Computational Geometry

October 25, 2019

Computational Geometry

ヘロン ヘアン ヘビン ヘビン

æ

What is computational geometry?

- Study of algorithms for geometric problem solving.
- Typical problems

Given a description of a set of geometric objects, e.g., set of points/segments/vertices of a polygon in a certain order.

Answer a query about this set, e.g.:

. . .

- I do some segments intersect?
- what is the convex hull of the set of points?
- In this lecture, we assume objects represented by a set/sequence of *n* points ⟨*p*₀, *p*₁,...,*p*_{*n*-1}⟩ where each point *p_i* is given by its pair of coordinates (*x_i*, *y_i*) ∈ ℝ²

Lines and segments

ASSUMPTION: $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ are distinct points.

• The line through p_1 and p_2 is

 $p_1p_2 = \{(x(t), y(t)) \in \mathbb{R}^2 \mid x(t) = (1-t)x_1 + tx_2, y(t) = (1-t)y_1 + ty_2\}$

• The segment with endpoints p_1 and p_2 is

$$\overline{p_1 p_2} = \{ (x(t), y(t)) \in \mathbb{R}^2 \mid x(t) = (1 - t) x_1 + t x_2, \\ y(t) = (1 - t) y_1 + t y_2, 0 \le t \le 1 \}$$

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Vectors and their representation

The directed segment (or vector) $\overrightarrow{p_1p_2}$ imposes an ordering on its endpoints: p_1 is its origin, and p_2 its destination.

Sum of vectors

- o = (0,0) is the origin of the system of coordinates.
 - If p = (x, y) is a point, then op is the vector with origin o and destination p.
 - If $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ then $p_1 + p_2$ is the point with coordinates $(x_1 + y_1, x_2 + y_2)$, and $p_1 p_2$ is the point with coordinates $(x_1 y_1, x_2 y_2)$

Remarks:

- If $r = p_1 + p_2$ and $q = p_2 p_1$ then
- 1) $op_1 rp_2$ is a parallelogram
- 2) the vector \vec{or} is the sum
 - of vectors $\overrightarrow{op_1}$ and $\overrightarrow{op_2}$
- 3) the vector $\overrightarrow{p_1p_2}$ coincides with the vector \overrightarrow{oq}

Segments and vectors

Let $p = (x_1, y_1)$, $q = (x_2, y_2)$ be two points.

- The vector \overrightarrow{pq} and the segment \overline{pq} have the same length, which is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- The vector \overrightarrow{op} splits the plane in two parts: the semiplane of points to the left of \overrightarrow{op} (coloured green), and the semiplane of points to the right of \overrightarrow{op} (coloured blue).

Remarks:

- 1) q is to the right of \vec{op} if \vec{oq} is rotated clockwise w.r.t. \vec{op}
- 2) q is to the left of \vec{op} if \vec{oq} is rotated counterclockwise w.r.t. \vec{op}

Segments and vectors

Let $p = (x_1, y_1)$, $q = (x_2, y_2)$ be two points.

- The vector \overrightarrow{pq} and the segment \overline{pq} have the same length, which is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- The vector \overrightarrow{op} splits the plane in two parts: the semiplane of points to the left of \overrightarrow{op} (coloured green), and the semiplane of points to the right of \overrightarrow{op} (coloured blue).

Remarks:

- 1) q is to the right of \vec{op} if \vec{oq} is rotated clockwise w.r.t. \vec{op}
- 2) q is to the left of \vec{op} if \vec{oq} is rotated counterclockwise w.r.t. \vec{op}

We can detect if q is to the left or right of \overrightarrow{op} by computing the sign of a cross product (see next slide).

