
Lecture 11: Weighted graphs
Paths with minimum weight. Algorithms: Bellman-Ford,

Dijkstra, Floyd-Warshall

december 2020

Lecture 11: Weighted graphs

Weighted graphs
Recap

A weighted graph is a graph G = (V ,E) with a function
w : E → R which assigns a weight w(e) to every edge e ∈ E .

Weights can represent distances between node, but also other
metrics, like costs, penalties, losses or other quantities that
accumulate in a linear fashion along a path and we wish to
minimize.

We will study only simple weighted graphs, that is, graphs

I without loops
I with at most one edge from a node to another node

We will write w(x , y) instead of w(e) if e is the edge x−y or
arc x→y .

Also, we will assume that w(x , x) = 0 and w(x , y) = +∞ if
there is no edge from x to y .

Lecture 11: Weighted graphs

Weighted graphs
Basic notions

We write x
π
 y to indicate the fact that π is a list of nodes

starting with x and ending with y .

Weight of a list π = [x1, x2, . . . , xk] is

lengthw (π) =
k−1∑
i=1

w(xi , xi+1).

If k = 1 then π = [x1] and lengthw (π) = 0.

Weighted distance from x to y in G is

δw (x , y) = min{lengthw (π) | x π
 y}.

Lecture 11: Weighted graphs

Weighted graphs
Basic notions

We write x
π
 y to indicate the fact that π is a list of nodes

starting with x and ending with y .

Weight of a list π = [x1, x2, . . . , xk] is

lengthw (π) =
k−1∑
i=1

w(xi , xi+1).

If k = 1 then π = [x1] and lengthw (π) = 0.

Weighted distance from x to y in G is

δw (x , y) = min{lengthw (π) | x π
 y}.

Lecture 11: Weighted graphs

Weighted graphs
Weights and weighted distances

Example

a b

cd

1

4

6

5

2

1

8

δw (x , y) y = a y = b y = c y = d

x = a 0 1 4 3
x = b 4 0 3 2
x = c +∞ +∞ 0 +∞
x = d +∞ +∞ +∞ 0

lengthw ([a, b, c]) = 7,
lengthw ([a, d , c]) = 9,
lengthw ([a, b, d , c]) = 4.

Lecture 11: Weighted graphs

Weighted graphs
Fundamental problems

We will describe algorithmic solutions for the following problems:

1 Find paths with minimum weight from a source node s to all
nodes that can be reached from s.

2 Find paths with minimum weight from x to y for all pairs of
connected nodes x y .

Remark

If π = [x1, x2, . . . , xk] is a path from x1 to xk with
lengthw (π) = δw (x1, xk), then for all 1 ≤ i ≤ j ≤ n:

If πi ,j = [xi , xi+1, . . . , xj] then lengthw (πi ,j) = δ(xi , kj).

That is, all subpaths of a path with minimum weight have
minimum weight.

Lecture 11: Weighted graphs

Weighted graphs
Fundamental problems

We will describe algorithmic solutions for the following problems:

1 Find paths with minimum weight from a source node s to all
nodes that can be reached from s.

2 Find paths with minimum weight from x to y for all pairs of
connected nodes x y .

Remark

If π = [x1, x2, . . . , xk] is a path from x1 to xk with
lengthw (π) = δw (x1, xk), then for all 1 ≤ i ≤ j ≤ n:

If πi ,j = [xi , xi+1, . . . , xj] then lengthw (πi ,j) = δ(xi , kj).

That is, all subpaths of a path with minimum weight have
minimum weight.

Lecture 11: Weighted graphs

Cycles and negative weighted distances

Edges e with w(e) < 0 can form cycles with minimum weight ⇒
for all nodes x , y :

If there is a node z of a cycle c with negative weight, andi
x z y then there is no x

π
 y with minimum weight

because we can keep traversing c to produce paths whose
weight decreases to −∞. In this case, we define
δw (x , y) = −∞.

Otherwise, δw (x , y) ∈ R and there is x
π
 y with

lengthw (π) = δw (x , y).

Lecture 11: Weighted graphs

Cycles with negative weight
Example

The following digraph has cycles with negative weight:

s

a

c

e

b

d

f

g

h i

j

1

2-5

1

2

3

−2

4

−3
4

−6

5

7

9

The following figure indicates the values δw (s, x) for all x :

0

s

1

a

2

c

−∞e

−1

b

6

d

−∞ f

−∞

g
+∞

h

+∞

i

+∞j

1

2-5

1

2
3

−2

4

−3
4

−6

5

7

9

Lecture 11: Weighted graphs

Paths with minimum weight
Remarks

Let x
π
 y be a path with minimum weight. We note that

1 π can not contain a cycle with strictly negative weight
because it would imply δw (x , y) = −∞.

