
String matching
The finite automaton approach.

The Aho-Corasick algorithm.
Suffix trees. Ukkonen algorithm

November 2020

String matching

String matching
Assumptions, conventions of notation

An alphabet Σ is a finite set of characters.
A string S of length n ≥ 0 is an array S[1..n] of characters
from Σ. We write |S| for the length of S. Thus, |S| = n
S[i] is the character of S at position i
S[i ..j] represents the substring of S form position i to
position j inclusively.

Example

If S = alphabet then |S| = 8, S[1] = a,S[2] = b,
S[1..4] = alph, S[3..7] = phabe

String matching

String matching
Preliminaries

ASSUMPTIONS:
I Σ : finite set of characters (an alphabet).

E.g., Σ = {a,b, . . . , z}
I P[1..m] : array of m > 0 characters from Σ (the pattern)
I T [1..n] : array of n > 0 characters from Σ (the text)

We say that P occurs with shift s in T (or, equivalently, that P
occurs beginning at position s + 1 in T) if 0 ≤ s ≤ n −m and
T [s + 1..s + m] = P[1..m] (that is, if T [s + j] = P[j], for
1 ≤ j ≤ m).
EXAMPLE:

String matching

The string matching problem

Given a pattern P[1..m] and a text T [1..n]

Find all shifts s where P occurs in T .
Terminology and notation:

Σ∗=the set of all strings of characters from Σ

If x , y ∈ Σ∗ then
x y :=the concatenation of x with y
|x | := the length (number of characters) of x
ε :=the zero-length empty string
x is prefix of y , notation x v y , if y = x w for some w ∈ Σ∗.
x is suffix of y , notation x w y , if y = w x for some w ∈ Σ∗.

Example: ab v abcca

REMARKS

1 x w y if and only if x a w y a.
2 Every string is either ε, or of the form wa where a ∈ Σ and

w a string.

String matching

The naive string matching algorithm

NAIVESTRINGMATCHER(T ,P)
1 n := T .length
2 m := P.length
3 for s = 0 to n −m
4 if P[1..m] == T [s + 1..s + m]
5 print “pattern occurs with shift” s

EXAMPLE:

Time complexity: O((n −m + 1) m)

I Several character comparison are performed repeatedly
I Can we do better?

String matching

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple A = (Q,q0,A,Σ, δ) where
Q : finite set of states
q0 ∈ Q: the start state
A ⊆ Q: distinguished set of accepting states
Σ:=finite set of characters (the input alphabet)
δ : Q × Σ→ Q is the transition function

Alternative representations of a finite automaton:
1 Tabular representation of δ
2 state-transition diagram

(see next slide)

String matching

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple A = (Q,q0,A,Σ, δ) where
Q : finite set of states
q0 ∈ Q: the start state
A ⊆ Q: distinguished set of accepting states
Σ:=finite set of characters (the input alphabet)
δ : Q × Σ→ Q is the transition function

Alternative representations of a finite automaton:
1 Tabular representation of δ
2 state-transition diagram

(see next slide)

String matching

Alternative representations of a finite automaton

A = (Q,q0,A,Σ, δ) where
Q = {0,1},q0 = 0,A = {1},Σ = {a,b}

Tabular representation:

δ a b
→ 0 1 0
← 1 0 0

State-transition diagram:

0start 1

b

a

a
b

String matching

Acceptance by finite automata

ASSUMPTION: A = (Q,q0,A,Σ, δ) is a finite automaton.
Define inductively φ : Σ∗ → Q, as follows:

φ(ε) := q0,
φ(wa) := δ(φ(w),a).

We say that w is accepted by A if φ(w) ∈ A.

Example
The following finite automaton accepts all (and only) words of
the form ambn where m ≥ 0, n ≥ 1 :

0start 1 2

a

b a

b a

b

REMARK: The time complexity of computing φ(w) is O(n)
where n = |w |.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

The suffix function
Properties

Suffix-function recursion lemma
For any string x and character a ∈ Σ, if q = σ(x), then
σ(x a) = σ(P[1..q] a).

A graphical illustration of a proof of this Lemma is shown below:

String matching

The finite automaton corresponding to a pattern

ASSUMPTION: P[1..m] is the given pattern,
The corresponding finite automaton is A = (Q,q0,A,Σ, δ)
where:
I Q = {0,1,2, . . . ,m}
I q0 = 0
I A = {m}

δ(q,a) = σ(P[1..q] a)

Example

The finite automaton corresponding to P[1..7] = ababaca is

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The missing transitions from a node point to state 0.

