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String matching
Assumptions, conventions of notation

An alphabet Σ is a finite set of characters.
A string S of length n ≥ 0 is an array S[1..n] of characters
from Σ. We write |S| for the length of S. Thus, |S| = n
S[i] is the character of S at position i
S[i ..j] represents the substring of S form position i to
position j inclusively.

Example

If S = alphabet then |S| = 8, S[1] = a,S[2] = b,
S[1..4] = alph, S[3..7] = phabe
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String matching
Preliminaries

ASSUMPTIONS:
I Σ : finite set of characters (an alphabet).

E.g., Σ = {a,b, . . . , z}
I P[1..m] : array of m > 0 characters from Σ (the pattern)
I T [1..n] : array of n > 0 characters from Σ (the text)

We say that P occurs with shift s in T (or, equivalently, that P
occurs beginning at position s + 1 in T ) if 0 ≤ s ≤ n −m and
T [s + 1..s + m] = P[1..m] (that is, if T [s + j] = P[j], for
1 ≤ j ≤ m).
EXAMPLE:
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The string matching problem

Given a pattern P[1..m] and a text T [1..n]

Find all shifts s where P occurs in T .
Terminology and notation:

Σ∗=the set of all strings of characters from Σ

If x , y ∈ Σ∗ then
x y :=the concatenation of x with y
|x | := the length (number of characters) of x
ε :=the zero-length empty string
x is prefix of y , notation x v y , if y = x w for some w ∈ Σ∗.
x is suffix of y , notation x w y , if y = w x for some w ∈ Σ∗.

Example: ab v abcca

REMARKS

1 x w y if and only if x a w y a.
2 Every string is either ε, or of the form wa where a ∈ Σ and

w a string.
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The naive string matching algorithm

NAIVESTRINGMATCHER(T ,P)
1 n := T .length
2 m := P.length
3 for s = 0 to n −m
4 if P[1..m] == T [s + 1..s + m]
5 print “pattern occurs with shift” s

EXAMPLE:

Time complexity: O((n −m + 1) m)

I Several character comparison are performed repeatedly
I Can we do better?
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String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple A = (Q,q0,A,Σ, δ) where
Q : finite set of states
q0 ∈ Q: the start state
A ⊆ Q: distinguished set of accepting states
Σ:=finite set of characters (the input alphabet)
δ : Q × Σ→ Q is the transition function

Alternative representations of a finite automaton:
1 Tabular representation of δ
2 state-transition diagram

(see next slide)
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Alternative representations of a finite automaton

A = (Q,q0,A,Σ, δ) where
Q = {0,1},q0 = 0,A = {1},Σ = {a,b}

Tabular representation:

δ a b
→ 0 1 0
← 1 0 0

State-transition diagram:

0start 1

b

a

a
b
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Acceptance by finite automata

ASSUMPTION: A = (Q,q0,A,Σ, δ) is a finite automaton.
Define inductively φ : Σ∗ → Q, as follows:

φ(ε) := q0,
φ(wa) := δ(φ(w),a).

We say that w is accepted by A if φ(w) ∈ A.

Example
The following finite automaton accepts all (and only) words of
the form ambn where m ≥ 0, n ≥ 1 :

0start 1 2

a

b a

b a

b

REMARK: The time complexity of computing φ(w) is O(n)
where n = |w |.
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A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k ] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.
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The suffix function
Properties

Suffix-function recursion lemma
For any string x and character a ∈ Σ, if q = σ(x), then
σ(x a) = σ(P[1..q] a).