2 π can not contain a cycle with strictly positive weight because

if we eliminate it from π we obtain x
π′
 y with

lengthw (π′) < lengthw (π) = δw (x , y), contradiction.

3 We can assume π has no cycles with weight 0 because we can
eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths i
π
 j with

minimum weight. These paths contain at most |V | = n
nodes, thus at most n − 1 edges.

Lecture 11: Weighted graphs

Paths with minimum weight
Remarks

Let x
π
 y be a path with minimum weight. We note that

1 π can not contain a cycle with strictly negative weight
because it would imply δw (x , y) = −∞.

2 π can not contain a cycle with strictly positive weight because

if we eliminate it from π we obtain x
π′
 y with

lengthw (π′) < lengthw (π) = δw (x , y), contradiction.

3 We can assume π has no cycles with weight 0 because we can
eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths i
π
 j with

minimum weight. These paths contain at most |V | = n
nodes, thus at most n − 1 edges.

Lecture 11: Weighted graphs

Paths with minimum weight
Remarks

Let x
π
 y be a path with minimum weight. We note that

1 π can not contain a cycle with strictly negative weight
because it would imply δw (x , y) = −∞.

2 π can not contain a cycle with strictly positive weight because

if we eliminate it from π we obtain x
π′
 y with

lengthw (π′) < lengthw (π) = δw (x , y), contradiction.

3 We can assume π has no cycles with weight 0 because we can
eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths i
π
 j with

minimum weight. These paths contain at most |V | = n
nodes, thus at most n − 1 edges.

Lecture 11: Weighted graphs

Paths with minimum weight
Remarks

Let x
π
 y be a path with minimum weight. We note that

1 π can not contain a cycle with strictly negative weight
because it would imply δw (x , y) = −∞.

2 π can not contain a cycle with strictly positive weight because

if we eliminate it from π we obtain x
π′
 y with

lengthw (π′) < lengthw (π) = δw (x , y), contradiction.

3 We can assume π has no cycles with weight 0 because we can
eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths i
π
 j with

minimum weight. These paths contain at most |V | = n
nodes, thus at most n − 1 edges.

Lecture 11: Weighted graphs

Paths with minimum weight
Remarks

Let x
π
 y be a path with minimum weight. We note that

1 π can not contain a cycle with strictly negative weight
because it would imply δw (x , y) = −∞.

2 π can not contain a cycle with strictly positive weight because

if we eliminate it from π we obtain x
π′
 y with

lengthw (π′) < lengthw (π) = δw (x , y), contradiction.

3 We can assume π has no cycles with weight 0 because we can
eliminate them from π without changing the weight.

Thus, we can restrict our search to acyclic paths i
π
 j with

minimum weight. These paths contain at most |V | = n
nodes, thus at most n − 1 edges.

Lecture 11: Weighted graphs

Paths with minimum weight from a source node s
Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a
tree Ts with root s such that

1 The set of nodes of Ts is Ss = {x ∈ V | s x}
2 For every s ∈ Ss , the list of nodes on the branches from s to x

in Ts is a path with minimum weight from s to x in G .

Such a tree is called tree of paths with minimum weights from s in
G .

Dijkstra algorithm is defined for weighted graphs with
w(e) > 0 for all edges e.

Bellman-Ford algorithm is defined for the general case,
when we can have edges e with w(e) < 0.

It detects possible cycles with negative weight that can be
reached from the source node s. In this case, it returns false

to signal the existence of such a cycle, and it abandons the
construction of Ts .

Lecture 11: Weighted graphs

Paths with minimum weight from a source node s
Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a
tree Ts with root s such that

1 The set of nodes of Ts is Ss = {x ∈ V | s x}
2 For every s ∈ Ss , the list of nodes on the branches from s to x

in Ts is a path with minimum weight from s to x in G .

Such a tree is called tree of paths with minimum weights from s in
G .

Dijkstra algorithm is defined for weighted graphs with
w(e) > 0 for all edges e.

Bellman-Ford algorithm is defined for the general case,
when we can have edges e with w(e) < 0.

It detects possible cycles with negative weight that can be
reached from the source node s. In this case, it returns false

to signal the existence of such a cycle, and it abandons the
construction of Ts .