String matching

The finite automaton corresponding to a pattern
Illustrated example

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The remaining question is:
How to compute the state transition function δ of A?

String matching

The finite automaton corresponding to a pattern
Illustrated example

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The remaining question is:
How to compute the state transition function δ of A?

String matching

Computing the transition function
A naive implementation (pseudocode)

COMPUTETRANSITIONFUNCTION(P,Σ)
1 m := P.length
2 for q := 0 to m
3 for each character a ∈ Σ
4 k := min(m,q + 1) + 1
5 repeat
6 k := k − 1
7 until P[1..k] A P[1..q] a
8 δ(q,a) := k
9 return δ

Time complexity: O(m3 |Σ|).
There are better algorithms, which can compute δ with time
complexity O(m |Σ|).

String matching

Generalizaton
Matching with a set of patterns

We assume given
T [1..m] called text
A finite set of patterns P = {P1,P2, . . . ,Pz}

Find all positions where some P ∈ P occurs in T .

USEFUL AUXILIARY NOTIONS

1 keyword tree K of the set P
2 failure links between the nodes of K

String matching

Generalizaton
Matching with a set of patterns

We assume given
T [1..m] called text
A finite set of patterns P = {P1,P2, . . . ,Pz}

Find all positions where some P ∈ P occurs in T .
USEFUL AUXILIARY NOTIONS

1 keyword tree K of the set P
2 failure links between the nodes of K

String matching

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {P1, . . . ,Pz} is a tree
K which satisfies 3 conditions:

1 every edge is labeled with exactly 1 character.
2 Distinct edges which leave from a node are labeled with

distinct characters.
3 Every pattern Pi ∈ P gets mapped to a unique node v of K

as follows: the string of characters along the branch from
root to node v is Pi , and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v ∈ K, L(v) is the string of
characters along the branch of K from root to node v .

String matching

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {P1, . . . ,Pz} is a tree
K which satisfies 3 conditions:

1 every edge is labeled with exactly 1 character.
2 Distinct edges which leave from a node are labeled with

distinct characters.
3 Every pattern Pi ∈ P gets mapped to a unique node v of K

as follows: the string of characters along the branch from
root to node v is Pi , and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v ∈ K, L(v) is the string of
characters along the branch of K from root to node v .

String matching

1. Keyword tree
Example for P = {potato, tattoo, theater , other}

1 2 3

4
p

o

t

a

t
o

o t h e r

t

a

t

t

o
o

h

e

a
t

e
r

String matching

2. Failure links
Definition

Let K be the keyword tree for P = {P1, . . . ,Pz}. Every node v
of K has only one failure link to the node nv of K which has the
following property: L(nv) is the longest proper suffix of L(v)
which is a prefix of a pattern from P.

Example for P = {potato, tattoo, theater ,other}

1 2 3

4
p

o

t

a

t
o

o t h e r

t

a

t

t

o
o

h

e

a

t
e

r

the failure links which are
not depicted, go to the root
of K

String matching

Aho-Corasick algorithm

Allows to find all occurrences of P in T [1..m] in time O(m). It
relies on the keyword tree K for P and its failure links.
The characters of T [1..m] are read from left to right:

1 crt :=root of K
i := 1

2 If L(crt) = Pj or there is a sequence of failure links
crt → . . .→ w with L(w) = Pj

signal “Pj occurs at position i in T ”
3 If i = m then STOP.
4 If T [i] = c and there is an edge crt

c
− v then

i := i + 1, crt := v , goto 2.
5 If T [i] = c and there is no edge crt

c
− v then let

crt → . . .→ v the shortest sequence of failure links such

that ∃v
c
− w an let crt := v .

If no such sequence exists, let crt := root of K.
6 goto 2.

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater

M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h

eo t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a
t

e
r

M

MMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e
r

MM

MMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a
t

e
r

MMM

MM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a
t

e

r

MMMM

M

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2

3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a
t

e
r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a
t

e
r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
The construction of the suffix tree and of the failure links in time O(n)

P = {P1, . . . ,Pz}, n := |P1|+ . . .+ |Pz |
I The keyword tree K for P is built by adding repeatedly the

edges for P1, . . . ,Pz to an initially empty tree.
The addition of the edges for Pi has runtime complexity
O(|Pi |)

⇒ the construction of K has runtime complexity
O(|P1|+ . . .+ |Pz |) = O(n)

I The failure links are added to each node of K in the order
of a breadth-first traversal: If r is the root of K then

add a failure link for the root of K: r → r
for the nodes of v at tree depth 1: add failure links v → r
if v is a node at depth k > 1, then let

v ′ be the parent of v
x be the label of v − v ′

π : v ′ → v1 → . . . vi be the shortest sequence of failure links
such that there is an edge vi − w in K with label x

If π exists: add the failure link v → w
If π does not exist: add the failure link v → r

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

o

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

a

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t 4t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

2

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a tt

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

a

a

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

e

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

o
1

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

r
3

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Suffix trees
What are they?

