Lecture 11: Weighted graphs

Paths with minimum weight. Algorithms: Bellman-Ford, Dijkstra, Floyd-Warshall

Weighted graphs

Recap

A weighted graph is a graph $G=(V, E)$ with a function $w: E \rightarrow \mathbb{R}$ which assigns a weight $w(e)$ to every edge $e \in E$.

- Weights can represent distances between node, but also other metrics, like costs, penalties, losses or other quantities that accumulate in a linear fashion along a path and we wish to minimize.
- We will study only simple weighted graphs, that is, graphs
- without loops
- with at most one edge from a node to another node
- We will write $w(x, y)$ instead of $w(e)$ if e is the edge $x-y$ or arc $x \rightarrow y$.
- Also, we will assume that $w(x, x)=0$ and $w(x, y)=+\infty$ if there is no edge from x to y.

Weighted graphs

Basic notions

We write $x \stackrel{\pi}{\leadsto} y$ to indicate the fact that π is a list of nodes starting with x and ending with y.

Weighted graphs

Basic notions

We write $x \stackrel{\pi}{\rightsquigarrow} y$ to indicate the fact that π is a list of nodes starting with x and ending with y.

Weight of a list $\pi=\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ is

$$
\operatorname{length}_{w}(\pi)=\sum_{i=1}^{k-1} w\left(x_{i}, x_{i+1}\right)
$$

$$
\text { If } k=1 \text { then } \pi=\left[x_{1}\right] \text { and length } w(\pi)=0
$$

Weighted distance from x to y in G is

$$
\delta_{w}(x, y)=\min \left\{\text { length }_{w}(\pi) \mid x \underset{\rightsquigarrow}{\pi} y\right\} .
$$

Weighted graphs

Weights and weighted distances

Example

(
length $_{w}([a, b, c])=7$,
length $_{w}([a, d, c])=9$,
length $_{w}([a, b, d, c])=4$.

Weighted graphs

Fundamental problems

We will describe algorithmic solutions for the following problems:
(1) Find paths with minimum weight from a source node s to all nodes that can be reached from s.
(2) Find paths with minimum weight from x to y for all pairs of connected nodes $x \rightsquigarrow y$.

Weighted graphs

Fundamental problems

We will describe algorithmic solutions for the following problems:
(1) Find paths with minimum weight from a source node s to all nodes that can be reached from s.
(2) Find paths with minimum weight from x to y for all pairs of connected nodes $x \rightsquigarrow y$.

Remark

If $\pi=\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ is a path from x_{1} to x_{k} with length $_{w}(\pi)=\delta_{w}\left(x_{1}, x_{k}\right)$, then for all $1 \leq i \leq j \leq n$:

- If $\pi_{i, j}=\left[x_{i}, x_{i+1}, \ldots, x_{j}\right]$ then length ${ }_{w}\left(\pi_{i, j}\right)=\delta\left(x_{i}, k_{j}\right)$.

That is, all subpaths of a path with minimum weight have minimum weight.

Cycles and negative weighted distances

Edges e with $w(e)<0$ can form cycles with minimum weight \Rightarrow for all nodes x, y :

- If there is a node z of a cycle c with negative weight, andi $x \rightsquigarrow z \rightsquigarrow y$ then there is no $x \stackrel{\pi}{\rightsquigarrow} y$ with minimum weight because we can keep traversing c to produce paths whose weight decreases to $-\infty$. In this case, we define $\delta_{w}(x, y)=-\infty$.
- Otherwise, $\delta_{w}(x, y) \in \mathbb{R}$ and there is $x \stackrel{\pi}{\rightsquigarrow} y$ with length $_{w}(\pi)=\delta_{w}(x, y)$.

Cycles with negative weight

Example

The following digraph has cycles with negative weight:

The following figure indicates the values $\delta_{w}(s, x)$ for all x :

Paths with minimum weight

Remarks

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that

Paths with minimum weight

Remarks

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that
(1) π can not contain a cycle with strictly negative weight because it would imply $\delta_{w}(x, y)=-\infty$.

