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The problem solved by amortized analysis

Some algorithms on data structures have operations with
varying time complexities

long-run computation C = sequence of operations 01, 0o, ..., 0n

@ the operations are often fast, but from time to time they are
slow

= The worst-case runtime estimate T(C) = .7, T(0))
where T(o;) where T(o;) are the worst-case runtime
estimates of o; is too inaccurate.
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The problem solved by amortized analysis

Some algorithms on data structures have operations with
varying time complexities

long-run computation C = sequence of operations 01, 0o, ..., 0n

@ the operations are often fast, but from time to time they are
slow

= The worst-case runtime estimate T(C) = .7, T(0))
where T(o;) where T(o;) are the worst-case runtime
estimates of o; is too inaccurate.

Amortized analysis is a better method to estimate the time
complexity of many operations at once.
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Case study: Dynamic arrays

An array A with 2" elements
insert (A, x):inserts item x at the next free position in
the array
» we double the size of A when it becomes full, and copy all
elements from the old array to the newly created array
— time consuming operation
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Case study: Dynamic arrays

An array A with 2" elements
insert (A, x):inserts item x at the next free position in
the array
» we double the size of A when it becomes full, and copy all
elements from the old array to the newly created array
— time consuming operation

Analyzing the time complexity:
vy

RN
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A

= time complexity of i-th operation insert (A, x):
> O2")ifi=2"
» O(1), otherwise.
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Case study: Dynamic arrays

Analyzing time complexity

Number of elementary operations (assignment or copy) required by
the i-th operation insert (A, x):

itemnumber |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 1 1 1 1 1 1 1 16

elemops. [T 2 1 4 1 1




Case study: Dynamic arrays

Analyzing time complexity

Number of elementary operations (assignment or copy) required by
the i-th operation insert (A, x):

itemnumber\1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
eemops. [T 2 1T 4 1 1 1 8 1 1 1 1 1 1 1 16

@ Amortized analysis with the aggregate method

e computes an upper bound of the total cost T(n) of a

sequence of n operations. In our example

T(n) < Z/ 1+ ZUogsz 2l — n4 (2Uog2nj+1 —1)

<24+ ((n+1)—-1)=2-n
= T(n)/nis called the amortized cost per operation:
T 2.

T _2:1n_5_op)

n n

= amortized cost is constant.
= this cost applies to each operation, even if there are several
types of operations in the sequence.
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Other methods for amortized analysis

There are three frequently-used methods for amortized
analysis:

@ aggregate method
@ accounting method
© potential method
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Accounting method

Assigns different amortized costs to different operations.

@ The amortized cost depends on i (the i-th iteration) and
may differ from the actual cost.

e With aggregate method, all operations are assumed to
have same amortized cost. With accounting method, they
can have different amortized costs.

@ When an operation’s amortized cost exceeds its actual
cost, the surplus goes into a "bank”.
@ |dea: Need to overcharge for simpler operations, to build

up enough savings to afford a more expensive operation
later

e Bank balance must always be > 0
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation

2 2
34 [1]2]

Amortized Analysis



Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation

1 1

L[]

vy

Fr v
$2[1]z2]sfa] [ [ ]|

Amortized Analysis



Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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Accounting method
llustrated example: Dynamic array

Charge 3 units per operation
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@ Bank balance is always > 2
= each operation has constant amortized cost 3.
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Potential method

Conceptually similar to accounting method

@ Same idea of using stored surplus to pay for more
expensive operations

@ The potential (energy) is analogous to the bank
@ Potential must always > 0
Key differences:

@ Accounting method: bank balance of a particular state is
dependent on previous state
@ Potential method involves a potential function ®(A)

@ can be used to derive the potential at any state
e can also be used to compute a potential difference, which
shows the change in cost between two operations
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Potential method

Conceptually similar to accounting method

@ Same idea of using stored surplus to pay for more
expensive operations

@ The potential (energy) is analogous to the bank
@ Potential must always > 0
Key differences:

@ Accounting method: bank balance of a particular state is
dependent on previous state
@ Potential method involves a potential function ®(A)

@ can be used to derive the potential at any state
e can also be used to compute a potential difference, which
shows the change in cost between two operations

Finding a potential function is the challenging part!
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Potential method
llustrated example: Dynamic array

®(A) =2(i+ 1) — size(A) where i is the number of elements in A
@ Easy to check that ®(A) is always > 0.

The amortized cost ¢; of the i-th operation is defined to be
¢ = ci + ®(A) — P(Ai_1) where

@ ¢, is the actual cost of the i-th operation
@ A, is the dynamic array after the i-th operation
We distinguish 2 cases:

@ i-th step is normal step. Then ¢; = 1, size(A;) = size(Ai1) and
Ci=1+2(>i+1)-—size(A)) — (2i — size(Ai)) =3

@ i-th step is an expansion step. This happens when size(A;) = i
and size(Aiy1) = 2i. Then ¢; = i and
CG=i+@2@U+1)—-2)—-(2i-i)=3

= every operation has constant amortized cost 3.
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@ Aggregate analysis defines amortized cost of any
operation as an average:

total cost of a sequence of operations
number of operations

@ Potential and Accounting methods involve assigning
amortized costs per operation
e Cheap operations are overcharged = we acquire a
surplus
e Expensive operations are paid for by the surplus
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