A graphical illustration of a proof of this Lemma is shown below:
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The finite automaton corresponding to a pattern

ASSUMPTION: P[1..m] is the given pattern,
The corresponding finite automaton is A = (Q,q0,A,Σ, δ)
where:
I Q = {0,1,2, . . . ,m}
I q0 = 0
I A = {m}

δ(q,a) = σ(P[1..q] a)

Example

The finite automaton corresponding to P[1..7] = ababaca is

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The missing transitions from a node point to state 0.
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The finite automaton corresponding to a pattern
Illustrated example

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The remaining question is:
How to compute the state transition function δ of A?
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Computing the transition function
A naive implementation (pseudocode)

COMPUTETRANSITIONFUNCTION(P,Σ)
1 m := P.length
2 for q := 0 to m
3 for each character a ∈ Σ
4 k := min(m,q + 1) + 1
5 repeat
6 k := k − 1
7 until P[1..k ] A P[1..q] a
8 δ(q,a) := k
9 return δ

Time complexity: O(m3 |Σ|).
There are better algorithms, which can compute δ with time
complexity O(m |Σ|).
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Generalizaton
Matching with a set of patterns

We assume given
T [1..m] called text
A finite set of patterns P = {P1,P2, . . . ,Pz}

Find all positions where some P ∈ P occurs in T .

USEFUL AUXILIARY NOTIONS

1 keyword tree K of the set P
2 failure links between the nodes of K
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1. Keyword tree
Definition

The keyword tree of a set of patterns P = {P1, . . . ,Pz} is a tree
K which satisfies 3 conditions:

1 every edge is labeled with exactly 1 character.
2 Distinct edges which leave from a node are labeled with

distinct characters.
3 Every pattern Pi ∈ P gets mapped to a unique node v of K

as follows: the string of characters along the branch from
root to node v is Pi , and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v ∈ K, L(v) is the string of
characters along the branch of K from root to node v .
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1. Keyword tree
Example for P = {potato, tattoo, theater , other}

1 2 3

4
p

o

t

a

t
o

o t h e r

t

a

t

t

o
o

h

e

a
t

e
r

String matching



2. Failure links
Definition

Let K be the keyword tree for P = {P1, . . . ,Pz}. Every node v
of K has only one failure link to the node nv of K which has the
following property: L(nv ) is the longest proper suffix of L(v)
which is a prefix of a pattern from P.

Example for P = {potato, tattoo, theater ,other}
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the failure links which are
not depicted, go to the root
of K
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Aho-Corasick algorithm

Allows to find all occurrences of P in T [1..m] in time O(m). It
relies on the keyword tree K for P and its failure links.
The characters of T [1..m] are read from left to right:

1 crt :=root of K
i := 1

2 If L(crt) = Pj or there is a sequence of failure links
crt → . . .→ w with L(w) = Pj

signal “Pj occurs at position i in T ”
3 If i = m then STOP.
4 If T [i] = c and there is an edge crt

c
− v then

i := i + 1, crt := v , goto 2.
5 If T [i] = c and there is no edge crt

c
− v then let

crt → . . .→ v the shortest sequence of failure links such

that ∃v
c
− w an let crt := v .

If no such sequence exists, let crt := root of K.
6 goto 2.
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Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater
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⇒ detected occurrence of P3 = theater
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Aho-Corasick algorithm
The construction of the suffix tree and of the failure links in time O(n)

P = {P1, . . . ,Pz}, n := |P1|+ . . .+ |Pz |
I The keyword tree K for P is built by adding repeatedly the

edges for P1, . . . ,Pz to an initially empty tree.
The addition of the edges for Pi has runtime complexity
O(|Pi |)

⇒ the construction of K has runtime complexity
O(|P1|+ . . .+ |Pz |) = O(n)

I The failure links are added to each node of K in the order
of a breadth-first traversal: If r is the root of K then

add a failure link for the root of K: r → r
for the nodes of v at tree depth 1: add failure links v → r
if v is a node at depth k > 1, then let

v ′ be the parent of v
x be the label of v − v ′

π : v ′ → v1 → . . . vi be the shortest sequence of failure links
such that there is an edge vi − w in K with label x

If π exists: add the failure link v → w
If π does not exist: add the failure link v → r
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Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}
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REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.
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Suffix trees
What are they?

A tree-like data structure for a large string (the text T [1..n]),
which can be built in time O(n)

it is a compact representation of all suffixes of text T .

It allows to find all occurrences of a pattern P[1..m] in T in
time O(m + k) where k is the number of occurrences of P
in T .

