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The problem solved by amortized analysis

Some algorithms on data structures have operations with
varying time complexities

long-run computation C = sequence of operations o1,o2, . . . ,on

the operations are often fast, but from time to time they are
slow

⇒ The worst-case runtime estimate T (C) =
∑n

i=1 T (oi)
where T (oi) where T (oi) are the worst-case runtime
estimates of oi is too inaccurate.

Amortized analysis is a better method to estimate the time
complexity of many operations at once.
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Case study: Dynamic arrays

An array A with 2n elements
insert(A, x): inserts item x at the next free position in
the array

I we double the size of A when it becomes full, and copy all
elements from the old array to the newly created array
→ time consuming operation

Analyzing the time complexity:

1 2

1 2 3 4

1 2 3 4 5 6 7 8

⇒ time complexity of i-th operation insert(A, x):
I O(2n) if i = 2n

I O(1), otherwise.
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Case study: Dynamic arrays
Analyzing time complexity

Number of elementary operations (assignment or copy) required by
the i-th operation insert(A, x):

item number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
elem. ops. 1 2 1 4 1 1 1 8 1 1 1 1 1 1 1 16

Amortized analysis with the aggregate method
computes an upper bound of the total cost T (n) of a
sequence of n operations. In our example

T (n) ≤
∑n

i=1 1 +
∑blog2 nc

i=1 2i = n + (2blog2 nc+1 − 1)
≤ 2 + ((n + 1)− 1) = 2 · n

⇒ T (n)/n is called the amortized cost per operation:

T (n)

n
=

2 · n
n

= 2 = O(1)

⇒ amortized cost is constant.
⇒ this cost applies to each operation, even if there are several

types of operations in the sequence.
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Other methods for amortized analysis

There are three frequently-used methods for amortized
analysis:

1 aggregate method
2 accounting method
3 potential method
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Accounting method

Assigns different amortized costs to different operations.
The amortized cost depends on i (the i-th iteration) and
may differ from the actual cost.

With aggregate method, all operations are assumed to
have same amortized cost. With accounting method, they
can have different amortized costs.

When an operation’s amortized cost exceeds its actual
cost, the surplus goes into a "bank".
Idea: Need to overcharge for simpler operations, to build
up enough savings to afford a more expensive operation
later

Bank balance must always be ≥ 0
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Accounting method
Ilustrated example: Dynamic array

Charge 3 units per operation

$0
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2 2

1 2
1 1

$2

1 2

1 2$6 3 4
2 2

1 2 3 4

1 2 3 4$10 5 6 7 8
2 2 2 2

$2

$2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8$8 9 10 11
2 2 2

Bank balance is always ≥ 2
⇒ each operation has constant amortized cost 3.
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Potential method

Conceptually similar to accounting method
Same idea of using stored surplus to pay for more
expensive operations
The potential (energy) is analogous to the bank
Potential must always ≥ 0

Key differences:
Accounting method: bank balance of a particular state is
dependent on previous state
Potential method involves a potential function Φ(A)

can be used to derive the potential at any state
can also be used to compute a potential difference, which
shows the change in cost between two operations

Finding a potential function is the challenging part!
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Potential method
Ilustrated example: Dynamic array

Φ(A) = 2 (i + 1)− size(A) where i is the number of elements in A

Easy to check that Φ(A) is always ≥ 0.

The amortized cost ĉi of the i-th operation is defined to be
ĉi = ci + Φ(Ai )− Φ(Ai−1) where

ci is the actual cost of the i-th operation

Ai is the dynamic array after the i-th operation

We distinguish 2 cases:

1 i-th step is normal step. Then ci = 1, size(Ai ) = size(Ai+1) and
ĉi = 1 + (2 (i + 1)− size(Ai ))− (2 i − size(Ai )) = 3

2 i-th step is an expansion step. This happens when size(Ai ) = i
and size(Ai+1) = 2 i . Then ci = i and
ĉi = i + (2 (i + 1)− 2 i)− (2 i − i) = 3

⇒ every operation has constant amortized cost 3.
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Summary

Aggregate analysis defines amortized cost of any
operation as an average:

total cost of a sequence of operations
number of operations

Potential and Accounting methods involve assigning
amortized costs per operation

Cheap operations are overcharged⇒ we acquire a
surplus
Expensive operations are paid for by the surplus
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