Paths with minimum weight

Remarks

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that
(1) π can not contain a cycle with strictly negative weight because it would imply $\delta_{w}(x, y)=-\infty$.
(2) π can not contain a cycle with strictly positive weight because if we eliminate it from π we obtain $x \stackrel{\pi^{\prime}}{\leadsto} y$ with length $_{w}\left(\pi^{\prime}\right)<$ length $_{w}(\pi)=\delta_{w}(x, y)$, contradiction.

Paths with minimum weight

Remarks

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that
(1) π can not contain a cycle with strictly negative weight because it would imply $\delta_{w}(x, y)=-\infty$.
(2) π can not contain a cycle with strictly positive weight because if we eliminate it from π we obtain $x \underset{\rightsquigarrow}{\pi^{\prime}} y$ with length $_{w}\left(\pi^{\prime}\right)<$ length $_{w}(\pi)=\delta_{w}(x, y)$, contradiction.
(3) We can assume π has no cycles with weight 0 because we can eliminate them from π without changing the weight.

Paths with minimum weight

Remarks

Let $x \stackrel{\pi}{\rightsquigarrow} y$ be a path with minimum weight. We note that
(1) π can not contain a cycle with strictly negative weight because it would imply $\delta_{w}(x, y)=-\infty$.
(2) π can not contain a cycle with strictly positive weight because if we eliminate it from π we obtain $x \underset{\rightsquigarrow}{\pi^{\prime}} y$ with length $_{w}\left(\pi^{\prime}\right)<$ length $_{w}(\pi)=\delta_{w}(x, y)$, contradiction.
(3) We can assume π has no cycles with weight 0 because we can eliminate them from π without changing the weight.
Thus, we can restrict our search to acyclic paths $i \stackrel{\pi}{\rightsquigarrow} j$ with minimum weight. These paths contain at most $|V|=n$ nodes, thus at most $n-1$ edges.

Paths with minimum weight from a source node s

Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a tree T_{s} with root s such that
(1) The set of nodes of T_{s} is $S_{s}=\{x \in V \mid s \rightsquigarrow x\}$
(2) For every $s \in S_{s}$, the list of nodes on the branches from s to x in T_{s} is a path with minimum weight from s to x in G.
Such a tree is called tree of paths with minimum weights from s in G.

Paths with minimum weight from a source node s

Algorithms: Bellman-Ford and Dijkstra

Both algorithms compute a representation with predecessors of a tree T_{s} with root s such that
(1) The set of nodes of T_{s} is $S_{s}=\{x \in V \mid s \rightsquigarrow x\}$
(2) For every $s \in S_{s}$, the list of nodes on the branches from s to x in T_{s} is a path with minimum weight from s to x in G.
Such a tree is called tree of paths with minimum weights from s in G.

- Dijkstra algorithm is defined for weighted graphs with $w(e)>0$ for all edges e.

Paths with minimum weight from a source node s

 Algorithms: Bellman-Ford and DijkstraBoth algorithms compute a representation with predecessors of a tree T_{s} with root s such that
(1) The set of nodes of T_{s} is $S_{s}=\{x \in V \mid s \rightsquigarrow x\}$
(2) For every $s \in S_{s}$, the list of nodes on the branches from s to x in T_{s} is a path with minimum weight from s to x in G.
Such a tree is called tree of paths with minimum weights from s in G.

- Dijkstra algorithm is defined for weighted graphs with $w(e)>0$ for all edges e.
- Bellman-Ford algorithm is defined for the general case, when we can have edges e with $w(e)<0$.
- It detects possible cycles with negative weight that can be reached from the source node s. In this case, it returns false to signal the existence of such a cycle, and it abandons the construction of T_{s}.

Paths with minimum weight from a source node s

Illustrated example

The weighted digraph from Fig. (a) has 2 tree of paths with minimum weights from s . Figures (b) and (c) highlight the edges of these trees with thick arrows, and the value $\delta_{w}(\mathbf{s}, x)$ is written inside every node x.

