String matching

The finite automaton approach. The Aho-Corasick algorithm. Suffix trees. Ukkonen algorithm

November 2020

String matching

< < >> < </p>

э

- An alphabet Σ is a finite set of characters.
- A string S of length n ≥ 0 is an array S[1..n] of characters from Σ. We write |S| for the length of S. Thus, |S| = n
- S[i] is the character of S at position i
- *S*[*i..j*] represents the substring of *S* form position *i* to position *j* inclusively.

Example

If
$$S =$$
alphabet then $|S| = 8$, $S[1] = a$, $S[2] = b$, $S[1..4] =$ alph, $S[3..7] =$ phabe

<ロ> <問> <問> < 回> < 回> < □> < □> <

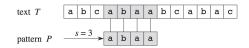
ASSUMPTIONS:

Σ : finite set of characters (an alphabet).
 E.g., Σ = {a, b, ..., z}

• P[1..m] : array of m > 0 characters from Σ (the pattern)

• T[1..n] : array of n > 0 characters from Σ (the text)

We say that *P* occurs with shift *s* in *T* (or, equivalently, that *P* occurs beginning at position s + 1 in *T*) if $0 \le s \le n - m$ and T[s + 1..s + m] = P[1..m] (that is, if T[s + j] = P[j], for $1 \le j \le m$). EXAMPLE:



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The string matching problem

Given a pattern P[1..m] and a text T[1..n]Find all shifts s where P occurs in T.

Terminology and notation:

- Σ^* =the set of all strings of characters from Σ
- If $x, y \in \Sigma^*$ then
 - *x y*:=the concatenation of *x* with *y*
 - |x| := the length (number of characters) of x
 - $\epsilon :=$ the zero-length empty string
 - x is prefix of y, notation x ⊑ y, if y = x w for some w ∈ Σ*.
 x is suffix of y, notation x ⊒ y, if y = w x for some w ∈ Σ*.

Example: <u>ab</u> <u>_</u> <u>ab</u>cca

Remarks

- $x \sqsupseteq y$ if and only if $x a \sqsupseteq y a$.
- **2** Every string is either ϵ , or of the form *wa* where $a \in \Sigma$ and *w* a string.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The naive string matching algorithm

```
NAIVESTRINGMATCHER(T, P)

1 n := T.length

2 m := P.length

3 for s = 0 to n - m

4 if P[1..m] == T[s + 1..s + m]

5 print "pattern occurs with shift" s
```

EXAMPLE:

• Time complexity: O((n - m + 1)m)

Several character comparison are performed repeatedly

Can we do better?

ヘロト ヘアト ヘヨト

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple $\mathcal{A} = (Q, q_0, A, \Sigma, \delta)$ where

- Q : finite set of states
- $q_0 \in Q$: the start state
- $A \subseteq Q$: distinguished set of accepting states
- Σ:=finite set of characters (the input alphabet)
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

< ロ > < 同 > < 三 >

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple $\mathcal{A} = (Q, q_0, A, \Sigma, \delta)$ where

- Q : finite set of states
- $q_0 \in Q$: the start state
- A ⊆ Q: distinguished set of accepting states
- Σ:=finite set of characters (the input alphabet)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function

Alternative representations of a finite automaton:

- Tabular representation of δ
- state-transition diagram

(see next slide)

> < 同 > < 三 >

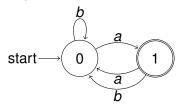
Alternative representations of a finite automaton

 $\begin{aligned} \mathcal{A} &= (\textit{Q},\textit{q}_0,\textit{A}, \Sigma, \delta) \text{ where} \\ \textit{Q} &= \{0,1\},\textit{q}_0 = 0,\textit{A} = \{1\}, \Sigma = \{\textit{a},\textit{b}\} \end{aligned}$

Tabular representation:

δ	а	b
ightarrow 0	1	0
← 1	0	0

State-transition diagram:



Acceptance by finite automata

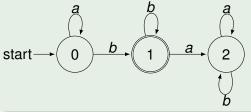
ASSUMPTION: $\mathcal{A} = (Q, q_0, A, \Sigma, \delta)$ is a finite automaton. • Define inductively $\phi : \Sigma^* \to Q$, as follows:

 $\begin{aligned} \phi(\epsilon) &:= q_0, \\ \phi(wa) &:= \delta(\phi(w), a). \end{aligned}$

We say that *w* is accepted by \mathcal{A} if $\phi(w) \in \mathcal{A}$.