Lecture 11: Weighted graphs

Paths with minimum weight from a source node s
Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a
tree Ts with root s such that

1 The set of nodes of Ts is Ss = {x ∈ V | s x}
2 For every s ∈ Ss , the list of nodes on the branches from s to x

in Ts is a path with minimum weight from s to x in G .

Such a tree is called tree of paths with minimum weights from s in
G .

Dijkstra algorithm is defined for weighted graphs with
w(e) > 0 for all edges e.

Bellman-Ford algorithm is defined for the general case,
when we can have edges e with w(e) < 0.

It detects possible cycles with negative weight that can be
reached from the source node s. In this case, it returns false

to signal the existence of such a cycle, and it abandons the
construction of Ts .

Lecture 11: Weighted graphs

Paths with minimum weight from a source node s

Illustrated example

The weighted digraph from Fig. (a) has 2 tree of paths with
minimum weights from s. Figures (b) and (c) highlight the edges
of these trees with thick arrows, and the value δw (s, x) is written
inside every node x .

s

x

y

z

t

4

6

2 1

6

8

3 2 8

(a)

0

s
4

x

6
y

9

z

14
t

4

6

2 1

6

8

3 2 8

(b)

0

s
4

x

6
y

9

z

14
t

4

6

2 1

6

8

3 2 8

(c)

Lecture 11: Weighted graphs

Bellman-Ford algorithm and Dijkstra algorithm
Common features (1)

The algorithms operate with

1 the representation with predecessors of a tree As with root s
and set of nodes V . We will assume that, for every x ∈ V , πx
is the list of nodes from s to x in As .

2 d[x]: an upper bound for lengthw (πx):

∀x ∈ V .δw (s, x) ≤ lengthw (πx) ≤ d[x].

The initial values are

p[s] = null and p[x] = s for all x ∈ V − {s}, şi

d[s] = 0 and d[x] = +∞ for all x ∈ V − {s}.

Lecture 11: Weighted graphs

Bellman-Ford algorithm and Dijkstra algorithm
Common features (1)

The algorithms operate with

1 the representation with predecessors of a tree As with root s
and set of nodes V . We will assume that, for every x ∈ V , πx
is the list of nodes from s to x in As .

2 d[x]: an upper bound for lengthw (πx):

∀x ∈ V .δw (s, x) ≤ lengthw (πx) ≤ d[x].

The initial values are

p[s] = null and p[x] = s for all x ∈ V − {s}, şi

d[s] = 0 and d[x] = +∞ for all x ∈ V − {s}.

Lecture 11: Weighted graphs

Bellman-Ford algorithm and Dijkstra algorithm
Common features (2)

The values of d[] and p[] are modified by performing a finite number of
edge relaxations; it is guaranteed that, when they stop:

I As is a tree of paths with minimum weights from s in G .

I d[x] = δw (s, x) for all x ∈ V .

Relaxing an edge from x to y

If d[x] + w(x , y) < d[y] and we consider the path π′
y = s

πx x → y then

δw (x , y) ≤ lengthw (π′
y) = lengthw (πx) + w(x , y) ≤ d[x] + w(x , y) < d[y]

⇒ we can replace p[y] with p[x] and d[y] cu d[x] + w(x , y).

s

x

y

πx
πy

w(x , y)

relax(x,y) {
if (d[x] + w(x , y) < d[y]) {

p[y] = x ; d[y] = d[x] + w(x , y);
}

}

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Pseudocode

boolean BellmanFord(G,s) {
initialize(G,s);

for i=1 to G.V()-1

foreach x ∈V(G)
for (y:adj[x])

relax(x,y);

foreach x ∈V(G)
for (y:adj[x])

if (d[x] > d[y]+w(x, y))
return false;

return true;

}

Complexity (running time): O(n3)

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Pseudocode

boolean BellmanFord(G,s) {
initialize(G,s);

for i=1 to G.V()-1

foreach x ∈V(G)
for (y:adj[x])

relax(x,y);

foreach x ∈V(G)
for (y:adj[x])

if (d[x] > d[y]+w(x, y))
return false;

return true;

}

Complexity (running time): O(n3)

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Illustrated example

After initialization step:

s

a

c

e

b

d

f

g

h i

j

1

2-5

1

2

3

−2

4

−3
4

−6

5

7

9

The algorithm returns false because it detects

d[f] = −11 > d[e] + w(e, f).