(a)

(b)

Bellman-Ford algorithm and Dijkstra algorithm

Common features (1)

The algorithms operate with
(1) the representation with predecessors of a tree A_{s} with root s and set of nodes V. We will assume that, for every $x \in V, \pi_{x}$ is the list of nodes from s to x in A_{s}.
(2) $\mathrm{d}[x]$: an upper bound for length ${ }_{w}\left(\pi_{x}\right)$:

$$
\forall x \in V . \delta_{w}(s, x) \leq \text { length }_{w}\left(\pi_{x}\right) \leq \mathrm{d}[x] .
$$

Bellman-Ford algorithm and Dijkstra algorithm

Common features (1)

The algorithms operate with
(1) the representation with predecessors of a tree A_{s} with root s and set of nodes V. We will assume that, for every $x \in V, \pi_{x}$ is the list of nodes from s to x in A_{s}.
(2) $\mathrm{d}[x]$: an upper bound for length ${ }_{w}\left(\pi_{x}\right)$:

$$
\forall x \in V . \delta_{w}(s, x) \leq \text { length }_{w}\left(\pi_{x}\right) \leq \mathrm{d}[x] .
$$

The initial values are

- $\mathrm{p}[s]=$ null and $\mathrm{p}[x]=s$ for all $x \in V-\{s\}$, si
- $\mathrm{d}[s]=0$ and $\mathrm{d}[x]=+\infty$ for all $x \in V-\{s\}$.

unde $V=\left\{s, x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Valorile lui $\mathrm{d}[x]$ sunt indicate în interiorul nodurilor respective.

Bellman-Ford algorithm and Dijkstra algorithm

Common features (2)

The values of d[] and p[] are modified by performing a finite number of edge relaxations; it is guaranteed that, when they stop:

- A_{s} is a tree of paths with minimum weights from s in G.
- $\mathrm{d}[x]=\delta_{w}(s, x)$ for all $x \in V$.

Relaxing an edge from x to y

If $\mathrm{d}[x]+w(x, y)<\mathrm{d}[y]$ and we consider the path $\pi_{y}^{\prime}=s \stackrel{\pi_{x}}{\sim} x \rightarrow y$ then
$\delta_{w}(x, y) \leq$ length $_{w}\left(\pi_{y}^{\prime}\right)=$ length $_{w}\left(\pi_{x}\right)+w(x, y) \leq \mathrm{d}[x]+w(x, y)<\mathrm{d}[y]$
\Rightarrow we can replace $\mathrm{p}[y]$ with $\mathrm{p}[x]$ and $\mathrm{d}[y] \mathrm{cu} \mathrm{d}[x]+w(x, y)$.

$$
\begin{aligned}
& \operatorname{relax}(\mathrm{x}, \mathrm{y})\{ \\
& \quad \text { if }(\mathrm{d}[x]+w(x, y)<\mathrm{d}[y])\{ \\
& \quad \mathrm{p}[y]=x ; \mathrm{d}[y]=\mathrm{d}[x]+w(x, y) ;
\end{aligned}
$$

$$
\text { , \} }
$$

$\}$

Bellman-Ford algorithm

Pseudocode

```
boolean BellmanFord(G,s) \{
    initialize(G,s);
    for \(i=1\) to \(G . V()-1\)
        foreach \(x \in V(G)\)
            for ( \(\mathrm{y}: \operatorname{adj}[\mathrm{x}]\) )
            relax (x,y);
    foreach \(x \in V(G)\)
        for ( \(\mathrm{y}: \operatorname{adj}[\mathrm{x}]\) )
        if \((\mathrm{d}[\mathrm{x}]>\mathrm{d}[\mathrm{y}]+w(\mathrm{x}, \mathrm{y}))\)
        return false;
    return true;
\}
```