Example

The following finite automaton accepts all (and only) words of the form $a^m b^n$ where $m \ge 0$, $n \ge 1$:



REMARK: The time complexity of computing $\phi(w)$ is O(n) where n = |w|.

A finite automaton for the string matching problem Main ideas

- Define a finite automaton A such that T[1..*i*] is accepted by A if and only if it has suffix P (that is, P ⊒ T[1..*i*]).
- ▶ A can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the suffix function σ corresponding to pattern P:

A finite automaton for the string matching problem Main ideas

- Define a finite automaton A such that T[1..i] is accepted by A if and only if it has suffix P (that is, P ⊒ T[1..i]).
- ▶ A can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the suffix function σ corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the function $\sigma : \Sigma^* \to \{0, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$\sigma(x) := \max\{k \mid 0 \le k \le m \text{ and } P[1..k] \sqsupseteq x\}.$$

・ロン ・回 と ・ 回 と ・

A finite automaton for the string matching problem Main ideas

- Define a finite automaton A such that T[1..*i*] is accepted by A if and only if it has suffix P (that is, P ⊒ T[1..*i*]).
- ▶ A can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the suffix function σ corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the function $\sigma : \Sigma^* \to \{0, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$\sigma(\mathbf{x}) := \max\{k \mid 0 \le k \le m \text{ and } P[1..k] \sqsupseteq \mathbf{x}\}.$$

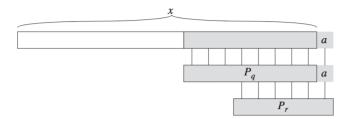
EXAMPLES: If P = ab then $\sigma(\epsilon) = 0$, $\sigma(ccac\underline{a}) = 1$, $\sigma(ac\underline{ab}) = 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Suffix-function recursion lemma

For any string x and character
$$a \in \Sigma$$
, if $q = \sigma(x)$, then $\sigma(x a) = \sigma(P[1..q] a)$.

A graphical illustration of a proof of this Lemma is shown below:



The finite automaton corresponding to a pattern

ASSUMPTION: *P*[1..*m*] is the given pattern,

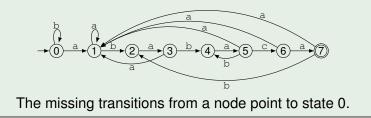
The corresponding finite automaton is $\mathcal{A} = (Q, q_0, A, \Sigma, \delta)$ where:

►
$$Q = \{0, 1, 2, ..., m\}$$

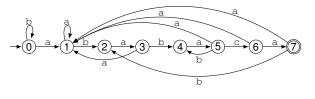
► $q_0 = 0$
► $A = \{m\}$
 $\delta(q, a) = \sigma(P[1..q] a)$

Example

The finite automaton corresponding to P[1..7] = ababaca is



The finite automaton corresponding to a pattern Illustrated example



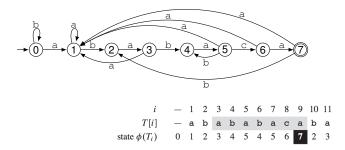
i	_	1	2	3	4	5	6	7	8	9	10	11
T[i]												
state $\phi(T_i)$	0	1	2	3	4	5	4	5	6	7	2	3

String matching

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 > 프

The finite automaton corresponding to a pattern Illustrated example



The remaining question is:

How to compute the state transition function δ of A?

< ロ > < 同 > < 三 >

Computing the transition function

A naive implementation (pseudocode)

```
COMPUTETRANSITIONFUNCTION(P, \Sigma)
1 m := P.length
2 for q := 0 to m
      for each character a \in \Sigma
3
4
          k := \min(m, q+1) + 1
5
          repeat
6
             k = k - 1
7
          until P[1..k] \supseteq P[1..q] a
8
          \delta(q, a) := k
9 return \delta
```

Time complexity: $O(m^3 |\Sigma|)$.

There are better algorithms, which can compute δ with time complexity $O(m|\Sigma|)$.

<ロ> <問> <問> < 回> < 回> < □> < □> <

э

We assume given

- T[1..m] called text
- A finite set of patterns $\mathcal{P} = \{P_1, P_2, \dots, P_z\}$

Find **all** positions where some $P \in \mathcal{P}$ occurs in T.