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Illustrated example

After initialization:

0

s

+∞a

+∞
c

+∞e

+∞ b

+∞
d

+∞ f

+∞

g
+∞

h

+∞

i

+∞j

1

2-5

1
2
3

−2

4

−3
4

−6

5

7

9

The algorithm returns false because it detects

d[f] = −11 > d[e] + w(e, f).

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Illustrated example

After the 6-th for loop:

0

s

1a

2

c

−11e

−1 b

6

d

−5 f

4

g

+∞

h

+∞

i

+∞j

1

2-9

1

2

3

−2

4

−3
4

−6

5

7

9

Algoritmul returnează false pentru că detectează

d[f] = −11 > d[e] + w(e, f).

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Illustrated example

After the 8-th for loop:

0

s

1a

2

c

−13e

−1 b

6

d

−7 f

2

g

+∞

h

+∞

i

+∞j

1

2-9

1

2

3

−2

4

−3
4

−6

5

7

9

Algoritmul returnează false pentru că detectează

d[f] = −11 > d[e] + w(e, f).

Lecture 11: Weighted graphs

Bellman-Ford algorithm
Illustrated example

After the 10-th for loop:

0

s

1a

2

c

−17e

−1 b

6

d

−11 f

−2

g

+∞

h

+∞

i

+∞j

1

2-9

1

2

3

−2

4

−3
4

−6

5

7

9

The algorithm returns false because it detects

d[f] = −11 > d[e] + w(e, f).

Lecture 11: Weighted graphs

Dijkstra algorithm
Pseudocode

void Dijkstra(G,s) {
initialize(G,s);

Q=set of nodes of G;

while (!Q.isEmpty()) {
extrage u cu d[u] = min{d[x] | x ∈ Q} din Q;

for (v:G.adj(u))

if (Q.contains(v))

relax(u,v);

}
}

Complexity (running time): O(n2)

Lecture 11: Weighted graphs

Dijkstra algorithm
Pseudocode

void Dijkstra(G,s) {
initialize(G,s);

Q=set of nodes of G;

while (!Q.isEmpty()) {
extrage u cu d[u] = min{d[x] | x ∈ Q} din Q;

for (v:G.adj(u))

if (Q.contains(v))

relax(u,v);

}
}

Complexity (running time): O(n2)

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

After initialization we have

0
s

+∞a

+∞
x

+∞b

+∞ c

+∞ d

+∞
y

+∞

t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

After relaxing all edges from s we have

0
s

3a

6
x

8b

+∞ c

+∞ d

+∞
y

+∞

t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

After relaxing all edges from a we have

0
s

3a

5
x

8b

5 c

+∞ d

10
y

+∞

t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

After relaxing all edges from x we have

0
s

3a

5
x

8b

5 c

7 d

6
y

+∞

t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

s

a

x

b

c

d

y t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

After relaxing all edges from c we have

0
s

3

a

5
x

8

b

5

c

7

d

6
y

8

t

3

8

6

2

4

1

7 2

5

3

5

9

4

2

2

6

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

0
s

3

a

5
x

8

b

5

c

7

d

6
y

8

t

3

8

6

2

4

1
7 2

5

3

5

9

4

2

2

6

Future relaxations do not change

the values of p[] and d[]:

x s a x b c y d t

p[x] null s a s a x x c

d[x] 0 3 5 8 5 6 7 8

⇒ the tree of paths with minimum weights computed by the algorithm is

s

b a

x

y d

c

t

8 3

2 2

31 2

Lecture 11: Weighted graphs

Dijkstra algorithm
Illustrated example

0
s

3

a

5
x

8

b

5

c

7

d

6
y

8

t

3

8

6

2

4

1
7 2

5

3

5

9

4

2

2

6

Future relaxations do not change

the values of p[] and d[]:

x s a x b c y d t

p[x] null s a s a x x c

d[x] 0 3 5 8 5 6 7 8

⇒ the tree of paths with minimum weights computed by the algorithm is

s

b a

x

y d

c

t

8 3

2 2

31 2

Lecture 11: Weighted graphs

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes

Find for all x , y ∈ V with x y , a path x
πx,y
 y with

lengthw (πx ,y) = δw (x , y).

Remarks:

1 This problem can be solved by running n times one of the
previous two algorithms, once for every node x ∈ V (G) as
source node.

2 Runtime complexity:

O(n4) if we use Bellman-Ford alg. for the general case when
edges can have negative weights.
O(n3) if we use Dijkstra alg. for the special case when
w(e) > 0 for all edges e ∈ E .

3 We will describe a new method – Floyd-Warshall algorithm:

Runtime complexitaty: O(n3) when we can have edges with
negative weights, but no cycles with negative weight.