Bellman-Ford algorithm

Pseudocode

```
boolean BellmanFord (G,s) \{
    initialize(G,s);
    for \(i=1\) to \(G . V()-1\)
        foreach \(x \in V(G)\)
            for ( \(\mathrm{y}: \operatorname{adj}[\mathrm{x}]\) )
            relax (x,y);
    foreach \(x \in V(G)\)
        for ( \(\mathrm{y}: \operatorname{adj}[\mathrm{x}]\) )
            if \((\mathrm{d}[\mathrm{x}]>\mathrm{d}[\mathrm{y}]+w(\mathrm{x}, \mathrm{y}))\)
                        return false;
    return true;
\}
```

Complexity (running time): $O\left(n^{3}\right)$

Bellman-Ford algorithm

Illustrated example

Bellman-Ford algorithm

Illustrated example

After initialization:

Bellman-Ford algorithm

Illustrated example

After the 6-th for loop:

Bellman-Ford algorithm

Illustrated example

After the 8-th for loop:

Bellman-Ford algorithm

Illustrated example

After the 10-th for loop:

The algorithm returns false because it detects

$$
\mathrm{d}[f]=-11>\mathrm{d}[e]+w(e, f)
$$

Dijkstra algorithm

Pseudocode

```
void Dijkstra(G,s) {
    initialize(G,s);
    Q=set of nodes of G;
    while (!Q.isEmpty()) {
```



```
        for (v:G.adj(u))
            if (Q.contains(v))
                        relax(u,v);
    }
}
```


Dijkstra algorithm

Pseudocode

```
void Dijkstra(G,s) {
    initialize(G,s);
    Q=set of nodes of G;
    while (!Q.isEmpty()) {
```



```
        for (v:G.adj(u))
            if (Q.contains(v))
                        relax(u,v);
    }
}
```

Complexity (running time): $O\left(n^{2}\right)$

Dijkstra algorithm

Illustrated example

After initialization we have

Dijkstra algorithm

Illustrated example

Dijkstra algorithm

Illustrated example

After relaxing all edges from s we have

Dijkstra algorithm

Illustrated example

After relaxing all edges from a we have

Dijkstra algorithm

Illustrated example

After relaxing all edges from x we have

Dijkstra algorithm

Illustrated example

After relaxing all edges from c we have

Dijkstra algorithm

Illustrated example

Future relaxations do not change the values of p[] and d[] :

x	s	a	x	b	c	y	d	t
$\mathrm{p}[x]$	null	s	a	s	a	x	x	c
$\mathrm{d}[\mathrm{x}]$	0	3	5	8	5	6	7	8

Dijkstra algorithm

Illustrated example

Future relaxations do not change the values of p[] and d[] :

x	s	a	x	b	c	y	d	t
$\mathrm{p}[x]$	null	s	a	s	a	x	x	c
$\mathrm{d}[x]$	0	3	5	8	5	6	7	8

\Rightarrow the tree of paths with minimum weights computed by the algorithm is

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes
Find for all $x, y \in V$ with $x \rightsquigarrow y$, a path $x \stackrel{\pi_{x, y}}{\sim} y$ with length ${ }_{w}\left(\pi_{x, y}\right)=\delta_{w}(x, y)$.

Paths with minimum weights between all pairs of nodes

Given a weighted graph G with n nodes
Find for all $x, y \in V$ with $x \rightsquigarrow y$, a path $x \stackrel{\pi_{x, y}}{\sim} y$ with length ${ }_{w}\left(\pi_{x, y}\right)=\delta_{w}(x, y)$.

Remarks:

(1) This problem can be solved by running n times one of the previous two algorithms, once for every node $x \in V(G)$ as source node.
(2) Runtime complexity:

- $O\left(n^{4}\right)$ if we use Bellman-Ford alg. for the general case when edges can have negative weights.
- $O\left(n^{3}\right)$ if we use Dijkstra alg. for the special case when $w(e)>0$ for all edges $e \in E$.
(3) We will describe a new method - Floyd-Warshall algorithm:
- Runtime complexitaty: $O\left(n^{3}\right)$ when we can have edges with negative weights, but no cycles with negative weight.