æ

We assume given

- T[1..m] called text
- A finite set of patterns $\mathcal{P} = \{P_1, P_2, \dots, P_z\}$

Find **all** positions where some $P \in \mathcal{P}$ occurs in T. USEFUL AUXILIARY NOTIONS

- **()** keyword tree \mathcal{K} of the set \mathcal{P}
- 2 failure links between the nodes of \mathcal{K}

The keyword tree of a set of patterns $\mathcal{P} = \{P_1, \dots, P_z\}$ is a tree \mathcal{K} which satisfies 3 conditions:

- every edge is labeled with exactly 1 character.
- Oistinct edges which leave from a node are labeled with distinct characters.
- Severy pattern P_i ∈ P gets mapped to a unique node v of K as follows: the string of characters along the branch from root to node v is P_i, and every leaf node of K is the mapping of a pattern from P.

ヘロン 人間 とくほ とくほ とう

э.

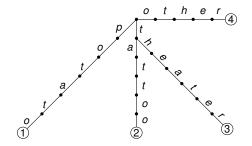
The keyword tree of a set of patterns $\mathcal{P} = \{P_1, \dots, P_z\}$ is a tree \mathcal{K} which satisfies 3 conditions:

- every edge is labeled with exactly 1 character.
- Oistinct edges which leave from a node are labeled with distinct characters.
- Severy pattern P_i ∈ P gets mapped to a unique node v of K as follows: the string of characters along the branch from root to node v is P_i, and every leaf node of K is the mapping of a pattern from P.

NOTATION: for every node $v \in \mathcal{K}$, $\mathcal{L}(v)$ is the string of characters along the branch of \mathcal{K} from root to node v.

・ロト ・四ト ・ヨト ・ヨトー

1. Keyword tree Example for $\mathcal{P} = \{potato, tattoo, theater, other\}$

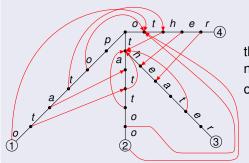


String matching

æ

2. Failure links

Let \mathcal{K} be the keyword tree for $\mathcal{P} = \{P_1, \dots, P_z\}$. Every node v of \mathcal{K} has only one failure link to the node n_v of \mathcal{K} which has the following property: $\mathcal{L}(n_v)$ is the longest proper suffix of $\mathcal{L}(v)$ which is a prefix of a pattern from \mathcal{P} .



the failure links which are not depicted, go to the root of \mathcal{K}

Allows to find all occurrences of \mathcal{P} in T[1..m] in time O(m). It relies on the keyword tree \mathcal{K} for \mathcal{P} and its failure links. The characters of T[1..m] are read from left to right:

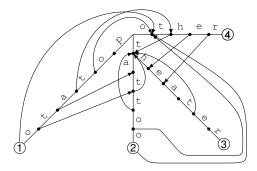
• crt :=root of
$$\mathcal{K}$$

- *i* := 1
- If $\mathcal{L}(crt) = P_j$ or there is a sequence of failure links *crt* → ... → *w* with $\mathcal{L}(w) = P_j$
 - signal " P_j occurs at position *i* in *T*"
- 3 If i = m then STOP.
- If T[i] = c and there is an edge crt v then i := i + 1, crt := v, goto 2.
- If T[i] = c and there is no edge crt ^c v then let crt → ... → v the shortest sequence of failure links such that ∃v ^c w an let crt := v.
 If no such sequence exists, let crt := root of K.

oto 2.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

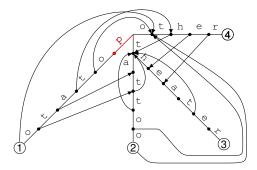
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater

イロト イポト イヨト イヨト 一臣

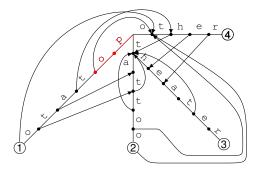
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater

