Data structures and algorithms for graphs Graph traversal. Applications

December 2020

Terminology

Graph $G=(V, E)$ where

- V : finite set of nodes of vertices
- E : list of edges $(a, b) \in V \times V$

Types of graphs:
Undirected: edges have no direction: $(a, b)=(b, a)$.
Directed: edges have direction: if $a \neq b$ then $(a, b) \neq(b, a)$. Usually, we write $a \rightarrow b$ instead of (a, b) and call it arc from a to b.

Weighted: a graph $G=(V, E)$ together with a weight function $w: E \rightarrow \mathbb{R}, w(e)$ is the weight of edge $e \in E$. Usually, we write $w(a, b)$ instead of $w((a, b))$.

Glossary

Assumption: $G=(V, E)$ is a given graph.

- Adjacency list of $x \in V: \operatorname{adj}[x]=[y \in V \mid(x, y) \in E]$

Examples of representations with adjacency lists

Glossary

Connectivity

Assumption: $G=(V, E)$ is a given graph; $x, y \in V$

- Path from x to $y=$ list of nodes $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ s.t.

$$
x_{1}=x, x_{2}=y, \text { and }\left(x_{i}, x_{i+1} \in E\right) \text { for all } 1 \leq i<n .
$$

The length of this path is $n-1$.

- We write $x \rightsquigarrow y$ if there is a path from x to y, and $x \nLeftarrow y y$ otherwise.
- x, y are strongly connected, and we write $x \sim_{s c} y$, if $x \rightsquigarrow y$ and $y \rightsquigarrow x$.

Remarks:

(1) \rightsquigarrow is an equivalence relation on V in undirected graphs. The equivalence classes of \rightsquigarrow for an undirected graph G are the connected components of G.
(2) $\sim_{s c}$ is an equivalence relation on V in digraphs. The equivalence classes of \rightsquigarrow for an digraph G are the strongly connected components of G.

Connectivity

Examples

Connected components: $\{1,2,3,4,5\},\{6,8,9\}$ and $\{7\}$

Strongly connected components: $\{1,2,3,4,5\},\{6,8,9\}$ and $\{7\}$

Graph traversals

Given $G=(V, E)$ and $s \in V$
Find the set of nodes $S=\{x \in V \mid s \rightsquigarrow x\}$. Also, for every $x \in S$, find a path from s to x.

Graph traversals

Given $G=(V, E)$ and $s \in V$
Find the set of nodes $S=\{x \in V \mid s \rightsquigarrow x\}$. Also, for every $x \in S$, find a path from s to x.
This problem can be solved with a tree traversal strategy.

Graph traversals

Given $G=(V, E)$ and $s \in V$
Find the set of nodes $S=\{x \in V \mid s \rightsquigarrow x\}$. Also, for every $x \in S$, find a path from s to x.
This problem can be solved with a tree traversal strategy.

- The most important tree traversal strategies are depth first search (DFS) and breadth first search (BFS).

Graph traversals

Given $G=(V, E)$ and $s \in V$
Find the set of nodes $S=\{x \in V \mid s \rightsquigarrow x\}$. Also, for every $x \in S$, find a path from s to x.
This problem can be solved with a tree traversal strategy.

- The most important tree traversal strategies are depth first search (DFS) and breadth first search (BFS).
- Both strategies build a search tree T with root s, with the following properties:
- The set of nodes in T is $S=\{x \in V \mid s \rightsquigarrow x\}$.
- For every $x \in S$: the branch from s to x in T is a path from s to x in G.

Depth first search from a source node s

- Start by visiting the source node s.
- Visiting a node x is a recursive process:
(1) Mark node x as visited.
(2) Visit recursively all unvisited neighbors of x. Usually, for every unvisited neighbor y that gets visited, we set $\mathrm{p}[y]=x$ to record the fact that graph traversal proceeds from x to y.

```
dfs(G,x)
    visited [x] = true;
    for }y\in\operatorname{adj[x] do
    if not(visited[y])
        p[y] = x;
        dfs(G,y);
```


Depth first search from a source node s

Illustrated example

DFS from node 0 yields the depth first search tree

Paths from source node 0 :
[0], $[0,2],[0,2,3],[0,2,3,4],[0,2,3,5],[0,1]$

Depth first search from a source node s

Illustrated example

DFS from node 0 yields the depth first search tree

Paths from source node 0 :
$[0],[0,2],[0,2,3],[0,2,3,4],[0,2,3,5],[0,1]$

Remarks
(1) The paths computed by DFS are not shortest paths from source node 0 .
(2) We can compute shortest paths from the source node with BFS (see next slide).

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

- In the first round we visit s and mark s as visited.
- In every next round we visit the unvisited nodes of the nodes visited in the previous round.

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

- In the first round we visit s and mark s as visited.
- In every next round we visit the unvisited nodes of the nodes visited in the previous round.

BFS can be implemented with a queue where we record the visited nodes in the order in which we will visit their unvisited neighbors.

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

- In the first round we visit s and mark s as visited.
- In every next round we visit the unvisited nodes of the nodes visited in the previous round.

BFS can be implemented with a queue where we record the visited nodes in the order in which we will visit their unvisited neighbors.

```
bfs(G,s)
    visited[s] = true;
    Q :=empty queue;
    add s to Q;
    while nonempty(Q)
        v:= pop(Q);
        for }w\in\operatorname{adj[v]
        if not(visited[w])
            p[w]=v;
            visited[w] = true;
            add w to Q;
```


Breadth first search from a source node s

Illustrated example

$$
\begin{aligned}
& 0 \longrightarrow 2 \sim{ }^{0} \rightarrow \operatorname{adj}[0]=[2,1,5], \operatorname{adj}[1]=[5], \operatorname{adj}[2]=[3,1,4] \text {, } \\
& \operatorname{adj}[3]=[4,5], \operatorname{adj}[4]=[2], \operatorname{adj}[5]=[], \\
& \operatorname{adj}[6]=[4,2], \operatorname{adj}[7]=[8], \operatorname{adj}[8]=[6] .
\end{aligned}
$$

REMARKS

- The paths computed by BFS are shortest paths from the source node.

