
Data structures and algorithms for graphs
Graph traversal. Applications

December 2020

Data structures and algorithms for graphs

Terminology

Graph G = (V ,E) where

V : finite set of nodes of vertices

E : list of edges (a, b) ∈ V × V

Types of graphs:

Undirected: edges have no direction: (a, b) = (b, a).

Directed: edges have direction: if a 6= b then (a, b) 6= (b, a).
Usually, we write a→b instead of (a, b) and call it arc
from a to b.

Weighted: a graph G = (V ,E) together with a weight function
w : E → R, w(e) is the weight of edge e ∈ E .
Usually, we write w(a, b) instead of w((a, b)).

Data structures and algorithms for graphs

Glossary

Assumption: G = (V ,E) is a given graph.

Adjacency list of x ∈ V : adj[x] = [y ∈ V | (x , y) ∈ E]

Examples of representations with adjacency lists

a

e b

d
c

f

adj[a] = [d, e]

adj[b] = []

adj[c] = []

adj[d] = [b, c, f]

adj[e] = [b]

adj[f] = [b, e]

a

e b

d
c

f

adj[a] = [d, e]

adj[b] = [d, e, f]

adj[c] = [d]

adj[d] = [a, b, c, f]

adj[e] = [a, b, f]

adj[f] = [b, d, e]

Data structures and algorithms for graphs

Glossary
Connectivity

Assumption: G = (V ,E) is a given graph; x , y ∈ V

Path from x to y = list of nodes [x1, x2, . . . , xn] s.t.
x1 = x , x2 = y , and (xi , xi+1 ∈ E) for all 1 ≤ i < n.

The length of this path is n − 1.

We write x y if there is a path from x to y ,
and x 6 y otherwise.

x , y are strongly connected, and we write x ∼sc y , if x y
and y x .

Remarks:

1 is an equivalence relation on V in undirected graphs. The
equivalence classes of for an undirected graph G are the
connected components of G .

2 ∼sc is an equivalence relation on V in digraphs. The
equivalence classes of for an digraph G are the strongly
connected components of G .

Data structures and algorithms for graphs

Connectivity
Examples

1 7

2 3
4

5 6 8

9

Connected components:
{1, 2, 3, 4, 5}, {6, 8, 9} and {7}

1 7

2 3
4

5 6 8

9

Strongly connected components:
{1, 2, 3, 4, 5}, {6, 8, 9} and {7}

Data structures and algorithms for graphs

Graph traversals

Given G = (V ,E) and s ∈ V

Find the set of nodes S = {x ∈ V | s x}. Also, for
every x ∈ S , find a path from s to x .

This problem can be solved with a tree traversal strategy.

The most important tree traversal strategies are depth first
search (DFS) and breadth first search (BFS).

Both strategies build a search tree T with root s, with the
following properties:

The set of nodes in T is S = {x ∈ V | s x}.
For every x ∈ S : the branch from s to x in T is a path from s
to x in G .

Data structures and algorithms for graphs

Graph traversals

Given G = (V ,E) and s ∈ V

Find the set of nodes S = {x ∈ V | s x}. Also, for
every x ∈ S , find a path from s to x .

This problem can be solved with a tree traversal strategy.

The most important tree traversal strategies are depth first
search (DFS) and breadth first search (BFS).

Both strategies build a search tree T with root s, with the
following properties:

The set of nodes in T is S = {x ∈ V | s x}.
For every x ∈ S : the branch from s to x in T is a path from s
to x in G .

Data structures and algorithms for graphs

Graph traversals

Given G = (V ,E) and s ∈ V

Find the set of nodes S = {x ∈ V | s x}. Also, for
every x ∈ S , find a path from s to x .

This problem can be solved with a tree traversal strategy.

The most important tree traversal strategies are depth first
search (DFS) and breadth first search (BFS).

Both strategies build a search tree T with root s, with the
following properties:

The set of nodes in T is S = {x ∈ V | s x}.
For every x ∈ S : the branch from s to x in T is a path from s
to x in G .