イロト イポト イヨト イヨト

Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$

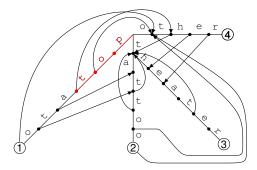


potheater $\Delta \Delta$

2

イロト イポト イヨト イヨト

Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$

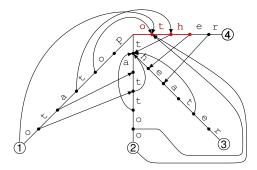


 $\substack{ \text{potheater} \\ \Delta \Delta \Delta }$

3

イロト イポト イヨト イヨト

Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$

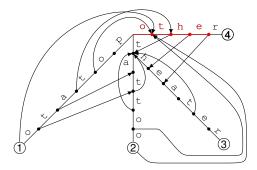


 $\underset{{\scriptstyle \Delta}{\scriptstyle \Delta}{\scriptstyle \Delta}{\scriptstyle \Delta}}{\scriptstyle \text{potheater}}$

3

イロト イポト イヨト イヨト

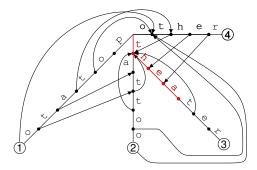
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



 $\underset{\vartriangle\vartriangle\vartriangle\vartriangle$

イロト イポト イヨト イヨト

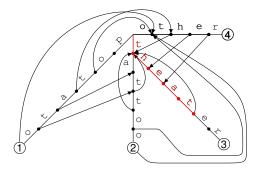
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater $\Delta \Delta \Delta \Delta \Delta \Delta$

イロト イポト イヨト イヨト

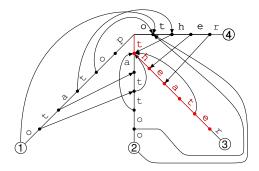
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater $\Delta \Delta \Delta \Delta \Delta \Delta \Delta$

イロト イポト イヨト イヨト

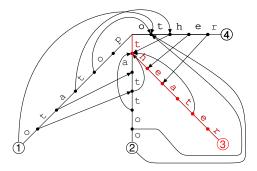
Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater

イロト イポト イヨト イヨト

Illustrated example: $\mathcal{P} = \{ potato, tattoo, theater, other \}, T = potheater$



potheater

 \Rightarrow detected occurrence of $P_3 = \texttt{theater}$

イロト イヨト イヨト イ

프 > 프

The construction of the suffix tree and of the failure links in time O(n)

- $\mathcal{P} = \{P_1, \ldots, P_z\}, n := |P_1| + \ldots + |P_z|$
 - ► The keyword tree K for P is built by adding repeatedly the edges for P₁,..., P_z to an initially empty tree.
 - The addition of the edges for P_i has runtime complexity $O(|P_i|)$

 \Rightarrow the construction of \mathcal{K} has runtime complexity

 $O(|P_1|+\ldots+|P_z|)=O(n)$

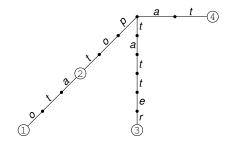
- ► The failure links are added to each node of *K* in the order of a breadth-first traversal: If *r* is the root of *K* then
 - add a failure link for the root of \mathcal{K} : $r \to r$
 - for the nodes of v at tree depth 1: add failure links $v \rightarrow r$
 - if v is a node at depth k > 1, then let
 - v' be the parent of v
 - x be the label of v v'
 - π : v' → v₁ → ... v_i be the shortest sequence of failure links such that there is an edge v_i − w in K with label x

If π exists: add the failure link $\textit{v} \rightarrow \textit{w}$

If π does not exist: add the failure link $\mathbb{V} \to \mathbb{V}$ as $\mathbb{V} \to \mathbb{V}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$

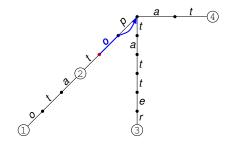


< ロ > < 同 > < 三 >

ъ

≣ ▶

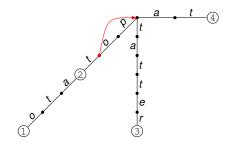
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

э

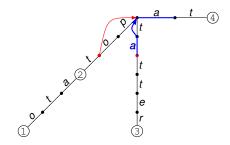
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



э

ъ

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$

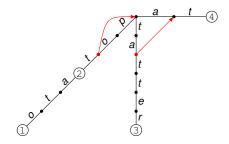


< ロ > < 同 > < 三 >

э

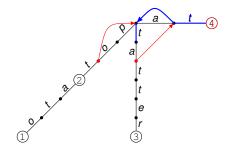
ъ

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



э

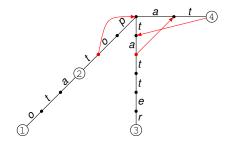
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