Operations with vectors

Cross product

Let $p = (x_1, y_1)$, $q = (x_2, y_2)$, and r = p + q. The cross product $\overrightarrow{op} \times \overrightarrow{oq}$ is

$$\overrightarrow{op} \times \overrightarrow{oq} = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 \cdot y_2 - x_2 \cdot y_1 = -\overrightarrow{oq} \times \overrightarrow{op}$$

Geometric interpretation:

- $|\vec{op} \times \vec{oq}|$ is the area of the parallelogram *oprq*
- *q* is to the left of \overrightarrow{op} if $\overrightarrow{op} \times \overrightarrow{oq} > 0$
- *q* is to the right of \overrightarrow{op} if $\overrightarrow{op} \times \overrightarrow{oq} < 0$
- q is on line op if $\overrightarrow{op} \times \overrightarrow{oq} = 0$

Let
$$p_1 = (x_1, y_1), p_2 = (x_2, y_2), p_3 = (x_3, y_3).$$

• The area of triangle $p_1p_2p_3$ is half of the area of the parallelogram spanned between vectors $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_1p_3}$:

$$p_3$$
 $r = (p_3 - p_1) + (p_2 - p_1)$

$$\operatorname{area}(p_1p_2rp_3) = |\overrightarrow{p_1p_2} \times \overrightarrow{p_1p_3}| = \operatorname{abs}\left(\begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix} \right),$$

$$\operatorname{area}(p_1p_2p_3) = \operatorname{area}(p_1p_2rp_3)/2 = \operatorname{abs}\left(\begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix} \right)/2$$

2 p_3 is to the left of $\overrightarrow{p_1p_2} \Leftrightarrow \overrightarrow{p_1p_3}$ is rotated counterclockwise w.r.t. $\overrightarrow{p_1p_2} \Leftrightarrow \overrightarrow{p_1p_2} \times \overrightarrow{p_1p_3} > 0$.

< 回 > < 回 > < 回 > … 回

ASSUMPTION: $p_i = (x_i, y_i)$ are four distinct points, $1 \le i \le 4$. **Question:** Do segments $\overline{p_1 p_2}$ and $\overline{p_3 p_4}$ intersect or not? **REMARK:** $\overline{p_1 p_2}$ and $\overline{p_3 p_4}$ intersect if either (or both) of the

following conditions hold:

- p₁ and p₂ are on different sides of the line p₃p₄; and p₃ and p₄ are on different sides of the line p₁p₂,
- an endpoint of one segment lies on the other segment (this condition comes from the boundary case).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

/* check if $\overline{p_1p_2} \cap \overline{p_3p_4} \neq \emptyset$ */ SegmentsIntersect(p_1, p_2, p_3, p_4) $d_1 = \text{SignedArea}(p_3, p_4, p_1)$ $d_2 = \text{SignedArea}(p_3, p_4, p_2)$ $d_3 = \text{SignedArea}(p_1, p_2, p_3)$ $d_4 = \text{SignedArea}(p_1, p_2, p_4)$ if $((d_1 < 0 \land d_2 > 0) \lor (d_1 > 0 \land d_2 < 0)) \lor ((d_3 < 0 \land d_4 > 0) \lor (d_3 > 0 \land d_4 < 0))$ return TRUE return FALSE

$$SignedArea(p_i, p_j, p_k)$$

return $((p_k - p_i) \times (p_j - p_i))/2$

(画) (目) (目)

Given a set $S = \{s_1, \ldots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \le i \ne j \le n$.

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

1

Given a set $S = \{s_1, \ldots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \le i \ne j \le n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

通 とう ほ とう ほ とう

Given a set $S = \{s_1, \ldots, s_n\}$ of line segments

Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \le i \ne j \le n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
 - We will assume that the sweeping line moves across the x-dimension

(雪) (ヨ) (ヨ)

Given a set $S = \{s_1, \ldots, s_n\}$ of line segments

Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \le i \ne j \le n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
 - We will assume that the sweeping line moves across the x-dimension

Simplifying assumptions

- No input segment is vertical
- On three input segments intersect at a single point

直 とう かい うちょう

Auxiliary notions Ordering segments

ASSUMPTIONS: $s_1, s_2 \in S$ are two line segments; sw_x is the vertical sweep line with *x*-coordinate *x*

- s_1, s_2 are comparable at x if sw_x intersects both s_1 and s_2
- $s_1 \succeq_x s_2$ if s_1, s_2 are *x*-comparable, and the intersection point $s_1 \cap sw_x$ is higher than $s_2 \cap sw_x$

Example

In the figure below, we have $a \succeq_r c$, $a \succeq_t b$, $b \succeq_t c$, and $b \succeq_u c$. Segment *d* is not comparable with any other segment.