REMARKS
1 The algorithm which builds the suffix tree of T [1..n] in

linear time O(n) was discovered by Wiener in 1973.
Donald Knuth called it “the algorithm of 1973” – he thought
the suffix tree can not be built in linear time.

2 Suffix trees have many other interesting applications.
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Suffix trees
Formal definition

The suffix tree of a string S[1..n] is a tree with the following
properties:

1 It has exactly n leaf nodes, labeled with numbers 1,2,. . . ,n.
2 Except for the root, every internal node has at lest two

children.
3 Every edge is labeled with a nonempty substring of S.
4 Edges from same node to different children are labeled

with substrings that start with different characters.
5 The string produced by concatenating the labels of the

edges from the root node to a leaf node i is the suffix
S[i ..n].
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Suffix trees
Example

S =carcasa$ has length 8, thus 8 suffixes.
The suffix tree of S is

1

4

2

3

5

6

7

8

$ sa$

$

ac$asacr

$a
s a

$a
sa
cr

s
a
$

rcasa$

Remarks

1 Some strings have no suffix trees.

2 If the last character of S occurs only once in S, then S has a
suffix tree.
From now on, we will assume S satisfies this condition.
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Auxiliary notions

Let T be the suffix tree of a string S[1..n], and α = S[i ..j] a
substring of S.

The label L(x) of a node x of T is the string produced by
concatenating the labels of edges from root to x .

The position posT (α) of α in T is defined as follows: Let x be
the node of T such that L(x) is the shortest node label with
prefix α. (Note: x can be foud in |α| steps)

1 If L(x) = α, then posT (α) := x
2 Otherwise, let y be the parent node of x in T and β the

substring such that α = L(y)β. In this case, posT (α) is the
triple 〈y , x , β〉.

Intuition: The position of α în T is between nodes y and x of
T .
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Auxiliary notions
Positions in a suffix tree

Example
String positions in the suffix tree of string S = carcasa

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r

s
a

r
c
a
s
a

posT (λ) = r
posT (c) = 〈r , x ,c〉
posT (ca) = x
posT (car) = 〈x , 1 ,r〉
posT (carcasa) = 1

posT (arc) = 〈y , 2 ,rc〉
posT (sa) = 6
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Auxiliary notions
Node depth

The node depth dT (α) of substring α of S in the suffix tree T of S is:

1 if posT (α) is a node y , then dT (α) is the number of nodes from
root of T to y . The root and node y are counted as well.

2 posT (α) = 〈y , x , β〉 then dT (α) is the number of nodes from root
of T to y , except y . The root is counted, but node y is not.

Example

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r
s
a

r
c
a
s
a

dT (ca) = 1
dT (carc) = 2
dT (carcasa) = 2
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Auxiliary notions
Suffix links

Suffix trees have a remarkable property:
For every interior node x different from root, there is
another interior node y such that L(y) is obtained from
L(x) by dropping its first character.

y is called the suffix link of x , and is denoted by suf (x).

Example (Suffix links in the suffix tree of carcasa)

1

4

2
3

5

6saacasacr

as
a

as
ac
r
s
a

rcasa
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Suffix trees
A compact representation

Main idea: Instead of labeling the edges with substrings S[i ..j],
we can label them with pairs of integers 〈i , j〉
⇒ edge labels of variable size (substrings) are replaced by

edge labels of constant size (pair of integer indices in S)

Example (Suffix tree for the string axabxb)

1 23

4

5

b

a

bx
ba
x b

x
b

x

abxb

bxb

is replaced with 1 23

4

5

〈6, 6〉

〈1
, 1
〉

〈2
, 6
〉

〈4, 6〉

〈2, 2〉

〈3, 6〉

〈4, 6〉
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Suffix trees
How big are they?

The suffix tree T of a string S[1..n] has
n leaf nodes
except for the root, every internal node has at least 2
children
the root node may have 1 child.

