$: • If $\pi_{i,j} = [x_i, x_{i+1}, ..., x_j]$ then length_w($\pi_{i,j}$) = $\delta(x_i, k_j)$. That is, all subpaths of a path with minimum weight have minimum weight.

• • = • • = •

Edges *e* with w(e) < 0 can form cycles with minimum weight \Rightarrow for all nodes *x*, *y*:

- If there is a node z of a cycle c with negative weight, andi x → z → y then there is no x → y with minimum weight because we can keep traversing c to produce paths whose weight decreases to -∞. In this case, we define δ_w(x, y) = -∞.
- Otherwise, $\delta_w(x, y) \in \mathbb{R}$ and there is $x \stackrel{\pi}{\rightsquigarrow} y$ with length_w(π) = $\delta_w(x, y)$.

Cycles with negative weight Example

The following digraph has cycles with negative weight:

The following figure indicates the values $\delta_w(s, x)$ for all x:

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

π can not contain a cycle with strictly negative weight because it would imply δ_w(x, y) = −∞.

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

- *π* can not contain a cycle with strictly negative weight because it would imply δ_w(x, y) = −∞.
- α can not contain a cycle with strictly positive weight because
 if we eliminate it from π we obtain x → y with
 length_w(π') < length_w(π) = δ_w(x, y), contradiction.

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

- *π* can not contain a cycle with strictly negative weight because it would imply δ_w(x, y) = −∞.
- α can not contain a cycle with strictly positive weight because
 if we eliminate it from π we obtain x → y with
 length_w(π') < length_w(π) = δ_w(x, y), contradiction.
- We can assume π has no cycles with weight 0 because we can eliminate them from π without changing the weight.

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

- *π* can not contain a cycle with strictly negative weight because it would imply δ_w(x, y) = −∞.
- We can assume π has no cycles with weight 0 because we can eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths $i \stackrel{\pi}{\leadsto} j$ with minimum weight. These paths contain at most |V| = n nodes, thus at most n-1 edges.

Paths with minimum weight from a source node *s* Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a tree T_s with root s such that

- The set of nodes of T_s is $S_s = \{x \in V \mid s \rightsquigarrow x\}$
- Por every s ∈ S_s, the list of nodes on the branches from s to x in T_s is a path with minimum weight from s to x in G.

Such a tree is called tree of paths with minimum weights from s in G.

Paths with minimum weight from a source node *s* Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a tree T_s with root s such that

- The set of nodes of T_s is $S_s = \{x \in V \mid s \rightsquigarrow x\}$
- Provide a set of the set of t

Such a tree is called tree of paths with minimum weights from s in G.

• **Dijkstra algorithm** is defined for weighted graphs with w(e) > 0 for all edges *e*.

Paths with minimum weight from a source node *s* Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a tree T_s with root s such that

- The set of nodes of T_s is $S_s = \{x \in V \mid s \rightsquigarrow x\}$
- Por every s ∈ S_s, the list of nodes on the branches from s to x in T_s is a path with minimum weight from s to x in G.

Such a tree is called tree of paths with minimum weights from s in G.

- **Dijkstra algorithm** is defined for weighted graphs with w(e) > 0 for all edges *e*.
- Bellman-Ford algorithm is defined for the general case, when we can have edges *e* with w(e) < 0.
 - It detects possible cycles with negative weight that can be reached from the source node s. In this case, it returns false to signal the existence of such a cycle, and it abandons the construction of T_s .

Illustrated example

The weighted digraph from Fig. (a) has 2 tree of paths with minimum weights from s. Figures (b) and (c) highlight the edges of these trees with thick arrows, and the value $\delta_w(s, x)$ is written inside every node x.