Data structures and algorithms for graphs

Graph traversals

Given G = (V ,E) and s ∈ V

Find the set of nodes S = {x ∈ V | s x}. Also, for
every x ∈ S , find a path from s to x .

This problem can be solved with a tree traversal strategy.

The most important tree traversal strategies are depth first
search (DFS) and breadth first search (BFS).

Both strategies build a search tree T with root s, with the
following properties:

The set of nodes in T is S = {x ∈ V | s x}.
For every x ∈ S : the branch from s to x in T is a path from s
to x in G .

Data structures and algorithms for graphs

Depth first search from a source node s

Start by visiting the source node s.

Visiting a node x is a recursive process:
1 Mark node x as visited.
2 Visit recursively all unvisited neighbors of x . Usually, for every

unvisited neighbor y that gets visited, we set p[y] = x to
record the fact that graph traversal proceeds from x to y .

dfs(G , x)
visited [x] = true;
for y ∈ adj[x] do

if not(visited [y])
p[y] = x ;
dfs(G , y);

Data structures and algorithms for graphs

Depth first search from a source node s
Illustrated example

DFS from node 0 yields the depth first search tree

0

12

3

4 5

Paths from source node 0:

[0], [0, 2], [0, 2, 3], [0, 2, 3, 4], [0, 2, 3, 5], [0, 1]

Remarks

1 The paths computed by DFS are not shortest paths from
source node 0.

2 We can compute shortest paths from the source node with
BFS (see next slide).

Data structures and algorithms for graphs

Depth first search from a source node s
Illustrated example

DFS from node 0 yields the depth first search tree

0

12

3

4 5

Paths from source node 0:

[0], [0, 2], [0, 2, 3], [0, 2, 3, 4], [0, 2, 3, 5], [0, 1]

Remarks

1 The paths computed by DFS are not shortest paths from
source node 0.

2 We can compute shortest paths from the source node with
BFS (see next slide).

Data structures and algorithms for graphs

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

In the first round we visit s and mark s as visited.

In every next round we visit the unvisited nodes of the nodes visited
in the previous round.

BFS can be implemented with a queue where we record the visited nodes
in the order in which we will visit their unvisited neighbors.

bfs(G , s)
visited [s] = true;
Q :=empty queue;
add s to Q;
while nonempty(Q)

v := pop(Q);
for w ∈ adj[v]

if not(visited [w])
p[w] = v ;
visited [w] = true;
add w to Q;

Data structures and algorithms for graphs

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

In the first round we visit s and mark s as visited.

In every next round we visit the unvisited nodes of the nodes visited
in the previous round.

BFS can be implemented with a queue where we record the visited nodes
in the order in which we will visit their unvisited neighbors.

bfs(G , s)
visited [s] = true;
Q :=empty queue;
add s to Q;
while nonempty(Q)

v := pop(Q);
for w ∈ adj[v]

if not(visited [w])
p[w] = v ;
visited [w] = true;
add w to Q;

Data structures and algorithms for graphs

Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

In the first round we visit s and mark s as visited.

In every next round we visit the unvisited nodes of the nodes visited
in the previous round.

BFS can be implemented with a queue where we record the visited nodes
in the order in which we will visit their unvisited neighbors.

bfs(G , s)
visited [s] = true;
Q :=empty queue;
add s to Q;
while nonempty(Q)

v := pop(Q);
for w ∈ adj[v]

if not(visited [w])
p[w] = v ;
visited [w] = true;
add w to Q;

Data structures and algorithms for graphs

Breadth first search from a source node s
Illustrated example

0

2 1 5

3 4

Remarks

The paths computed by BFS are shortest paths from the
source node.

Data structures and algorithms for graphs

DFS traversal orders

We can use dfs() to visit all nodes of G = (V ,E) and produce
a forest of depth first search trees:

for s ∈ V
if not(visited [s]) dfs(G , s)

⇒ we define three DFS traversal orders:
1 Preorder: nodes are added in a queue before the recursive call

of dfs(), and assume x <pre y if x occurs before y in queue.
2 Postorder: nodes are added in a queue after the recursive call

of dfs(), and assume x <post y if x occurs before y in queue.
3 Reverse postorder: we have x <revpost y if y <post x .