Floyd-Warshall algorithm

Auxiliary data structures

Two $n \times n$ arrays, such that, for all $x, y \in V$:
(1) $\mathrm{d}[x][y]$: an upper bound for $\delta_{w}(x, y)$.
(2) $\mathrm{P}[x][y] \in\{$ null $\} \cup V$.

When the algorithm stops, the values of P[][] and d[][] have the following properties:

- $\mathrm{d}[x][y]=\delta_{w}(x, y)$.
- If $x \neq y$ and there is a path with minimum weight from x la y then $\mathrm{P}[x][y]$ is the predecessor of x on a path $x \stackrel{\pi}{\sim} y$ with minimum weight.

Floyd-Warshall algorithm

Basic idea

If $x, y, z \in V$ then any path $\pi_{x, y}$ with minimum weight from x to y has one of the following two shapes:
(1)
 where z is not an intermediary node of $\pi_{x, y}$, or
(2)

where z is not an intermediary node of $\pi_{x, z}$ and $\pi_{z, y}$.

Floyd-Warshall algorithm

Basic idea

If $x, y, z \in V$ then any path $\pi_{x, y}$ with minimum weight from x to y has one of the following two shapes:
(1)

where z is not an intermediary node of $\pi_{x, y}$, or
(2)

where z is not an intermediary node of $\pi_{x, z}$ and $\pi_{z, y}$.
\Rightarrow we can define a recursive method to compute the elements of the arrays P[][] and d[][] .

Floyd-Warshall algorithm

The recursive computation of the elements of arrays d[][] and P[][]

Let $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a fixed enumeration of the nodes of G. For $0 \leq k \leq n$ we define arrays $\mathrm{d}[k]$ and $\mathrm{P}[k]$ of size $n \times n$ as follows:

- $\mathrm{d}[k][i][j]$ este cea mai mică lungime ponderată a unei căi de la x_{i} la x_{j} care trece doar prin noduri intermediare din mulțimea $\left\{x_{1}, \ldots, x_{k}\right\}$. Dacă o astfel de cale nu există, atunci $\mathrm{d}[k][i][j]=+\infty$.
- $\mathrm{P}[k][i][j]$ este null dacă $i=j$ sau $\mathrm{d}[k][i][j]=+\infty$. În caz contrar, $\mathrm{P}[k][i][j]$ este predecesorul nodului x_{j} pe un drum cu lungime ponderată minimă de la x_{i} la x_{j} care trece doar prin noduri intermediare din mulțimea $\left\{x_{1}, \ldots, x_{k}\right\}$.

Floyd-Warshall algorithm

The recursive computation of d[][] and P[][] (continued)
We learn that, for all $i, j \in\{1,2, \ldots, n\}$ we have

$$
\begin{aligned}
\mathrm{d}[0][i][j] & =w\left(x_{i}, x_{j}\right), \\
\mathrm{P}[0][i][j] & = \begin{cases}\text { null } & \text { if } i=j \text { or } w\left(x_{i}, x_{j}\right)=+\infty \\
x_{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

and if $1 \leq k \leq n$ then

$$
\begin{aligned}
& \mathrm{d}[k][i][j]=\min (\mathrm{d}[k-1][i][j], \mathrm{d}[k-1][i][k]+\mathrm{d}[k-1][k][j]), \\
& \mathrm{P}[k][i][j]
\end{aligned}=\left\{\begin{array}{ll}
\mathrm{P}[k-1][i][j] & \text { if } \mathrm{d}[k-1][i][j]=\mathrm{d}[k][i][j], \\
\mathrm{P}[k-1][k][j] & \text { otherwise. }
\end{array} .\right.
$$

