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Terminology

Graph G = (V ,E ) where

V : finite set of nodes of vertices

E : list of edges (a, b) ∈ V × V

Types of graphs:

Undirected: edges have no direction: (a, b) = (b, a).

Directed: edges have direction: if a 6= b then (a, b) 6= (b, a).
Usually, we write a→b instead of (a, b) and call it arc
from a to b.

Weighted: a graph G = (V ,E ) together with a weight function
w : E → R, w(e) is the weight of edge e ∈ E .
Usually, we write w(a, b) instead of w((a, b)).

Data structures and algorithms for graphs



Glossary

Assumption: G = (V ,E ) is a given graph.

Adjacency list of x ∈ V : adj[x ] = [y ∈ V | (x , y) ∈ E ]

Examples of representations with adjacency lists

a

e b

d
c

f

adj[a] = [d, e]

adj[b] = [ ]

adj[c] = [ ]

adj[d] = [b, c, f]

adj[e] = [b]

adj[f] = [b, e]

a

e b

d
c

f

adj[a] = [d, e]

adj[b] = [d, e, f]

adj[c] = [d]

adj[d] = [a, b, c, f]

adj[e] = [a, b, f]

adj[f] = [b, d, e]
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Glossary
Connectivity

Assumption: G = (V ,E ) is a given graph; x , y ∈ V

Path from x to y = list of nodes [x1, x2, . . . , xn] s.t.
x1 = x , x2 = y , and (xi , xi+1 ∈ E ) for all 1 ≤ i < n.

The length of this path is n − 1.

We write x  y if there is a path from x to y ,
and x 6 y otherwise.

x , y are strongly connected, and we write x ∼sc y , if x  y
and y  x .

Remarks:

1  is an equivalence relation on V in undirected graphs. The
equivalence classes of  for an undirected graph G are the
connected components of G .

2 ∼sc is an equivalence relation on V in digraphs. The
equivalence classes of  for an digraph G are the strongly
connected components of G .
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Connectivity
Examples

1 7

2 3
4

5 6 8

9

Connected components:
{1, 2, 3, 4, 5}, {6, 8, 9} and {7}

1 7

2 3
4

5 6 8

9

Strongly connected components:
{1, 2, 3, 4, 5}, {6, 8, 9} and {7}
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Graph traversals

Given G = (V ,E ) and s ∈ V

Find the set of nodes S = {x ∈ V | s  x}. Also, for
every x ∈ S , find a path from s to x .

This problem can be solved with a tree traversal strategy.

The most important tree traversal strategies are depth first
search (DFS) and breadth first search (BFS).

Both strategies build a search tree T with root s, with the
following properties:

The set of nodes in T is S = {x ∈ V | s  x}.
For every x ∈ S : the branch from s to x in T is a path from s
to x in G .
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Depth first search from a source node s

Start by visiting the source node s.

Visiting a node x is a recursive process:
1 Mark node x as visited.
2 Visit recursively all unvisited neighbors of x . Usually, for every

unvisited neighbor y that gets visited, we set p[y ] = x to
record the fact that graph traversal proceeds from x to y .

dfs(G , x)
visited [x ] = true;
for y ∈ adj[x ] do

if not(visited [y ])
p[y ] = x ;
dfs(G , y);
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Depth first search from a source node s
Illustrated example

DFS from node 0 yields the depth first search tree

0

12

3

4 5

Paths from source node 0:

[0], [0, 2], [0, 2, 3], [0, 2, 3, 4], [0, 2, 3, 5], [0, 1]

Remarks

1 The paths computed by DFS are not shortest paths from
source node 0.

2 We can compute shortest paths from the source node with
BFS (see next slide).
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Breadth first search from a source node s

Breadth first traversal from a source node s proceeds in rounds

In the first round we visit s and mark s as visited.

In every next round we visit the unvisited nodes of the nodes visited
in the previous round.