Remark: \succeq_x is a total preorder relation: reflexive, transitive, but neither symmetric nor antisymmetric.

Detecting segment intersections

When line segments *e* and *f* intersect, they reverse their orders: we have $e \succeq_v f$ and $f \succeq_w e$.

- Simplifying assumption 2 implies ∃vertical sweep line sw_x for which the intersections with segments *e* and *f* are consecutive w.r.t. total preorder ≿_x.
 - ⇒ Any sweep line that passes through the shaded region in figure above (such as *z*) has *e* and *f* consecutive in its total preorder.

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the *x*-coordinate.
- The sweeping algorithm maintains two data structures:
 - Sweep line status: the relationships among the objects that the sweep line intersects.
 - Event-point schedule: a sequence of points (the *event points*) ordered from left to right according to their *x*-coordinates.

(画) (目) (日)

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the *x*-coordinate.
- The sweeping algorithm maintains two data structures:
 - Sweep line status: the relationships among the objects that the sweep line intersects.
 - Event-point schedule: a sequence of points (the *event points*) ordered from left to right according to their *x*-coordinates.

Whenever the sweep line reaches the *x*-coordinate of an event point: the sweep halts, processes the event point, and then resumes

Changes to the sweep-line status occur only at event points.

・ 同 ト ・ ヨ ト ・ ヨ ト

THE SWEEP LINE STATUS: container for a total preorder $T = \succeq_x$ between line segments from *S*

Requirements: to perform efficiently the following operations:

- insert(T, s): insert segment s into T
- 2 delete(T, s): delete segment s from T
- above(T, s): return the segment immediately above segment s in T.
- below(T, s): return the segment immediately below segment s in T.

REMARK: all these operations can be performed in $O(\log n)$ time using red-black trees.

・ 同 ト ・ ヨ ト ・ ヨ ト

The sweeping algorithm for segment intersections Pseudocode

AnySegmentsIntersect(S)

- 1. $T = \emptyset$
- sort the endpoints of the segments in S from left to right, breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
- 3. for each point p in the sorted list of endpoints
- 4. if *p* is the left endpoint of a segment *s*
- insert(*T*, *s*)
- 6. if (above(T, s) exists and intersects s)
 - or (below(*T*, *s*) exists and intersects *s*)
- 7. return TRUE
- 8. if *p* is the right endpoint of a segment *s*
- 9. if both above(T, s) and below(T, s) exist and above(T, s) intersects below(T, s)
- 10. return TRUE
- 11. delete(T,s)
- 12. return FALSE

(4回) (日) (日)

The sweeping algorithm for segment intersection

- ▷ Every dashed line is the sweep line at an event point.
- The ordering of segment names below each sweep line corresponds to the total preorder T at the end of the for loop processing the corresponding event point.
- ▷ The rightmost sweep line occurs when processing the right endpoint of segment *c*.

ASSUMPTION: *Q* is a finite set of *n* points.

The convex hull CH(Q) of Q is the smallest convex polygon P with vertices in Q, such that each point in Q is either on the boundary of P or in its interior.

Intuition: each point of *Q* is a nail stuck in a board \Rightarrow convex hull = the shape formed by a tight rubber band that surrounds all the nails.

EXAMPLE:

Computes CH(P) in $O(n \log n)$, where n = |Q| with a technique named rotational sweep:

 vertices are processed in the order of the polar angles they form with a reference vertex.

MAIN IDEA: Maintain a stack S of candidate points for the vertices of P in counterclockwise order.