Bellman-Ford algorithm and Dijkstra algorithm Common features (1)

The algorithms operate with

- the representation with predecessors of a tree A_s with root s and set of nodes V. We will assume that, for every x ∈ V, π_x is the list of nodes from s to x in A_s.
- **2** d[x]: an upper bound for length_w(π_x):

 $\forall x \in V.\delta_w(s,x) \leq \text{length}_w(\pi_x) \leq d[x].$

Bellman-Ford algorithm and Dijkstra algorithm Common features (1)

The algorithms operate with

- the representation with predecessors of a tree A_s with root s and set of nodes V. We will assume that, for every x ∈ V, π_x is the list of nodes from s to x in A_s.
- **2** d[x]: an upper bound for length_w(π_x):

$$\forall x \in V.\delta_w(s, x) \leq \text{length}_w(\pi_x) \leq d[x].$$

The initial values are

- p[s] = null and p[x] = s for all $x \in V \{s\}$, si
- d[s] = 0 and $d[x] = +\infty$ for all $x \in V \{s\}$.

unde $V = \{s, x_1, x_2, \dots, x_n\}$. Valorile lui $\mathbf{d}[x]$ sunt indicate în interiorul nodurilor respective.

Bellman-Ford algorithm and Dijkstra algorithm Common features (2)

The values of d[] and p[] are modified by performing a finite number of edge relaxations; it is guaranteed that, when they stop:

• A_s is a tree of paths with minimum weights from s in G.

•
$$d[x] = \delta_w(s, x)$$
 for all $x \in V$.

Relaxing an edge from x to y

If d[x] + w(x, y) < d[y] and we consider the path $\pi'_y = s \stackrel{\pi_x}{\leadsto} x \to y$ then $\delta_w(x, y) \leq \text{length}_w(\pi'_y) = \text{length}_w(\pi_x) + w(x, y) \leq d[x] + w(x, y) < d[y]$

 \Rightarrow we can replace p[y] with p[x] and d[y] cu d[x] + w(x, y).

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Pseudocode

```
boolean BellmanFord(G,s) {
  initialize(G,s);
  for i=1 to G.V()-1
     foreach x \in V(G)
       for (y:adj[x])
            relax(x,y);
  foreach x \in V(G)
     for (y:adj[x])
          if (d[x] > d[y] + w(x, y))
              return false;
  return true;
}
```

Pseudocode

```
boolean BellmanFord(G,s) {
  initialize(G,s);
  for i=1 to G.V()-1
     foreach x \in V(G)
       for (y:adj[x])
            relax(x,y);
  foreach x \in V(G)
     for (y:adj[x])
          if (d[x] > d[y] + w(x, y))
              return false;
  return true;
}
```

Complexity (running time): $O(n^3)$

Illustrated example

- ・ロト ・母 ト ・ ヨト ・ ヨー うへの

Lecture 11: Weighted graphs

Illustrated example

After initialization:

Lecture 11: Weighted graphs

Illustrated example

After the 6-th for loop:

ure 11: Weighted graphs

Illustrated example

After the 8-th for loop:

ecture 11: Weighted graphs

Illustrated example

After the 10-th for loop:

The algorithm returns false because it detects

$$d[f] = -11 > d[e] + w(e, f).$$

```
void Dijkstra(G,s) {
    initialize(G,s);
    Q=set of nodes of G;
    while (!Q.isEmpty()) {
        extrage u cu d[u] = min{d[x] | x ∈ Q} din Q;
        for (v:G.adj(u))
            if (Q.contains(v))
                relax(u,v);
    }
}
```

```
void Dijkstra(G,s) {
    initialize(G,s);
    Q=set of nodes of G;
    while (!Q.isEmpty()) {
        extrage u cu d[u] = min{d[x] | x ∈ Q} din Q;
        for (v:G.adj(u))
            if (Q.contains(v))
                relax(u,v);
    }
}
```

Complexity (running time): $O(n^2)$

Illustrated example

After initialization we have 2 +∞)c а $+\infty$ С 2 2 х 6 6 9 $\left(0 \right)$ $+\infty$ $+\infty$ ∞ s у 5 ð Ś Ś $+\infty$ $+\infty)$ d b 4

Lecture 11: Weighted graphs

æ

Illustrated example

(日)、(四)、(日)、(日)、

Lecture 11: Weighted graph:

Illustrated example

After relaxing all edges from s we have

Illustrated example

After relaxing all edges from a we have

Illustrated example

After relaxing all edges from x we have

Lecture 11: Weighted graphs

Illustrated example

After relaxing all edges from c we have

Illustrated example

Future relaxations do not change the values of p[] and d[]:

X	s	a	x	b	с	у	d	t
p[x]	null	s	a	s	а	х	х	с
d[x]	0	3	5	8	5	6	7	8

Lecture 11: Weighted graphs

Illustrated example

Future relaxations do not change the values of p[] and d[]:

X	s	а	x	b	с	у	d	t
p[x]	null	s	a	s	a	х	х	с
d[x]	0	3	5	8	5	6	7	8

 \Rightarrow the tree of paths with minimum weights computed by the algorithm is

Lecture 11: Weighted graphs

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes Find for all $x, y \in V$ with $x \rightsquigarrow y$, a path $x \stackrel{\pi_{x,y}}{\rightsquigarrow} y$ with length_w $(\pi_{x,y}) = \delta_w(x, y)$.

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes Find for all $x, y \in V$ with $x \rightsquigarrow y$, a path $x \stackrel{\pi_{x,y}}{\rightsquigarrow} y$ with $\operatorname{length}_w(\pi_{x,y}) = \delta_w(x, y).$

REMARKS:

- This problem can be solved by running *n* times one of the previous two algorithms, once for every node x ∈ V(G) as source node.
- **2** Runtime complexity:
 - $O(n^4)$ if we use Bellman-Ford alg. for the general case when edges can have negative weights.
 - $O(n^3)$ if we use Dijkstra alg. for the special case when w(e) > 0 for all edges $e \in E$.
- We will describe a new method Floyd-Warshall algorithm:
 - Runtime complexitaty: $O(n^3)$ when we can have edges with negative weights, but no cycles with negative weight.

Two $n \times n$ arrays, such that, for all $x, y \in V$:

• d[x][y]: an upper bound for $\delta_w(x, y)$.

$$P[x][y] \in \{\texttt{null}\} \cup V.$$

When the algorithm stops, the values of P[][] and d[][] have the following properties:

- $d[x][y] = \delta_w(x, y).$
- If x ≠ y and there is a path with minimum weight from x la y then P[x][y] is the predecessor of x on a path x → y with minimum weight.

• • = • • = •

If $x, y, z \in V$ then any path $\pi_{x,y}$ with minimum weight from x to y has one of the following two shapes:

 $x \xrightarrow{\pi_{x,y}} y$ where z is not an intermediary node of $\pi_{x,y}$, or $\pi_{x,z} \xrightarrow{z} \pi_{z,y}$ $x \xrightarrow{\pi_{x,z}} y$

where z is not an intermediary node of $\pi_{x,z}$ and $\pi_{z,y}$.

If $x, y, z \in V$ then any path $\pi_{x,y}$ with minimum weight from x to y has one of the following two shapes:

$$x \xrightarrow{\pi_{x,y}} y$$

where z is not an intermediary node of $\pi_{x,y}$, or

where z is not an intermediary node of $\pi_{x,z}$ and $\pi_{z,y}$.

 \Rightarrow we can define a recursive method to compute the elements of the arrays P[][] and d[][].

Let $[x_1, x_2, ..., x_n]$ be a fixed enumeration of the nodes of G. For $0 \le k \le n$ we define arrays d[k] and P[k] of size $n \times n$ as follows:

- ▶ d[k][i][j] este cea mai mică lungime ponderată a unei căi de la x_i la x_j care trece doar prin noduri intermediare din mulțimea {x₁,...,x_k}. Dacă o astfel de cale nu există, atunci d[k][i][j] = +∞.
- ▶ P[k][i][j] este null dacă i = j sau d[k][i][j] = +∞. În caz contrar, P[k][i][j] este predecesorul nodului x_j pe un drum cu lungime ponderată minimă de la x_i la x_j care trece doar prin noduri intermediare din mulțimea {x₁,...,x_k}.