A tree-like data structure for a large string (the text T [1..n]),
which can be built in time O(n)

it is a compact representation of all suffixes of text T .

It allows to find all occurrences of a pattern P[1..m] in T in
time O(m + k) where k is the number of occurrences of P
in T .

REMARKS
1 The algorithm which builds the suffix tree of T [1..n] in

linear time O(n) was discovered by Wiener in 1973.
Donald Knuth called it “the algorithm of 1973” – he thought
the suffix tree can not be built in linear time.

2 Suffix trees have many other interesting applications.

String matching

Suffix trees
Formal definition

The suffix tree of a string S[1..n] is a tree with the following
properties:

1 It has exactly n leaf nodes, labeled with numbers 1,2,. . . ,n.
2 Except for the root, every internal node has at lest two

children.
3 Every edge is labeled with a nonempty substring of S.
4 Edges from same node to different children are labeled

with substrings that start with different characters.
5 The string produced by concatenating the labels of the

edges from the root node to a leaf node i is the suffix
S[i ..n].

String matching

Suffix trees
Example

S =carcasa$ has length 8, thus 8 suffixes.
The suffix tree of S is

1

4

2

3

5

6

7

8

$ sa$

$

ac$asacr

$a
s a

$a
sa
cr

s
a
$

rcasa$

Remarks

1 Some strings have no suffix trees.

2 If the last character of S occurs only once in S, then S has a
suffix tree.
From now on, we will assume S satisfies this condition.

String matching

Auxiliary notions

Let T be the suffix tree of a string S[1..n], and α = S[i ..j] a
substring of S.

The label L(x) of a node x of T is the string produced by
concatenating the labels of edges from root to x .

The position posT (α) of α in T is defined as follows: Let x be
the node of T such that L(x) is the shortest node label with
prefix α. (Note: x can be foud in |α| steps)

1 If L(x) = α, then posT (α) := x
2 Otherwise, let y be the parent node of x in T and β the

substring such that α = L(y)β. In this case, posT (α) is the
triple 〈y , x , β〉.

Intuition: The position of α în T is between nodes y and x of
T .

String matching

Auxiliary notions
Positions in a suffix tree

Example
String positions in the suffix tree of string S = carcasa

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r

s
a

r
c
a
s
a

posT (λ) = r
posT (c) = 〈r , x ,c〉
posT (ca) = x
posT (car) = 〈x , 1 ,r〉
posT (carcasa) = 1

posT (arc) = 〈y , 2 ,rc〉
posT (sa) = 6

String matching

Auxiliary notions
Node depth

The node depth dT (α) of substring α of S in the suffix tree T of S is:

1 if posT (α) is a node y , then dT (α) is the number of nodes from
root of T to y . The root and node y are counted as well.

2 posT (α) = 〈y , x , β〉 then dT (α) is the number of nodes from root
of T to y , except y . The root is counted, but node y is not.

Example

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r
s
a

r
c
a
s
a

dT (ca) = 1
dT (carc) = 2
dT (carcasa) = 2

String matching

Auxiliary notions
Suffix links

Suffix trees have a remarkable property:
For every interior node x different from root, there is
another interior node y such that L(y) is obtained from
L(x) by dropping its first character.

y is called the suffix link of x , and is denoted by suf (x).

Example (Suffix links in the suffix tree of carcasa)

1

4

2
3

5

6saacasacr

as
a

as
ac
r
s
a

rcasa

String matching

Suffix trees
A compact representation

Main idea: Instead of labeling the edges with substrings S[i ..j],
we can label them with pairs of integers 〈i , j〉
⇒ edge labels of variable size (substrings) are replaced by

edge labels of constant size (pair of integer indices in S)

Example (Suffix tree for the string axabxb)

1 23

4

5

b

a

bx
ba
x b

x
b

x

abxb

bxb

is replaced with 1 23

4

5

〈6, 6〉

〈1
, 1
〉

〈2
, 6
〉

〈4, 6〉

〈2, 2〉

〈3, 6〉

〈4, 6〉

String matching

Suffix trees
How big are they?