ъ

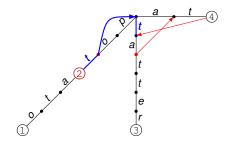
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

э

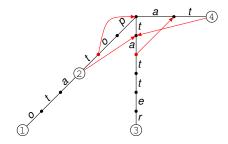
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

э

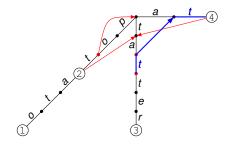
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

э

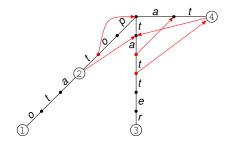
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



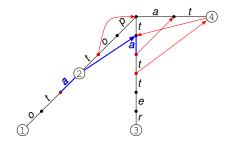
< ロ > < 同 > < 三 >

э

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



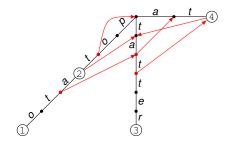
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



< ロ > < 同 > < 三 >

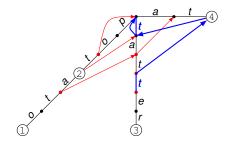
ъ

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



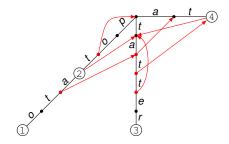
(日)

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



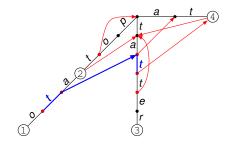
イロト イヨト イヨト イ

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



코 > - 코

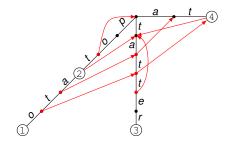
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

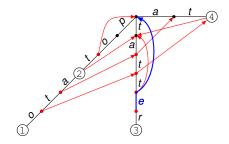
코 > - 코

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$

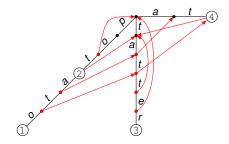


ъ ≣ ▶

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$

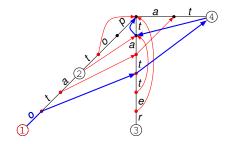


Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



ъ ≣ ▶

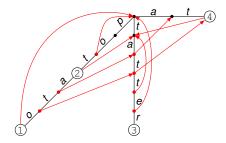
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

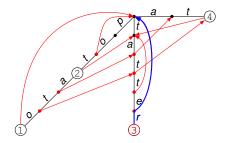
코 > - 코

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



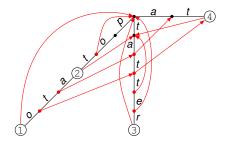
(日)

Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$

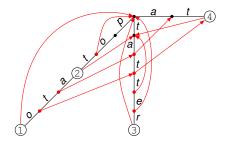


(日)

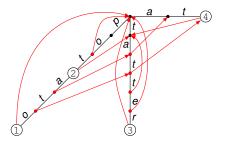
Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



Illustrated example for the keyword tree of $\mathcal{P} = \{potato, pot, tatter, at\}$



REMARK: The runtime complexity of this algorithm for the computation of failure links is O(n), where $n = |P_1| + ... + |P_z|$

 A proof of this fact can be found in the recommended bibliography.

- A tree-like data structure for a large string (the text *T*[1..*n*]), which can be built in time *O*(*n*)
 - it is a compact representation of all suffixes of text T.
- It allows to find all occurrences of a pattern P[1..m] in T in time O(m + k) where k is the number of occurrences of P in T.

REMARKS

- The algorithm which builds the suffix tree of T[1..n] in linear time O(n) was discovered by Wiener in 1973.
 - Donald Knuth called it "the algorithm of 1973" he thought the suffix tree can not be built in linear time.
- Suffix trees have many other interesting applications.

・ロン ・四 と ・ ヨ と ・ ヨ と …

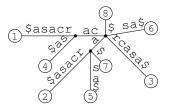
The suffix tree of a string S[1..n] is a tree with the following properties:

- It has exactly *n* leaf nodes, labeled with numbers 1,2,...,*n*.
- Except for the root, every internal node has at lest two children.
- Severy edge is labeled with a nonempty substring of *S*.
- Edges from same node to different children are labeled with substrings that start with different characters.
- The string produced by concatenating the labels of the edges from the root node to a leaf node *i* is the suffix *S*[*i*..*n*].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suffix trees

S = carcasa has length 8, thus 8 suffixes. The suffix tree of S is



Remarks

- Some strings have no suffix trees.
- If the last character of S occurs only once in S, then S has a suffix tree.