Floyd-Warshall algorithm

The recursive computation of d[][] and P[][] (continued)
We learn that, for all $i, j \in\{1,2, \ldots, n\}$ we have

$$
\begin{aligned}
\mathrm{d}[0][i][j] & =w\left(x_{i}, x_{j}\right), \\
\mathrm{P}[0][i][j] & = \begin{cases}\text { null } & \text { if } i=j \text { or } w\left(x_{i}, x_{j}\right)=+\infty \\
x_{i} & \text { otherwise }\end{cases}
\end{aligned}
$$

and if $1 \leq k \leq n$ then

$$
\begin{aligned}
& \mathrm{d}[k][i][j]=\min (\mathrm{d}[k-1][i][j], \mathrm{d}[k-1][i][k]+\mathrm{d}[k-1][k][j]), \\
& \mathrm{P}[k][i][j]
\end{aligned}=\left\{\begin{array}{ll}
\mathrm{P}[k-1][i][j] & \text { if } \mathrm{d}[k-1][i][j]=\mathrm{d}[k][i][j], \\
\mathrm{P}[k-1][k][j] & \text { otherwise. }
\end{array} .\right.
$$

Final remark: Because the intermediary nodes of every path are in the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we can define

$$
\mathrm{d}\left[x_{i}\right]\left[x_{j}\right]=\mathrm{d}[n][i][j] \text { and } \mathrm{P}\left[x_{i}\right]\left[x_{j}\right]=\mathrm{P}[n][i][j] .
$$

Floyd-Warshall algorithm

Complexity analysis

(1) Initialization of arrays $\mathrm{d}[0]$ and $\mathrm{P}[0]$ takes $O\left(n^{2}\right)$ time.
(2) The computation of $\mathrm{d}[k]$ from $\mathrm{d}[k-1]$ and $\mathrm{P}[k]$ from $\mathrm{P}[k-1]$ takes $O\left(n^{2}\right)$ time.
(3) This computation is repeated for k from 1 to $n \Rightarrow$ runtime complexity $n \cdot O\left(n^{2}\right)=O\left(n^{3}\right)$.

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

k	$\mathrm{~d}[k]$					
0	$\left(\begin{array}{cccccc}0 & +\infty & -2 & +\infty & +\infty & +\infty \\ 3 & 0 & +\infty & 1 & +\infty & +\infty \\ +\infty & 6 & 0 & +\infty & +\infty & +\infty \\ -3 & +\infty & -4 & 0 & +\infty & +\infty \\ +\infty & 3 & +\infty & +\infty & 0 & 8 \\ +\infty & 9 & +\infty & +\infty & -6 & 0\end{array}\right)$	$\left(\begin{array}{cccccc}\bullet & \bullet & a & \bullet & \bullet & \bullet \\ b & \bullet & \bullet & b & \bullet & \bullet \\ \bullet & c & \bullet & \bullet & \bullet & \bullet \\ d & \bullet & d & \bullet & \bullet & \bullet \\ \bullet & e & \bullet & \bullet & \bullet & e \\ \bullet & f & \bullet & \bullet & f & \bullet\end{array}\right)$				

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

k	$\mathrm{~d}[k]$					
1	$\left(\begin{array}{cccccc}0 & +\infty & -2 & +\infty & +\infty & +\infty \\ 3 & 0 & 1 & 1 & +\infty & +\infty \\ +\infty & 6 & 0 & +\infty & +\infty & +\infty \\ -3 & +\infty & -5 & 0 & +\infty & +\infty \\ +\infty & 3 & +\infty & +\infty & 0 & 8 \\ +\infty & 9 & +\infty & +\infty & -6 & 0\end{array}\right)\left(\begin{array}{cccccc\|}\bullet & \bullet & a & \bullet & \bullet & \bullet \\ b & \bullet & a & b & \bullet & \bullet \\ \bullet & c & \bullet & \bullet & \bullet & \bullet \\ d & \bullet & a & \bullet & \bullet & \bullet \\ \bullet & e & \bullet & \bullet & \bullet & e \\ \bullet & f & \bullet & \bullet & f & \bullet\end{array}\right)$					