Floyd-Warshall algorithm The recursive computation of d[][] and P[][] (continued)

We learn that, for all $i,j \in \{1,2,\ldots,n\}$ we have

and if $1 \leq k \leq n$ then

• • = • • = •

Floyd-Warshall algorithm The recursive computation of d[][] and P[][] (continued)

We learn that, for all $i,j \in \{1,2,\ldots,n\}$ we have

and if $1 \leq k \leq n$ then

$$\begin{aligned} d[k][i][j] &= \min(d[k-1][i][j], d[k-1][i][k] + d[k-1][k][j]), \\ P[k][i][j] &= \begin{cases} P[k-1][i][j] & \text{if } d[k-1][i][j] = d[k][i][j], \\ P[k-1][k][j] & \text{otherwise.} \end{cases} \end{aligned}$$

FINAL REMARK: Because the intermediary nodes of every path are in the set $\{x_1, x_2, \ldots, x_n\}$, we can define

$$d[x_i][x_j] = d[n][i][j]$$
 and $P[x_i][x_j] = P[n][i][j]$.

- Initialization of arrays d[0] and P[0] takes $O(n^2)$ time.
- The computation of d[k] from d[k 1] and P[k] from P[k 1] takes O(n²) time.
- Solution The provided and the provid

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

k			d	[k]						P[k]			
	(0	$+\infty$	-2	$+\infty$	$+\infty$	$+\infty$		/•	٠	а	٠	٠	•	
	3	0	$+\infty$	1	$+\infty$	$+\infty$		b	٠	٠	b	٠	•	
0	$+\infty$	6	0	$+\infty$	$+\infty$	$+\infty$		•	С	٠	٠	٠	•	
0	-3	$+\infty$	-4	0	$+\infty$	$+\infty$		d	٠	d	٠	٠	•	
	$+\infty$	3	$+\infty$	$+\infty$	0	8		•	е	٠	٠	٠	е	
	$\setminus +\infty$	9	$+\infty$	$+\infty$	-6	0 /	/	•	f	٠	٠	f	•)	1

Illustrated example

k				d[[k]							P[k]			
	/ 0)	$+\infty$	-2	$+\infty$	$+\infty$	$+\infty$	\setminus	1	•	٠	а	٠	٠	•)	
	3		0	1	1	$+\infty$	$+\infty$			b	٠	а	b	٠	•	
1	+	∞	6	0	$+\infty$	$+\infty$	$+\infty$			٠	с	٠	٠	٠	٠	
1 I	-	3	$+\infty$	-5	0	$+\infty$	$+\infty$			d	٠	а	٠	٠	٠	
	+0	∞	3	$+\infty$	$+\infty$	0	8			٠	е	٠	٠	٠	е	
	$\left(+\right)$	∞	9	$+\infty$	$+\infty$	-6	0	/		•	f	٠	٠	f	•)	/

Illustrated example

k				Ċ	l[k]					P[k]			
	1	0	$+\infty$	-2	$+\infty$	$+\infty$	$+\infty$	(•	٠	а	٠	٠	•)	
		3	0	1	1	$+\infty$	$+\infty$	Ь	٠	а	b	٠	•	
2		9	6	0	7	$+\infty$	$+\infty$	Ь	С	٠	b	٠	•	
2		-3	$+\infty$	-5	0	$+\infty$	$+\infty$	d	٠	а	٠	٠	•	
		6	3	4	4	0	8	Ь	е	а	b	٠	е	
		12	9	10	10	-6	0/	\b	f	а	b	f	•)	/

Illustrated example

k					d[<i>k</i>]						P[k]			
	1	0	4	-2	5	$+\infty$	$+\infty$		(•	С	а	b	٠	•)	
		3	0	1	1	$+\infty$	$+\infty$		b	٠	а	b	٠	•	
2		9	6	0	7	$+\infty$	$+\infty$		b	С	٠	b	٠	٠	
5		-3	1	-5	0	$+\infty$	$+\infty$		d	С	а	٠	٠	٠	
		6	3	4	4	0	8		b	е	а	b	٠	е	
		12	9	10	10	-6	0 /	'	b	f	а	b	f	•)	/