BFS can be implemented with a queue where we record the visited nodes
in the order in which we will visit their unvisited neighbors.

bfs(G , s)
visited [s] = true;
Q :=empty queue;
add s to Q;
while nonempty(Q)

v := pop(Q);
for w ∈ adj[v ]

if not(visited [w ])
p[w ] = v ;
visited [w ] = true;
add w to Q;
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Breadth first search from a source node s
Illustrated example

0

2 1 5

3 4

Remarks

The paths computed by BFS are shortest paths from the
source node.
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DFS traversal orders

We can use dfs() to visit all nodes of G = (V ,E ) and produce
a forest of depth first search trees:

for s ∈ V
if not(visited [s]) dfs(G , s)

⇒ we define three DFS traversal orders:
1 Preorder: nodes are added in a queue before the recursive call

of dfs(), and assume x <pre y if x occurs before y in queue.
2 Postorder: nodes are added in a queue after the recursive call

of dfs(), and assume x <post y if x occurs before y in queue.
3 Reverse postorder: we have x <revpost y if y <post x .
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DFS traversal orders
Example

DFS yields a forest of 3 depth first search trees
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Applications of DFS

Assumption: G = (V ,E ) is an undirected graph.

1. Detection of connected components in undirected graphs.
Main idea: Build a forest of depth first search trees

The connected components are the sets of nodes in the
individual depth first search trees.

2. Cycle detection in undirected graphs.
1 Build a forest of depth first search trees.
2 All edges of G which are not in the forest of depth first search

trees, are between a node and a non-parent ancestor.
3 G has a cycle iff there is a DFS tree with an edge between a

node and a non-parent predecessor.

See illustrated example on next slide.
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Applications of DFS
2. Cycle detection in undirected graphs

The forest of trees produced by DFS is

The red-colored edges indicate cycles in G .
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Applications of DFS
3. Topological sort

A directed acyclic graph, or DAG, is a digraph G = (V ,E )
without cycles.

A topological sort of a DAG is an enumeration [x1, x2, . . . , xn]
of all nodes in G such that all arcs in E are of the form
xi → xj with 1 ≤ i < j ≤ n.

Example

0

1 5

6

2 3

4

This digraph is a DAG.
A topological sort is [6, 0, 1, 2, 5, 4, 3]

0 1 2 5 346

Remark: For a DAG G = (V ,E ), the nodes of V listed in reverse
postorder are a topological sort of G .
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Applications of DFS
3. Topological sort: Example continued

0

1 5

6

2 3

4

adj[0] = [1, 2], adj[1] = [5, 2], adj[2] = [3],

adj[3] = adj[4] = [], adj[5] = [3, 4],

adj[6] = [1, 5]

The forest of depth first search trees of this digraph is

0

1

25

3 4

6

Postorder: [3, 4, 5, 2, 1, 0, 6].
Reverse postorder: [6, 0, 1, 2, 5, 4, 3].

Data structures and algorithms for graphs



Applications of DFS
4. Detection of strongly connected components

Given a digraph G = (V ,E )

Find the strongly connected components of G .

This problem can be solved with Kosaraju’s algorithm:

1 Compute the reverse digraph G r = (V ,E ′) where
E ′ = {(y , x) | (x , y) ∈ E}.

2 Let [x1, x2, . . . , xn] be the enumeration of the nodes of G r in
the reverse postorder of DFS of G r

3 Let T1, . . . ,Tr be the forest of depth-first traversal trees of G
produced by visiting the unvisited nodes on G in the order
[x1, x2, . . . , xn].

4 The strongly connected components of G are the sets of
nodes of the trees T1, T2, . . . , Tr
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Detection of strongly connected components
Application 4: Kosaraju’s algorithm: step 1

G : 1

0

5

6 7 8

9 10

11 12

4

2

3

⇒ G r : 1

0

5

6 7 8

9 10

11 12

4

2

3
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Detection of strongly connected components
Application 4: Kosaraju’s algorithm: step 2

DFS of the nodes of G r with nodes ordered by
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] yields the forest of trees

⇒ reverse postorder [9, 12, 11, 10, 1, 0, 2, 3, 4, 6, 7, 8, 5].
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Detection of strongly connected components
Application 4: Kosaraju’s algorithm: steps 3 and 4

3. DFS of the nodes of G with nodes ordered by [9, 12, 11, 10, 1,
0, 2, 3, 4, 6, 7, 8, 5] yields the forest of trees

9

10 11

12

1 0

5

4

3

2

6 7

8

4. We conclude that the strongly connected components of G
are {9, 10, 11, 12}, {1}, {0, 2, 3, 4, 5}, {6} and {7, 8}.

The strongly connected components of G are illustrated on the
next slide.
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Detection of strongly connected components
Application 4: Kosaraju’s algorithm – illustration of the final result

1

0

5

6 7 8

9 10

11 12

4

2

3
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