Lecture 11: Weighted graphs

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes

Find for all x , y ∈ V with x y , a path x
πx,y
 y with

lengthw (πx ,y) = δw (x , y).

Remarks:

1 This problem can be solved by running n times one of the
previous two algorithms, once for every node x ∈ V (G) as
source node.

2 Runtime complexity:

O(n4) if we use Bellman-Ford alg. for the general case when
edges can have negative weights.
O(n3) if we use Dijkstra alg. for the special case when
w(e) > 0 for all edges e ∈ E .

3 We will describe a new method – Floyd-Warshall algorithm:

Runtime complexitaty: O(n3) when we can have edges with
negative weights, but no cycles with negative weight.

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Auxiliary data structures

Two n × n arrays, such that, for all x , y ∈ V :

1 d[x][y]: an upper bound for δw (x , y).

2 P[x][y] ∈ {null} ∪ V .

When the algorithm stops, the values of P[][] and d[][] have the
following properties:

d[x][y] = δw (x , y).

If x 6= y and there is a path with minimum weight from x la y
then P[x][y] is the predecessor of x on a path x

π
 y with

minimum weight.

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Basic idea

If x , y , z ∈ V then any path πx ,y with minimum weight from x to
y has one of the following two shapes:

1
x y

πx,y

where z is not an intermediary node of πx ,y , or

2
x

z

y

πx,z πz,y

where z is not an intermediary node of πx ,z and πz,y .

⇒ we can define a recursive method to compute the elements of
the arrays P[][] and d[][].

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Basic idea

If x , y , z ∈ V then any path πx ,y with minimum weight from x to
y has one of the following two shapes:

1
x y

πx,y

where z is not an intermediary node of πx ,y , or

2
x

z

y

πx,z πz,y

where z is not an intermediary node of πx ,z and πz,y .

⇒ we can define a recursive method to compute the elements of
the arrays P[][] and d[][].

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
The recursive computation of the elements of arrays d[][] and P[][]

Let [x1, x2, . . . , xn] be a fixed enumeration of the nodes of G . For
0 ≤ k ≤ n we define arrays d[k] and P[k] of size n × n as follows:

I d[k][i][j] este cea mai mică lungime ponderată a unei căi de la
xi la xj care trece doar prin noduri intermediare din mulţimea
{x1, . . . , xk}. Dacă o astfel de cale nu există, atunci
d[k][i][j] = +∞.

I P[k][i][j] este null dacă i = j sau d[k][i][j] = +∞. În caz
contrar, P[k][i][j] este predecesorul nodului xj pe un drum cu
lungime ponderată minimă de la xi la xj care trece doar prin
noduri intermediare din mulţimea {x1, . . . , xk}.

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
The recursive computation of d[][] and P[][] (continued)

We learn that, for all i , j ∈ {1, 2, . . . , n} we have

d[0][i][j] = w(xi , xj),

P[0][i][j] =

{
null if i = j or w(xi , xj) = +∞,
xi otherwise

and if 1 ≤ k ≤ n then

d[k][i][j] = min(d[k − 1][i][j], d[k − 1][i][k] + d[k − 1][k][j]),

P[k][i][j] =

{
P[k − 1][i][j] if d[k − 1][i][j] = d[k][i][j],
P[k − 1][k][j] otherwise.

Final remark: Because the intermediary nodes of every path
are in the set {x1, x2, . . . , xn}, we can define

d[xi][xj] = d[n][i][j] and P[xi][xj] = P[n][i][j].

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
The recursive computation of d[][] and P[][] (continued)

We learn that, for all i , j ∈ {1, 2, . . . , n} we have

d[0][i][j] = w(xi , xj),

P[0][i][j] =

{
null if i = j or w(xi , xj) = +∞,
xi otherwise

and if 1 ≤ k ≤ n then

d[k][i][j] = min(d[k − 1][i][j], d[k − 1][i][k] + d[k − 1][k][j]),

P[k][i][j] =

{
P[k − 1][i][j] if d[k − 1][i][j] = d[k][i][j],
P[k − 1][k][j] otherwise.

Final remark: Because the intermediary nodes of every path
are in the set {x1, x2, . . . , xn}, we can define

d[xi][xj] = d[n][i][j] and P[xi][xj] = P[n][i][j].