- each point of *Q* is pushed onto *S* one time.
- the points in already *S*, which are not in *CH*(*Q*), are popped from *S*.
- Related operations: push(*p*, *S*), pop(*S*), and
 - top(S) return, but do not pop, the point on top of S
 - nextToTop(S): return the point one entry below the top of S without changing S

イロン 不良 とくほう 不良 とうほ

GrahamScan(Q)

1 let p_0 be the point in Q with the minimum y-coordinate,

- or the leftmost such point in case of a tie
- 2 let (p_1, p_2, \dots, p_m) be the remaining points in Q, sorted by polar angle in counterclockwise order around p_0 (if more than one point has the same angle, remove all but the one that is farthest from p_0)
- 3 let S be an empty stack
- $4 \operatorname{push}(p_0, S)$
- 5 push(p1, S)
- $6 \operatorname{push}(p_2, S)$

```
7 for i = 3 \pm m
```

```
while the angle formed by nextToTop(S), top(S), and p_i
8
             makes a nonleft turn
```

```
9
            pop(S)
```

```
10 push(p<sub>i</sub>, S)
11 return S
```

ヘロン 人間 とくほ とくほ とう

1

Graham's scan algorithm: pseudocode

Snapshots of algorithm execution

 p_{10} •

ъ

æ

Given a set *Q* of $n \ge 2$ points $P_i(x_i, y_i)$, $1 \le i \le n$ Find a closest pair of points in *Q*.

Remarks

 "closest" refers to the usual euclidean distance between two points P(x₁, y₁) and Q(x₂, y₂), which is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

- A simple, brute-force approach is to compute the distances between all ⁽ⁿ⁾₂ = ⁿ⁽ⁿ⁻¹⁾₂ pairs of points ⇒ alg. with time complexity O(n²)
- We will indicate an algorithm that solves this problem in time O(n log n)

ъ

ヘロト ヘアト ヘビト ヘビト

Finding the closest pair of points

A divide-and-conquer algorithm

- Each recursive call of the algorithm takes as input a subset *P* ⊆ *Q* with |*P*| > 3, and arrays *X* and *Y*, each of which contains all the points of the input set *P*:
 - X contains the elements of P sorted in increasing order of the x-coordinate
 - Y contains the elements of P sorted in increasing order of the y-coordinate
- The base case of the algorithm is when |P| ≤ 3: in this case we try all the (^{|P|}₂) pairs and return the closest pair.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Finding the closest pair of points The structure of the recursive step when |P| > 3

Consists of three substeps:

Divide Conquer Combine

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- Find a vertical line ℓ that bisects the point set P into two sets P_L and P_R such that $|P_L| = \lceil |P|/2 \rceil$, $Q_L = \lfloor |P|/2 \rfloor$, all points in P_L are <u>on or to the left</u> of line *I*, and all points in P_R are on or to the right of *I*.
- 2 Divide the array X into arrays X_L and X_R , which contain the points of P_L and P_R respectively, sorted by monotonically increasing x-coordinate.
- Similarly, divide the array Y into arrays Y_L and Y_R , which contain the points of P_L and P_R respectively, sorted by monotonically increasing y-coordinate.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The recursive step 1. The divide phase: illustrated example

Computational Geometry

ヘロン 人間 とくほ とくほ とう

3

Make two recursive calls, one to find the closest pair of points in P_L and the other to find the closest pair of points in P_R .

- The inputs to the first call are the subset *P*_L and arrays *X*_L and *Y*_L
- the second call receives the inputs P_R , X_R , and Y_R .

Let the closest-pair distances returned for P_L and P_R be δ_L and δ_R , respectively, and let $\delta = \min(\delta_L, \delta_R)$.

The closest pair is either

- the pair with distance δ found by one of the recursive calls, or
- a pair of points with one point in p_L and the other in p_R .

The algorithm determines whether there is a pair with one point in p_L and the other point in p_R and whose distance is less than δ .

