Lecture 2:

Data structures for disjoint sets

October 7, 2020

Preliminaries

MAIN IDEA: Group n distinct elements into a collection of
disjoint sets; the following operations should be efficient:

@ Finding the set to which a given element belongs.
@ Uniting two sets.

CONTENT OF THIS LECTURE
@ The disjoint-set data structure + specific operations
@ A simple application
© Concrete implementations based on

o linked lists
e rooted trees

© Discussion: the Ackermann function

Disjoint-set data structure
Main features

Container for a collection § = {Sy, S», ..., Sy} of disjoint
dynamic sets. (A, B are disjoint sets if AN B = (.)
@ Each set is identified by some member of the set, called its
representative
> REQUIREMENT: If we ask for the representative of a
dynamic set twice without modifying the set, we should get
the same answer.

DESIRABLE OPERATIONS

> MAKESET(x): creates a new set consisting of x only.
(Requirement: x is not already in another set.)

> UNION(x, y): unites the sets that contain x and y, say Sy
and Sy, into a new set that is their union. The sets Sy and
Sy can be destroyed.

> FINDSET(x): returns a pointer to the representative of the
unique set containing element x.

Lecture 2:

Disjoint-set data structure

Application: Determining the connected components of an undirected graph

ASSUMPTION: G = (V, E) is an undirected graph.
@ Computing the connected components of G:

CONNECTEDCOMPONENTS(G)

1 for eachnode v e V

2 MAKESET(v)

3 for eachedge (u,v) € E

4 if FINDSET(u) # FINDSET(v)
5 UNION(u, v)

© Determine if two elements are in the same component:

SAMECOMPONENT(u, v)

1 if FINDSET(u) = FINDSET(v)
2 return TRUE

3 return FALSE

Disjoint-set data structure

Application: Determining the connected components of an undirected graph

Example (A graph with 4 connected components

ZONNe

Edge

processed Collection of disjoint sets

initial sets | {a} {by {cy {d} {e} {f} {9} {h} {i} {}
(b, d) {a} {b,d} {c} fet {fy {gt {n {} {}
(e,9) {a} {b,d} {c} {e,q} {f} {nr {r {4}
(ac) |{act {bad} {e,.gr {f} thy {1y U}
(h, 1) {a,c} {b,d} {e,9} {f} {hiy 4}
(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}
(e.f) {ab,c,d} {e.f.q} iy U}
(b,) {a.b,c,d} {e,f, g} {hiy i}

Lecture 2:

Disjoint sets
A linked-list representation

MAIN IDEAS
@ Each set is represented by a linked list.

@ The first element in each linked list is the representative of
the set.
@ Each object in the linked list contains
e A pointer to the next set element
e A pointer back to the set representative
@ MAKESET(x) and FINDSET(x) are straightforward to
implement
e They require O(1) time.

Q1: How to implement UNION(x, y)?
Q2: What is the time complexity of UNION(x, y)?

Disjoint sets

A linked-list representation

Example
@ Linked-list representations of sets {b, c, h, e} and {d, f, g}

1 111

I 1 I
¢

h ™ e > b
= =] M=

Disjoint sets
A linked-list representation

Implementation of UNION(x, y)

@ Append x-s list onto the end of y-s list and update all
elements from x-s list to point to the representative of the
set containing y

= time linear in the length of x-s list.

Disjoint sets
A linked-list representation

Implementation of UNION(x, y)

@ Append x-s list onto the end of y-s list and update all
elements from x-s list to point to the representative of the
set containing y

= time linear in the length of x-s list.

Some sequences of m operations may require ©(m?) time (see
next slide)

Disjoint sets represented by linked lists

A sequence of m operations that takes ©(m?) time

UNION(X3, X)

Operation Number of objects updated
MAKESET(xq) 1
MAKESET(x2) 1
MAKESET(Xq) 1
UNION(X1, X2) 1
UNION(X2, X3) 2

3

UNION(Xg—1, Xg) qg-—1

The number of MAKESET ops. is n=[m/2] +1,and g = m — n.

Total time spent: ©(n + g?) = ©(m?) because n = ©(m) and
g = ©(m) = amortized time of an operation is ©(m).