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order $[a, b, c, d, e, f]$

k	$\mathrm{~d}[k]$					
	$\left(\begin{array}{cccccc}0 & +\infty & -2 & +\infty & +\infty & +\infty \\ 3 & 0 & 1 & 1 & +\infty & +\infty \\ 9 & 6 & 0 & 7 & +\infty & +\infty \\ -3 & +\infty & -5 & 0 & +\infty & +\infty \\ 6 & 3 & 4 & 4 & 0 & 8 \\ 12 & 9 & 10 & 10 & -6 & 0\end{array}\right)\left(\begin{array}{cccccc\|}\bullet & \bullet & a & \bullet & \bullet & \bullet \\ b & \bullet & a & b & \bullet & \bullet \\ b & c & \bullet & b & \bullet & \bullet \\ d & \bullet & a & \bullet & \bullet & \bullet \\ b & e & a & b & \bullet & e \\ b & f & a & b & f & \bullet\end{array}\right)$					

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

k	$\mathrm{~d}[k]$						$\mathrm{P}[k]$				
	$\left(\begin{array}{cccccc}0 & 4 & -2 & 5 & +\infty & +\infty \\ 3 & 0 & 1 & 1 & +\infty & +\infty \\ 9 & 6 & 0 & 7 & +\infty & +\infty \\ -3 & 1 & -5 & 0 & +\infty & +\infty \\ 6 & 3 & 4 & 4 & 0 & 8 \\ 12 & 9 & 10 & 10 & -6 & 0\end{array}\right)$	$\left(\begin{array}{ccccc}\bullet & c & a & \bullet & \bullet \\ b & \bullet & a & b & \bullet \\ \bullet & \bullet \\ b & c & \bullet & b & \bullet \\ d & c & a & \bullet & \bullet \\ b & e & a & b & \bullet \\ b & f & a & b & f\end{array}\right)$									

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, $d, e, f]$

k	$\mathrm{~d}[k]$						$\mathrm{P}[k]$				
	$\left(\begin{array}{cccccc}0 & 4 & -2 & 5 & +\infty & +\infty \\ -2 & 0 & -4 & 1 & +\infty & +\infty \\ 4 & 6 & 0 & 7 & +\infty & +\infty \\ -3 & 1 & -5 & 0 & +\infty & +\infty \\ 1 & 3 & -1 & 4 & 0 & 8 \\ 7 & 9 & 5 & 10 & -6 & 0\end{array}\right)$	$\left(\begin{array}{cccccc}\bullet & c & a & b & \bullet & \bullet \\ d & \bullet & a & b & \bullet & \bullet \\ d & c & \bullet & b & \bullet & \bullet \\ d & c & a & \bullet & \bullet & \bullet \\ d & e & a & b & \bullet & e \\ d & f & a & b & f & \bullet\end{array}\right)$									

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

| k | $\mathrm{~d}[k]$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $\left(\begin{array}{cccccccc\|}0 & 4 & -2 & 5 & +\infty & +\infty \\ -2 & 0 & -4 & 1 & +\infty & +\infty \\ 4 & 6 & 0 & 7 & +\infty & +\infty \\ -3 & 1 & -5 & 0 & +\infty & +\infty \\ 1 & 3 & -1 & 4 & 0 & 8 \\ -5 & -3 & -7 & -2 & -6 & 0\end{array}\right)$ | $\left(\begin{array}{cccccc}\bullet & c & a & b & \bullet & \bullet \\ d & \bullet & a & b & \bullet & \bullet \\ d & c & \bullet & b & \bullet & \bullet \\ d & c & a & \bullet & \bullet & \bullet \\ d & e & a & b & \bullet & e \\ d & e & a & b & f & \bullet\end{array}\right)$ | | | | |