From now on, we will assume *S* satisfies this condition.

String matching

æ

イロト イポト イヨト イヨト

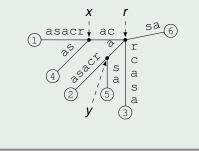
Let \mathcal{T} be the suffix tree of a string S[1..n], and $\alpha = S[i..j]$ a substring of S.

- The label L(x) of a node x of T is the string produced by concatenating the labels of edges from root to x.
- The position pos_T(α) of α in T is defined as follows: Let x be the node of T such that L(x) is the shortest node label with prefix α. (Note: x can be foud in |α| steps)
 - If $\mathcal{L}(x) = \alpha$, then $pos_{\mathcal{T}}(\alpha) := x$
 - Otherwise, let y be the parent node of x in T and β the substring such that α = L(y)β. In this case, pos_T(α) is the triple (y, x, β).
 - Intuition: The position of *α* în *T* is between nodes *y* and *x* of *T*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example

String positions in the suffix tree of string S = carcasa



 $pos_{\mathcal{T}}(\lambda) = r$ $pos_{\mathcal{T}}(c) = \langle r, x, c \rangle$ $pos_{\mathcal{T}}(ca) = x$ $pos_{\mathcal{T}}(car) = \langle x, \widehat{(1)}, r \rangle$ $pos_{\mathcal{T}}(carcasa) = \widehat{(1)}$ $pos_{\mathcal{T}}(arc) = \langle y, \widehat{(2)}, rc \rangle$ $pos_{\mathcal{T}}(sa) = \widehat{(6)}$

ヘロト ヘアト ヘビト ヘビト

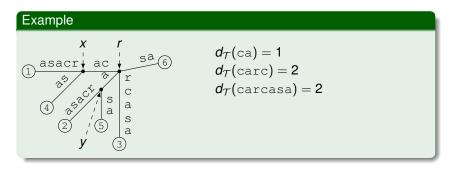
э

String matching

Auxiliary notions

The node depth $d_{\mathcal{T}}(\alpha)$ of substring α of *S* in the suffix tree \mathcal{T} of *S* is:

- if $pos_{\mathcal{T}}(\alpha)$ is a node y, then $d_{\mathcal{T}}(\alpha)$ is the number of nodes from root of \mathcal{T} to y. The root and node y are counted as well.
- *pos_T*(α) = (y, x, β) then d_T(α) is the number of nodes from root of T to y, except y. The root is counted, but node y is not.



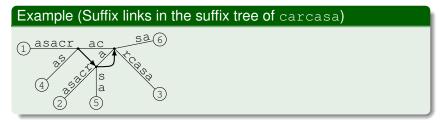
ヘロア ヘロア ヘビア・

프 🕨 🗆 프

Suffix trees have a remarkable property:

For every interior node x different from root, there is another interior node y such that $\mathcal{L}(y)$ is obtained from $\mathcal{L}(x)$ by dropping its first character.

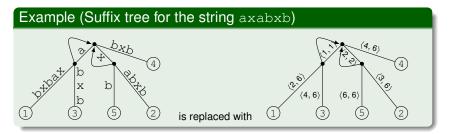
y is called the suffix link of *x*, and is denoted by suf(x).



< ロ > < 同 > < 三 >

Main idea: Instead of labeling the edges with substrings S[i..j], we can label them with pairs of integers $\langle i, j \rangle$

 \Rightarrow edge labels of variable size (substrings) are replaced by edge labels of constant size (pair of integer indices in *S*)



< ロ > < 同 > < 三 >

The suffix tree T of a string S[1..n] has

- *n* leaf nodes
- except for the root, every internal node has at least 2 children
- the root node may have 1 child.

Therefore:

- T has at most *n* internal nodes.
- T has at most $2 \cdot n$ edges
- \Rightarrow the size of \mathcal{T} is O(n).

Construction in linear time

Fact: The suffix tree and suffix links of a text S[1..n] can be constructed in time O(n)

- Such an algorithm was first described by Wiener, in 1973.
- A simpler linear-time algorithm was proposed by Ukkonen; it is described in Chapter 6 of the book

Dan Gusfield, *Algorithms of Strings, trees, and sequences.* Cambridge University Press, 1997.