If such a pair exists, both points of the pair must be within δ units of line ℓ. Thus, they both must reside in the 2 δ-wide vertical strip centered at line ℓ. The way to find such a pair, if one exists, is explained next.

The recursive step

3. The combine phase (contd.)

1. Create an array Y', which is the array Y with all points not in the 2 δ -wide vertical strip removed. The array Y' is sorted by *y*-coordinate, just as Y is.

For each point *p* in *Y'*, find if there is a point *q* in *Y'* whose distance to *p* is δ' smaller than δ. It turns out that it is sufficient to consider only the (max.) 7 points that follow *p* in *Y'*.

3. If $\delta' < \delta$, then the vertical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ' . Otherwise, return the closest pair and its distance δ found by the recursive calls.

The divide-and-conquer algorithm

Why are seven points sufficient for lookup?

Suppose that at some level of the recursion, the closest pair of points is $p_L \in P_L$ and $p_R \in P_R$. Let δ' be the distance between p_L and p_R . Note that $\delta' < \delta$ and

- p_L is on or to the left of ℓ , and p_L is on or to the right of ℓ .
- both p_L and p_R are less than δ units away from ℓ .
- p_L and p_R are within δ units of each other vertically.
- \Rightarrow p_L and p_R are within a $\delta \times 2\delta$ rectangle centered t line ℓ
 - there may be other points in this rectangle as well, but
 - at most 8 points of *P* can reside in the $\delta \times 2\delta$ rectangle:

Implementation and running time

We know from the Master theorem that, if we have the recurrence

$$T(n) = 2T(n/2) + O(n)$$

where T(n) is the running time of the alg. for a set of *n* points, then $T(n) = O(n \log n)$.

- To ensure this runtime complexity, we must ensure that the combine phase gets executed in *O*(*n*) time.
- This happens if, after partitioning *P* into P_L and P_R , we can form arrays Y_L and Y_R in linear time:
 - This is possible, because we can use Y (which is P sorted in increasing order of the y-coordinate) to compute Y_L and Y_R in linear time (see pseudo-code on next slide)

・ロン ・聞 と ・ ヨ と ・ ヨ と

The following algorithm splits Y into Y_L and Y_R

1 let
$$Y_L[1 ... Y. length]$$
 and $Y_R[1 ... Y. length]$ be new arrays
2 $Y_L. length = Y_R. length = 0$
3 **for** $i = 1$ **to** $Y. length$
4 **if** $Y[i] \in P_L$
5 $Y_L. length = Y_L. length + 1$
6 $Y_L[Y_L. length] = Y[i]$
7 **else** $Y_R. length = Y_R. length + 1$
8 $Y_R[Y_R. length] = Y[i]$

Computational Geometry

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Given two segments *a* and *b* in the plane, specified by their endpoints, where each enpoint is a pair giving its (x, y) coordinates.

Give an algorithm that determines if the segments aand b intersect, and if so, returns the (x, y)coordinate of a point from their intersection.

SUGGESTION: use the fact that a point R(x, y) is on the segment with endpoints $P(x_1, y_1)$ and $Q(x_2, y_2)$ iff there exists $0 \le t \le 1$ such that

$$\begin{cases} x = t \cdot x_1 + (1-t) \cdot x_2 \\ y = t \cdot y_1 + (1-t) \cdot y_2 \end{cases}$$

★@>★注>★注> 注

There are \mathbb{N} slides lying on the table. Each of them is transparent and formed as a rectangle.

 Every slide is specified by the (x, y) coordinates of the bottom-left and top-right corner of its rectangular shape.

In a traditional problem, one may have to calculate the intersecting area of these ${\tt N}$ slides. The definition of intersection area is such area which belongs to all of the slides. I want to take out one of the ${\tt N}$ slides, so that the intersecting area of the remaining ${\tt N}-1$ slides should be maximal. Tell me the maximum answer.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Chapters 33: Computational Geometry from the book

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. *Introduction to Algorithms*. McGraw Hill, 2000.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3