Data structures and algorithms for graphs

DFS traversal orders
Example

DFS yields a forest of 3 depth first search trees

Data structures and algorithms for graphs

Applications of DFS

Assumption: G = (V ,E) is an undirected graph.

1. Detection of connected components in undirected graphs.
Main idea: Build a forest of depth first search trees

The connected components are the sets of nodes in the
individual depth first search trees.

2. Cycle detection in undirected graphs.
1 Build a forest of depth first search trees.
2 All edges of G which are not in the forest of depth first search

trees, are between a node and a non-parent ancestor.
3 G has a cycle iff there is a DFS tree with an edge between a

node and a non-parent predecessor.

See illustrated example on next slide.

Data structures and algorithms for graphs

Applications of DFS
2. Cycle detection in undirected graphs

The forest of trees produced by DFS is

The red-colored edges indicate cycles in G .

Data structures and algorithms for graphs

Applications of DFS
3. Topological sort

A directed acyclic graph, or DAG, is a digraph G = (V ,E)
without cycles.

A topological sort of a DAG is an enumeration [x1, x2, . . . , xn]
of all nodes in G such that all arcs in E are of the form
xi → xj with 1 ≤ i < j ≤ n.

Example

0

1 5

6

2 3

4

This digraph is a DAG.
A topological sort is [6, 0, 1, 2, 5, 4, 3]

0 1 2 5 346

Remark: For a DAG G = (V ,E), the nodes of V listed in reverse
postorder are a topological sort of G .

Data structures and algorithms for graphs

Applications of DFS
3. Topological sort

A directed acyclic graph, or DAG, is a digraph G = (V ,E)
without cycles.

A topological sort of a DAG is an enumeration [x1, x2, . . . , xn]
of all nodes in G such that all arcs in E are of the form
xi → xj with 1 ≤ i < j ≤ n.

Example

0

1 5

6

2 3

4

This digraph is a DAG.
A topological sort is [6, 0, 1, 2, 5, 4, 3]

0 1 2 5 346

Remark: For a DAG G = (V ,E), the nodes of V listed in reverse
postorder are a topological sort of G .

Data structures and algorithms for graphs

Applications of DFS
3. Topological sort: Example continued

0

1 5

6

2 3

4

adj[0] = [1, 2], adj[1] = [5, 2], adj[2] = [3],

adj[3] = adj[4] = [], adj[5] = [3, 4],

adj[6] = [1, 5]

The forest of depth first search trees of this digraph is

0

1

25

3 4

6

Postorder: [3, 4, 5, 2, 1, 0, 6].
Reverse postorder: [6, 0, 1, 2, 5, 4, 3].

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E)

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr

Data structures and algorithms for graphs

Detection of strongly connected components
Application 4: Kosaraju’s algorithm: step 1

G : 1

0

5

6 7 8

9 10

11 12

4

2

3

⇒ G r : 1

0

5

6 7 8

9 10

11 12

4

2

3

Data structures and algorithms for graphs

Detection of strongly connected components
Application 4: Kosaraju’s algorithm: step 2

DFS of the nodes of G r with nodes ordered by
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] yields the forest of trees

⇒ reverse postorder [9, 12, 11, 10, 1, 0, 2, 3, 4, 6, 7, 8, 5].

Data structures and algorithms for graphs

Detection of strongly connected components
Application 4: Kosaraju’s algorithm: steps 3 and 4

3. DFS of the nodes of G with nodes ordered by [9, 12, 11, 10, 1,
0, 2, 3, 4, 6, 7, 8, 5] yields the forest of trees

9

10 11

12

1 0

5

4

3

2

6 7

8

4. We conclude that the strongly connected components of G
are {9, 10, 11, 12}, {1}, {0, 2, 3, 4, 5}, {6} and {7, 8}.

The strongly connected components of G are illustrated on the
next slide.

Data structures and algorithms for graphs

Detection of strongly connected components
Application 4: Kosaraju’s algorithm – illustration of the final result

1

0

5

6 7 8

9 10

11 12

4

2

3

Data structures and algorithms for graphs