<ロ> <問> <問> < 回> < 回> < □> < □> <

Let $S = \{S_1, \ldots, S_p\}$ a set of *p* non-empty strings.

• We assume w.l.o.g. that every string *S_j* ends with a specific character *z_j* which occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:

- It has $|S_1| + \ldots + |S_p|$ leaves, with labels from the set $\{j:i \mid 1 \le j \le p, 1 \le i \le |S_j|\}$
- 2 All internal nodes, except the root, have ar least 2 children.
- Solution \mathbf{S} Every edge is labeled with a nonempty substring of strings from \mathcal{S} .
- Edges from same node to different children are labeled with substrings that start with different characters.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label $S_j[k..\ell]$ with the constant-size label $j:\langle k, \ell \rangle$

Generalized suffix trees

Linear-time construction

() We build suffix tree \mathcal{G}_1 of S_1 with Ukkonen alg. in $O(|S_1|)$ time

- we label edges with 1:⟨k, ℓ⟩ instead of ⟨k, ℓ⟩, and leaves with 1:i instead of i.
- For m := 2 to p, we build the generalized suffix tree G_m of set of strings {S₁,..., S_m} as follows:
 - ► Traverse *G_{m-1}* from root, to find longest prefix *S_m*[1..*j*] which has a position in *G_{m-1}*.

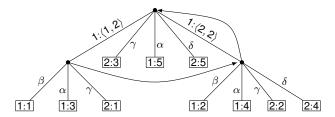
 $S_m[1...j]$ is longest prefix of S_m which is prefix of a suffix of a string from $\{S_1,\ldots,S_{m-1}\}$

Start extending G_{m-1} from that position, until we produce \mathcal{G}_m

 $\Rightarrow \mathcal{G}_p$ is a suffix tree of $S = \{S_1, \dots, S_p\}$, built in O(n) time, where $n = |S_1| + \ldots + |S_p|$

ヘロン 人間 とくほ とくほ とう

The generalized suffix tree of $S = \{cocos, comod\}$ is



where $\alpha = \langle 1, 5, 5 \rangle$, $\beta = 1:\langle 3, 5 \rangle$, $\gamma = 2:\langle 3, 5 \rangle$, $\delta = 2:\langle 5, 5 \rangle$.

ヘロト ヘアト ヘビト ヘ

프 🕨 🛛 프

Given text S[1..n] and pattern P[1..m], find all occurrences of P in S.

- Oconstruct the suffix tree T of S in time O(n)
- Similar Find $pos_P(\mathcal{T})$ in time O(m). Suppose $pos_P(\mathcal{T})$ is y or $\langle x, y, \beta \rangle$.
- Sind all leaf nodes of \mathcal{T} below node y.
 - Every occurrence of *P* in *S* is a prefix of a suffix *P*[*j*..*n*] of *S*, where *j* is the label of such a leaf node.
 - If there are k occurrences of P in S, there are k such leaf nodes. These leaf nodes can be found in O(k) time.

(日)

Properties of string matching with (generalized) suffix trees:

- Finding all occurrences of P[1..m] in a text S[1..n] takes O(n + m + k) time
 - If the suffix tree of S is precomputed, then finding all occurrences of P in S takes O(m + k) time
 - This method is useful if we search often in the same text *S* (representation of a large database)
- Similar Finding all occurrences of P[1..m] in all texts of a set $S = \{S_1, \ldots, S_p\}$ takes O(n + m + k) time where $n = |S_1| + \ldots + |S_p|$

ヘロト 人間 とくほ とくほ とう

Given two texts S_1 and S_2 ,

Find the longest substrings common to S_1 and S_2 .

Answer:

Build the generalized suffix tree G of {S₁, S₂} and mark its internal nodes that have leaf descendants for suffixes of both S₁ and S₂

Can be done in time O(n) where $n = |S_1| + |S_2|$

- Traverse the internal nodes of *G*, and compute the character depth of those which are marked.
 - Note: their character depth is the length of a common substring of *S*₁ and *S*₂

Overall computation time: O(n)

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms. Third Edition. Chapter 32. The MIT Press. 2009.
- D. Gusfield: Algorithms on Strings, Trees, and Sequences. Published by Press Syndicate of the University of Cambridge. 1997.

ヘロン 人間 とくほ とくほ とう

3