Towards a faster implementation

Disjoint-set forests

MAIN IDEA: Represent sets by rooted trees, with each node
containing one member and each tree representing one set.

@ A disjoint-set forest is a set of rooted trees, where each
member points only to its parent.

Example

=0

@0

@
©—e

©——ED
@—G)

©—6
@

Lecture 2:

Towards a faster implementation

Disjoint-set forests

Implementation of disjoint set operations:

@ MAKESET(x): creates a tree with just one node.
@ FINDSET(x): follows the parent pointers from a node until it
reaches the root of the tree.
e The nodes visited on the path towards the root constitute
the find path.
@ UNION(x, y): causes the root of one tree to point to the
root of the other tree.

@ A sequence of n UNION operations may create a tree
which is just a linear chain of nodes

= Disjoint-set forests have not improved the linked list
representation.

© We need 2 more heuristically improvements: union by rank
and path compression.

v

Lecture 2:

Disjoint-set forests

Heuristic 1: union by rank

Implementation of UNION(x, y)

@ MAIN IDEA: make the root of the tree with fewer nodes
point to the root of the tree with more nodes.

e Each node has a rank that approximates the logarithm of
the size of the subtree rooted at each node and also an
upper bound of the height of the node.

= perform union by rank: the root with smaller rank is made to
point to the root with larger rank during the operation
UNION(X, y).

Disjoint-set forests

Heuristic 2: path compression

MAIN IDEA: During FINDSET operations, each node on the find
path will be made to point directly to the root.

Path compression during the operation FINDSET(a).

(a) before executing FINDSET(a) (b) after executing FINDSET(a)

Disjoint-set forests

Pseudocode for main operations (1)

@ With each node x, we maintain the int value x.rank which
is an upper bound on the height of x (the number of edges
on the longest path between x and a descendant leaf) The
initial rank of a node in a newly created singleton tree is 0.

MAKESET(x)
1.x.p=x
2. x.rank =0

UNION(X, y)
1. LINK(FINDSET(X),FINDSET(y))

LINK(x, ¥)

1if x.rank > y.rank

2 yp=x

3elsexp=y

4 if x.rank == y.rank

5 y.rank = y.rank + 1

Disjoint-set forests

Pseudocode for FINDSET(x)

FINDSET is a two-pass method:
@ It makes one pass up the find path to find the root
© it makes a second pass back down the path to update
each node so that it points directly to the root.
FINDSET(x)
1if X #x.p
2 x.p=FINDSET(x.p)
3 return X.p
> Each call of FINDSET(x) returns x.p in line 3.
> If x is the root then line 2 is not executed and p[x] = x is
returned.
e This is the case when recursion bottoms out.

> Otherwise, line 2 is executed and the recursive call with
parameter x.p returns (a pointer to) the root.

> Line 2 updates x to point directly to the root.

Disjoint-set forests
Effect of heuristics on running time

ASSUMPTIONS:

n = number of MAKESET operations,
m = total number of MAKESET, UNION and FINDSET operations.

@ Union by rank has time complexity O(mlog n) [Cormen et al.,
2000]

@ When we use both path compression and union by rank, the
operations have worst-case time complexity O(m - «(m, n))
where «(m, n) is the very slowly growing inverse of Ackermann’s
function (see next slides.)

e On all practical applications of a disjoint-set data structure,
a(m,n) < 4.

@ = we can view the running time as linear in min all
practical situations.

Ackermann’s function and its inverse

Preliminary notions

> Let g: N — N be the function defined recursively by
21 ifi=0,
gy =4 22 ifi=1,
290=1) jf j > 1.

INTUITION: i gives the height of the stack of 2s that make up the exponent.
> Forall i € N we define

. no ifi =0, A
ig?(n) = 1g(lg="(n)) ifi>0and Ig=D(n)>0,
undefined it i > 0and Igl="(n) < 0 orIg~")(n) is undefined.

where Ig stands for log,
> lg*(n) = min{i > 0| IgV(n) < 1}.
REMARK: Ig*(29(M) = n 4 1.

References

@ Chapter 22: "Data Structures for Disjoint Sets" of

e T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms. MIT Press, 2000.