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Complexity analysis

1 Initialization of arrays d[0] and P[0] takes O(n2) time.

2 The computation of d[k] from d[k − 1] and P[k] from P[k − 1]
takes O(n2) time.

3 This computation is repeated for k from 1 to n ⇒ runtime
complexity n · O(n2) = O(n3).

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

0


0 +∞ −2 +∞ +∞ +∞
3 0 +∞ 1 +∞ +∞

+∞ 6 0 +∞ +∞ +∞
−3 +∞ −4 0 +∞ +∞

+∞ 3 +∞ +∞ 0 8
+∞ 9 +∞ +∞ −6 0




• • a • • •
b • • b • •
• c • • • •
d • d • • •
• e • • • e
• f • • f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

1


0 +∞ −2 +∞ +∞ +∞
3 0 1 1 +∞ +∞

+∞ 6 0 +∞ +∞ +∞
−3 +∞ −5 0 +∞ +∞

+∞ 3 +∞ +∞ 0 8
+∞ 9 +∞ +∞ −6 0




• • a • • •
b • a b • •
• c • • • •
d • a • • •
• e • • • e
• f • • f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

2


0 +∞ −2 +∞ +∞ +∞
3 0 1 1 +∞ +∞
9 6 0 7 +∞ +∞
−3 +∞ −5 0 +∞ +∞
6 3 4 4 0 8

12 9 10 10 −6 0




• • a • • •
b • a b • •
b c • b • •
d • a • • •
b e a b • e
b f a b f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

3


0 4 −2 5 +∞ +∞
3 0 1 1 +∞ +∞
9 6 0 7 +∞ +∞
−3 1 −5 0 +∞ +∞
6 3 4 4 0 8

12 9 10 10 −6 0




• c a b • •
b • a b • •
b c • b • •
d c a • • •
b e a b • e
b f a b f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

4


0 4 −2 5 +∞ +∞
−2 0 −4 1 +∞ +∞
4 6 0 7 +∞ +∞
−3 1 −5 0 +∞ +∞
1 3 −1 4 0 8
7 9 5 10 −6 0




• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d f a b f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

5


0 4 −2 5 +∞ +∞
−2 0 −4 1 +∞ +∞
4 6 0 7 +∞ +∞
−3 1 −5 0 +∞ +∞
1 3 −1 4 0 8
−5 −3 −7 −2 −6 0




• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d e a b f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example

Nodes are enumerated in the order
[a, b, c , d , e, f]

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

k d[k] P[k]

6


0 4 −2 5 +∞ +∞
−2 0 −4 1 +∞ +∞
4 6 0 7 +∞ +∞
−3 1 −5 0 +∞ +∞
1 3 −1 4 0 8
−5 −3 −7 −2 −6 0




• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d e a b f •



Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Illustrated example (continued)

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6

Nodes are enumerated in the order
[a, b, c , d , e, f]

In the end, the element values of arrays P[][] and d[][] are

a b c d e f
a • c a b • •
b d • a b • •
c d c • b • •
d d c a • • •
e d e a b • e
f d e a b f •

a b c d e f
a 0 4 −2 5 +∞ +∞
b −2 0 −4 1 +∞ +∞
c 4 6 0 7 +∞ +∞
d −3 1 −5 0 +∞ +∞
e 1 3 −1 4 0 8
f −5 −3 −7 −2 −6 0

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Properties of array P

Array P is called predecessor matrix.

For every node x ∈ G we can define the tree Tx with root x
and

set of nodes {x} ∪ {y ∈ V | P[x][y] 6= null}
set of edges {P[x][y]→y | y ∈ V − {x}}.

Tx is a tree of paths with minimum weights from x in G , and
it can be extracted from the row of node x in array P[][].

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6 P[6] =


• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d e a b f •



f is the 6-th element in the node enumeration [a, b, c , d , e, f], thus Tf

can be obtained from line 6 of the matrix P[6]:

f e b d a c
-6 3 1 -3 -2

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6 P[6] =


• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d e a b f •


f is the 6-th element in the node enumeration [a, b, c , d , e, f], thus Tf

can be obtained from line 6 of the matrix P[6]:

f e b d a c
-6 3 1 -3 -2

Lecture 11: Weighted graphs

Floyd-Warshall algorithm
Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

a

d

b

c

e

f

3

-3

-4

6-2

3

9

1

8 -6 P[6] =


• c a b • •
d • a b • •
d c • b • •
d c a • • •
d e a b • e
d e a b f •


f is the 6-th element in the node enumeration [a, b, c , d , e, f], thus Tf

can be obtained from line 6 of the matrix P[6]:

f e b d a c
-6 3 1 -3 -2

Lecture 11: Weighted graphs