The suffix tree T of a string S[1..n] has
n leaf nodes
except for the root, every internal node has at least 2
children
the root node may have 1 child.

Therefore:
T has at most n internal nodes.
T has at most 2 · n edges

⇒ the size of T is O(n).

String matching

Suffix trees with suffix links
Construction in linear time

Fact: The suffix tree and suffix links of a text S[1..n] can be
constructed in time O(n)

1 Such an algorithm was first described by Wiener, in 1973.
2 A simpler linear-time algorithm was proposed by Ukkonen;

it is described in Chapter 6 of the book
Dan Gusfield, Algorithms of Strings, trees, and sequences.
Cambridge University Press, 1997.

String matching

Generalized suffix trees
What are they?

Let S = {S1, . . . ,Sp} a set of p non-empty strings.

We assume w.l.o.g. that every string Sj ends with a specific character zj which
occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:
1 It has |S1|+ . . .+ |Sp| leaves, with labels from the set
{j:i | 1 ≤ j ≤ p, 1 ≤ i ≤ |Sj |}

2 All internal nodes, except the root, have ar least 2 children.
3 Every edge is labeled with a nonempty substring of strings from S.
4 Edges from same node to different children are labeled with substrings that start

with different characters.
5 L(j:i) = Sj [i..nj] where nj = |Sj |.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label Sj [k ..`] with the constant-size label j:〈k , `〉

String matching

Generalized suffix trees
Linear-time construction

1 We build suffix tree G1 of S1 with Ukkonen alg. in O(|S1|) time
we label edges with 1:〈k , `〉 instead of 〈k , `〉,
and leaves with 1:i instead of i .

2 For m := 2 to p, we build the generalized suffix tree Gm of set of
strings {S1, . . . ,Sm} as follows:

I Traverse Gm−1 from root, to find longest prefix Sm[1..j]
which has a position in Gm−1.

Sm[1..j] is longest prefix of Sm which is prefix of a suffix of a string
from {S1, . . . ,Sm−1}

I Start extending Gm−1 from that position, until we produce
Gm

⇒ Gp is a suffix tree of S = {S1, . . . ,Sp}, built in O(n) time, where
n = |S1|+ . . .+ |Sp|

String matching

Generalized suffix trees
Example

The generalized suffix tree of S = {cocos,comod} is

1:5

1:1 1:3 1:2 1:42:1 2:2 2:4

2:3 2:5

δ

γ δ

γ

1:〈2, 2〉1:〈1
, 2〉

α

β
α

β
α γ

where α = 〈1,5,5〉, β = 1:〈3,5〉, γ = 2:〈3,5〉, δ = 2:〈5,5〉.

String matching

Applications of (generalized) suffix trees
1. String matching

Given text S[1..n] and pattern P[1..m], find all occurrences of P
in S.

1 Construct the suffix tree T of S in time O(n)

2 Find posP(T) in time O(m). Suppose posP(T) is y or
〈x , y , β〉.

3 Find all leaf nodes of T below node y .
Every occurrence of P in S is a prefix of a suffix P[j ..n] of S,
where j is the label of such a leaf node.
If there are k occurrences of P in S, there are k such leaf
nodes. These leaf nodes can be found in O(k) time.

String matching

Applications of (generalized) suffix trees
1. String matching

Properties of string matching with (generalized) suffix trees:
1 Finding all occurrences of P[1..m] in a text S[1..n] takes

O(n + m + k) time
If the suffix tree of S is precomputed, then finding all
occurrences of P in S takes O(m + k) time
This method is useful if we search often in the same text S
(representation of a large database)

2 Finding all occurrences of P[1..m] in all texts of a set
S = {S1, . . . ,Sp} takes O(n + m + k) time where
n = |S1|+ . . .+ |Sp|

String matching

Applications of suffix trees
2. Finding the longest substrings common to two texts

Given two texts S1 and S2,
Find the longest substrings common to S1 and S2.

Answer:
1 Build the generalized suffix tree G of {S1,S2} and mark its

internal nodes that have leaf descendants for suffixes of
both S1 and S2

Can be done in time O(n) where n = |S1|+ |S2|
2 Traverse the internal nodes of G, and compute the

character depth of those which are marked.
Note: their character depth is the length of a common
substring of S1 and S2

Overall computation time: O(n)

String matching

References

I Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein:
Introduction to Algorithms. Third Edition. Chapter 32. The
MIT Press. 2009.

I D. Gusfield: Algorithms on Strings, Trees, and Sequences.
Published by Press Syndicate of the University of
Cambridge. 1997.

String matching