Floyd-Warshall algorithm

Illustrated example

Nodes are enumerated in the order [a, b, c, d, e, f]

| k | $\mathrm{~d}[k]$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $\left(\begin{array}{cccccccc\|}0 & 4 & -2 & 5 & +\infty & +\infty \\ -2 & 0 & -4 & 1 & +\infty & +\infty \\ 4 & 6 & 0 & 7 & +\infty & +\infty \\ -3 & 1 & -5 & 0 & +\infty & +\infty \\ 1 & 3 & -1 & 4 & 0 & 8 \\ -5 & -3 & -7 & -2 & -6 & 0\end{array}\right)$ | $\left(\begin{array}{cccccc}\bullet & c & a & b & \bullet & \bullet \\ d & \bullet & a & b & \bullet & \bullet \\ d & c & \bullet & b & \bullet & \bullet \\ d & c & a & \bullet & \bullet & \bullet \\ d & e & a & b & \bullet & e \\ d & e & a & b & f & \bullet\end{array}\right)$ | | | | |

Floyd-Warshall algorithm

Illustrated example (continued)

Nodes are enumerated in the order $[a, b, c, d, e, f]$

In the end, the element values of arrays $P[][]$ and d[][] are

	a	b	c	d	e	f
a	\bullet	c	a	b	\bullet	\bullet
b	d	\bullet	a	b	\bullet	\bullet
c	d	c	\bullet	b	\bullet	\bullet
d	d	c	a	\bullet	\bullet	\bullet
e	d	e	a	b	\bullet	e
f	d	e	a	b	f	\bullet

	a	b	c	d	e	f
a	0	4	-2	5	$+\infty$	$+\infty$
b	-2	0	-4	1	$+\infty$	$+\infty$
c	4	6	0	7	$+\infty$	$+\infty$
d	-3	1	-5	0	$+\infty$	$+\infty$
e	1	3	-1	4	0	8
f	-5	-3	-7	-2	-6	0

Floyd-Warshall algorithm

Properties of array P

- Array P is called predecessor matrix.
- For every node $x \in G$ we can define the tree T_{x} with root x and
- set of nodes $\{x\} \cup\{y \in V \mid P[x][y] \neq$ null $\}$
- set of edges $\{\mathrm{P}[x][y] \rightarrow y \mid y \in V-\{x\}\}$.
- T_{x} is a tree of paths with minimum weights from x in G, and it can be extracted from the row of node x in array P[][] .

Floyd-Warshall algorithm

Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

$$
P[6]=\left(\begin{array}{llllll}
\bullet & c & a & b & \bullet & \bullet \\
d & \bullet & a & b & \bullet & \bullet \\
d & c & \bullet & b & \bullet & \bullet \\
d & c & a & \bullet & \bullet & \bullet \\
d & e & a & b & \bullet & e \\
d & e & a & b & f & \bullet
\end{array}\right)
$$

Floyd-Warshall algorithm

Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

$$
P[6]=\left(\begin{array}{llllll}
\bullet & c & a & b & \bullet & \bullet \\
d & \bullet & a & b & \bullet & \bullet \\
d & c & \bullet & b & \bullet & \bullet \\
d & c & a & \bullet & \bullet & \bullet \\
d & e & a & b & \bullet & e \\
d & e & a & b & f & \bullet
\end{array}\right)
$$

f is the 6 -th element in the node enumeration [$a, b, c, d, e, f]$, thus T_{f} can be obtained from line 6 of the matrix $P[6]$:

Floyd-Warshall algorithm

Aplication of the predecesor matrix P

Find a a tree of paths with minimum weight from source node f in

$$
P[6]=\left(\begin{array}{llllll}
\bullet & c & a & b & \bullet & \bullet \\
d & \bullet & a & b & \bullet & \bullet \\
d & c & \bullet & b & \bullet & \bullet \\
d & c & a & \bullet & \bullet & \bullet \\
d & e & a & b & \bullet & e \\
d & e & a & b & f & \bullet
\end{array}\right)
$$

f is the 6-th element in the node enumeration $[a, b, c, d, e, f]$, thus T_{f} can be obtained from line 6 of the matrix $P[6]$:

$$
f \xrightarrow{-6} e \xrightarrow{3} d \xrightarrow{1} d \xrightarrow{-3} c
$$