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

k					d[<i>k</i>]						P[k]			
	()	4	-2	5	$+\infty$	$+\infty$		(•	С	а	b	٠	•)	1
	-	2	0	-4	1	$+\infty$	$+\infty$		d	٠	а	b	٠	•	
4	4	1	6	0	7	$+\infty$	$+\infty$		d	С	٠	b	٠	•	
4	-	3	1	-5	0	$+\infty$	$+\infty$		d	С	а	٠	٠	٠	
		L	3	-1	4	0	8		d	е	а	b	٠	е	
		7	9	5	10	-6	0 /	/	\ d	f	а	b	f	•)	/

Illustrated example

k			Ċ	1[<i>k</i>]					P[k]			
	(0	4	-2	5	$+\infty$	$+\infty$	(•	С	а	b	٠	•)	
	-2	0	-4	1	$+\infty$	$+\infty$	d	٠	а	b	٠	•	
F	4	6	0	7	$+\infty$	$+\infty$	d	С	٠	b	٠	٠	
5	-3	1	-5	0	$+\infty$	$+\infty$	d	С	а	٠	٠	٠	
	1	3	-1	4	0	8	d	е	а	b	٠	е	
	_5	-3	-7	-2	-6	0/	d	е	а	b	f	•)	/

Illustrated example

k			Ċ	1[<i>k</i>]					P[k]			
	(0	4	-2	5	$+\infty$	$+\infty$	(•	С	а	b	٠	•)	
	-2	0	-4	1	$+\infty$	$+\infty$	d	٠	а	b	٠	•	
6	4	6	0	7	$+\infty$	$+\infty$	d	С	٠	b	٠	٠	
0	-3	1	-5	0	$+\infty$	$+\infty$	d	С	а	٠	٠	٠	
	1	3	-1	4	0	8	d	е	а	b	٠	е	
	_5	-3	-7	-2	-6	0 /	d	е	а	b	f	•)	/

Illustrated example (continued)

Nodes are enumerated in the order [a, b, c, d, e, f]

In the end, the element values of arrays P[][] and d[][] are

	а	b	С	d	е	f		а	b	С	d	е	f
а	٠	С	а	b	٠	٠	а	0	4	-2	5	$+\infty$	$+\infty$
b	d	•	а	b	٠	•	b	-2	0	-4	1	$+\infty$	$+\infty$
С	d	с	٠	b	٠	•	с	4	6	0	7	$+\infty$	$+\infty$
d	d	С	а	٠	٠	•	d	-3	1	-5	0	$+\infty$	$+\infty$
е	d	е	а	b	٠	е	е	1	3	-1	4	0	8
f	d	е	а	b	f	•	f	-5	-3	-7	-2	-6	0

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Properties of array P

- Array P is called predecessor matrix.
- For every node $x \in G$ we can define the tree T_x with root x and
 - set of nodes $\{x\} \cup \{y \in V \mid P[x][y] \neq null\}$
 - set of edges $\{\mathbb{P}[x][y] \rightarrow y \mid y \in V \{x\}\}.$
- T_x is a tree of paths with minimum weights from x in G, and it can be extracted from the row of node x in array P[]].

Find a a tree of paths with minimum weight from source node f in

Find a a tree of paths with minimum weight from source node f in

f is the 6-th element in the node enumeration [a, b, c, d, e, f], thus T_f can be obtained from line 6 of the matrix P[6]:

Find a a tree of paths with minimum weight from source node f in

f is the 6-th element in the node enumeration [a, b, c, d, e, f], thus T_f can be obtained from line 6 of the matrix P[6]:

$$f \xrightarrow{-6} e \xrightarrow{3} b \xrightarrow{1} d \xrightarrow{-3} a \xrightarrow{-2} c$$