Therefore:
T has at most n internal nodes.
T has at most 2 · n edges

⇒ the size of T is O(n).
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Suffix trees with suffix links
Construction in linear time

Fact: The suffix tree and suffix links of a text S[1..n] can be
constructed in time O(n)

1 Such an algorithm was first described by Wiener, in 1973.
2 A simpler linear-time algorithm was proposed by Ukkonen;

it is described in Chapter 6 of the book
Dan Gusfield, Algorithms of Strings, trees, and sequences.
Cambridge University Press, 1997.
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Generalized suffix trees
What are they?

Let S = {S1, . . . ,Sp} a set of p non-empty strings.

We assume w.l.o.g. that every string Sj ends with a specific character zj which
occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:
1 It has |S1|+ . . .+ |Sp| leaves, with labels from the set
{j:i | 1 ≤ j ≤ p, 1 ≤ i ≤ |Sj |}

2 All internal nodes, except the root, have ar least 2 children.
3 Every edge is labeled with a nonempty substring of strings from S.
4 Edges from same node to different children are labeled with substrings that start

with different characters.
5 L(j:i) = Sj [i..nj ] where nj = |Sj |.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label Sj [k ..`] with the constant-size label j:〈k , `〉
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Generalized suffix trees
Linear-time construction

1 We build suffix tree G1 of S1 with Ukkonen alg. in O(|S1|) time
we label edges with 1:〈k , `〉 instead of 〈k , `〉,
and leaves with 1:i instead of i .

2 For m := 2 to p, we build the generalized suffix tree Gm of set of
strings {S1, . . . ,Sm} as follows:

I Traverse Gm−1 from root, to find longest prefix Sm[1..j]
which has a position in Gm−1.

Sm[1..j] is longest prefix of Sm which is prefix of a suffix of a string
from {S1, . . . ,Sm−1}

I Start extending Gm−1 from that position, until we produce
Gm

⇒ Gp is a suffix tree of S = {S1, . . . ,Sp}, built in O(n) time, where
n = |S1|+ . . .+ |Sp|
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Generalized suffix trees
Example

The generalized suffix tree of S = {cocos,comod} is

1:5

1:1 1:3 1:2 1:42:1 2:2 2:4

2:3 2:5

δ

γ δ

γ

1:〈2, 2〉1:〈1
, 2〉

α

β
α

β
α γ

where α = 〈1,5,5〉, β = 1:〈3,5〉, γ = 2:〈3,5〉, δ = 2:〈5,5〉.
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Applications of (generalized) suffix trees
1. String matching

Given text S[1..n] and pattern P[1..m], find all occurrences of P
in S.

1 Construct the suffix tree T of S in time O(n)

2 Find posP(T ) in time O(m). Suppose posP(T ) is y or
〈x , y , β〉.

3 Find all leaf nodes of T below node y .
Every occurrence of P in S is a prefix of a suffix P[j ..n] of S,
where j is the label of such a leaf node.
If there are k occurrences of P in S, there are k such leaf
nodes. These leaf nodes can be found in O(k) time.

String matching



Applications of (generalized) suffix trees
1. String matching

Properties of string matching with (generalized) suffix trees:
1 Finding all occurrences of P[1..m] in a text S[1..n] takes

O(n + m + k) time
If the suffix tree of S is precomputed, then finding all
occurrences of P in S takes O(m + k) time
This method is useful if we search often in the same text S
(representation of a large database)

2 Finding all occurrences of P[1..m] in all texts of a set
S = {S1, . . . ,Sp} takes O(n + m + k) time where
n = |S1|+ . . .+ |Sp|
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Applications of suffix trees
2. Finding the longest substrings common to two texts

Given two texts S1 and S2,
Find the longest substrings common to S1 and S2.

Answer:
1 Build the generalized suffix tree G of {S1,S2} and mark its

internal nodes that have leaf descendants for suffixes of
both S1 and S2

Can be done in time O(n) where n = |S1|+ |S2|
2 Traverse the internal nodes of G, and compute the

character depth of those which are marked.
Note: their character depth is the length of a common
substring of S1 and S2

Overall computation time: O(n)
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