DFS traversal orders

We can use $\operatorname{dfs}()$ to visit all nodes of $G=(V, E)$ and produce a forest of depth first search trees:
for $s \in V$
if $\operatorname{not}($ visited $[s]) \operatorname{dfs}(G, s)$
\Rightarrow we define three DFS traversal orders:
(1) Preorder: nodes are added in a queue before the recursive call of dfs(), and assume $x<_{\text {pre }} y$ if x occurs before y in queue.
(2) Postorder: nodes are added in a queue after the recursive call of $\operatorname{dfs}()$, and assume $x<_{\text {post }} y$ if x occurs before y in queue.
(3) Reverse postorder: we have $x<_{\text {revpost }} y$ if $y<_{\text {post }} x$.

DFS traversal orders

Example

DFS yields a forest of 3 depth first search trees

with the following orderings:

Preorder: [0,1,2,6,4,3,5,7,8,9,10,11,12] Postorder: $[1,2,5,3,4,6,0,8,7,10,12,11,9]$
(12) Reverse postorder:

$$
[9,11,12,10,7,8,0,6,4,3,5,2,1]
$$

Applications of DFS

Assumption: $G=(V, E)$ is an undirected graph.

1. Detection of connected components in undirected graphs. Main idea: Build a forest of depth first search trees

- The connected components are the sets of nodes in the individual depth first search trees.

2. Cycle detection in undirected graphs.
(1) Build a forest of depth first search trees.
(2) All edges of G which are not in the forest of depth first search trees, are between a node and a non-parent ancestor.
(3) G has a cycle iff there is a DFS tree with an edge between a node and a non-parent predecessor.
See illustrated example on next slide.

Applications of DFS

2. Cycle detection in undirected graphs

The forest of trees produced by DFS is

- The red-colored edges indicate cycles in G.

Applications of DFS

3. Topological sort

- A directed acyclic graph, or DAG, is a digraph $G=(V, E)$ without cycles.
- A topological sort of a DAG is an enumeration $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of all nodes in G such that all arcs in E are of the form $x_{i} \rightarrow x_{j}$ with $1 \leq i<j \leq n$.

Example

This digraph is a DAG.
A topological sort is [6, 0, 1, 2, 5, 4, 3]

Applications of DFS

3. Topological sort

- A directed acyclic graph, or DAG, is a digraph $G=(V, E)$ without cycles.
- A topological sort of a DAG is an enumeration $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of all nodes in G such that all arcs in E are of the form $x_{i} \rightarrow x_{j}$ with $1 \leq i<j \leq n$.

Example

This digraph is a DAG.
A topological sort is [6, 0, 1, 2, 5, 4, 3]

Remark: For a DAG $G=(V, E)$, the nodes of V listed in reverse postorder are a topological sort of G.

Applications of DFS

3. Topological sort: Example continued

The forest of depth first search trees of this digraph is

Postorder: $[3,4,5,2,1,0,6]$.
Reverse postorder: $[6,0,1,2,5,4,3]$.

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.
This problem can be solved with Kosaraju's algorithm:

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.
This problem can be solved with Kosaraju's algorithm:
(1) Compute the reverse digraph $G^{r}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$.

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.
This problem can be solved with Kosaraju's algorithm:
(1) Compute the reverse digraph $G^{r}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$.
(2) Let $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the enumeration of the nodes of G^{r} in the reverse postorder of DFS of G^{r}

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.
This problem can be solved with Kosaraju's algorithm:
(1) Compute the reverse digraph $G^{r}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$.
(2) Let $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the enumeration of the nodes of G^{r} in the reverse postorder of DFS of G^{r}
(3) Let T_{1}, \ldots, T_{r} be the forest of depth-first traversal trees of G produced by visiting the unvisited nodes on G in the order $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Applications of DFS

4. Detection of strongly connected components

Given a digraph $G=(V, E)$
Find the strongly connected components of G.
This problem can be solved with Kosaraju's algorithm:
(1) Compute the reverse digraph $G^{r}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$.
(2) Let $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the enumeration of the nodes of G^{r} in the reverse postorder of DFS of G^{r}
(3) Let T_{1}, \ldots, T_{r} be the forest of depth-first traversal trees of G produced by visiting the unvisited nodes on G in the order $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
(9) The strongly connected components of G are the sets of nodes of the trees $T_{1}, T_{2}, \ldots, T_{r}$

Detection of strongly connected components

Application 4: Kosaraju's algorithm: step 1

Detection of strongly connected components

Application 4: Kosaraju's algorithm: step 2

DFS of the nodes of G^{r} with nodes ordered by
[$0,1,2,3,4,5,6,7,8,9,10,11,12$] yields the forest of trees

\Rightarrow reverse postorder $[9,12,11,10,1,0,2,3,4,6,7,8,5]$.

Detection of strongly connected components

Application 4: Kosaraju's algorithm: steps 3 and 4
3. DFS of the nodes of G with nodes ordered by $[9,12,11,10,1$, $0,2,3,4,6,7,8,5]$ yields the forest of trees

4. We conclude that the strongly connected components of G are $\{9,10,11,12\},\{1\},\{0,2,3,4,5\},\{6\}$ and $\{7,8\}$.

- The strongly connected components of G are illustrated on the next slide.

Detection of strongly connected components

Application 4: Kosaraju's algorithm - illustration of the final result

