
Lecture 2:
Data structures for disjoint sets

October 7, 2020

Lecture 2:



Preliminaries

MAIN IDEA: Group n distinct elements into a collection of
disjoint sets; the following operations should be efficient:

Finding the set to which a given element belongs.

Uniting two sets.

CONTENT OF THIS LECTURE

1 The disjoint-set data structure + specific operations
2 A simple application
3 Concrete implementations based on

linked lists
rooted trees

4 Discussion: the Ackermann function

Lecture 2:



Disjoint-set data structure
Main features

Container for a collection S = {S1,S2, . . . ,Sn} of disjoint
dynamic sets. (A,B are disjoint sets if A ∩ B = ∅.)

Each set is identified by some member of the set, called its
representative
B REQUIREMENT: If we ask for the representative of a

dynamic set twice without modifying the set, we should get
the same answer.

DESIRABLE OPERATIONS

B MAKESET(x): creates a new set consisting of x only.
(Requirement: x is not already in another set.)

B UNION(x , y): unites the sets that contain x and y , say Sx
and Sy , into a new set that is their union. The sets Sx and
Sy can be destroyed.

B FINDSET(x): returns a pointer to the representative of the
unique set containing element x .

Lecture 2:



Disjoint-set data structure
Application: Determining the connected components of an undirected graph

ASSUMPTION: G = (V ,E) is an undirected graph.
1 Computing the connected components of G:

CONNECTEDCOMPONENTS(G)
1 for each node v ∈ V
2 MAKESET(v)
3 for each edge (u, v) ∈ E
4 if FINDSET(u) 6= FINDSET(v)
5 UNION(u, v)

2 Determine if two elements are in the same component:

SAMECOMPONENT(u, v)
1 if FINDSET(u) = FINDSET(v)
2 return TRUE

3 return FALSE

Lecture 2:



Disjoint-set data structure
Application: Determining the connected components of an undirected graph

Example (A graph with 4 connected components)
a

c d

b

g

e f h

i

j

Edge
processed Collection of disjoint sets
initial sets {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}
(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}
(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}
(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}
(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}
(e, f ) {a, b, c, d} {e, f , g} {h, i} {j}
(b, c) {a, b, c, d} {e, f , g} {h, i} {j}

Lecture 2:



Disjoint sets
A linked-list representation

MAIN IDEAS

Each set is represented by a linked list.
The first element in each linked list is the representative of
the set.
Each object in the linked list contains

A pointer to the next set element
A pointer back to the set representative

MAKESET(x) and FINDSET(x) are straightforward to
implement

They require O(1) time.

Q1: How to implement UNION(x , y)?
Q2: What is the time complexity of UNION(x , y)?

Lecture 2:



Disjoint sets
A linked-list representation

Example
1 Linked-list representations of sets {b, c,h,e} and {d , f ,g}

2 Linked-list representation of their union

Lecture 2:



Disjoint sets
A linked-list representation

Implementation of UNION(x , y)

Append x-s list onto the end of y -s list and update all
elements from x-s list to point to the representative of the
set containing y
⇒ time linear in the length of x-s list.

Some sequences of m operations may require Θ(m2) time (see
next slide)

Lecture 2:



Disjoint sets
A linked-list representation

Implementation of UNION(x , y)

Append x-s list onto the end of y -s list and update all
elements from x-s list to point to the representative of the
set containing y
⇒ time linear in the length of x-s list.

Some sequences of m operations may require Θ(m2) time (see
next slide)

Lecture 2:



Disjoint sets represented by linked lists

Example

A sequence of m operations that takes Θ(m2) time

Operation Number of objects updated
MAKESET(x1) 1
MAKESET(x2) 1

...
...

MAKESET(xq) 1
UNION(x1, x2) 1
UNION(x2, x3) 2
UNION(x3, x4) 3

...
...

UNION(xq−1, xq) q − 1

The number of MAKESET ops. is n = dm/2e+ 1, and q = m − n.

Total time spent: Θ(n + q2) = Θ(m2) because n = Θ(m) and
q = Θ(m)⇒ amortized time of an operation is Θ(m).

Lecture 2:



Towards a faster implementation
Disjoint-set forests

MAIN IDEA: Represent sets by rooted trees, with each node
containing one member and each tree representing one set.

A disjoint-set forest is a set of rooted trees, where each
member points only to its parent.

Example

b

h

c

e

g

d

f

b

h

c

e g

d

f

Lecture 2:



Towards a faster implementation
Disjoint-set forests

Implementation of disjoint set operations:
MAKESET(x): creates a tree with just one node.
FINDSET(x): follows the parent pointers from a node until it
reaches the root of the tree.

The nodes visited on the path towards the root constitute
the find path.

UNION(x , y): causes the root of one tree to point to the
root of the other tree.

Remarks
1 A sequence of n UNION operations may create a tree

which is just a linear chain of nodes
⇒ Disjoint-set forests have not improved the linked list
representation.

2 We need 2 more heuristically improvements: union by rank
and path compression.

Lecture 2:



Disjoint-set forests
Heuristic 1: union by rank

Implementation of UNION(x , y)

MAIN IDEA: make the root of the tree with fewer nodes
point to the root of the tree with more nodes.

Each node has a rank that approximates the logarithm of
the size of the subtree rooted at each node and also an
upper bound of the height of the node.

⇒ perform union by rank: the root with smaller rank is made to
point to the root with larger rank during the operation
UNION(x , y).

Lecture 2:



Disjoint-set forests
Heuristic 2: path compression

MAIN IDEA: During FINDSET operations, each node on the find
path will be made to point directly to the root.

Example

Path compression during the operation FINDSET(a).

a

b

c

d

e

a b c d

e

(a) before executing FINDSET(a) (b) after executing FINDSET(a)

Lecture 2:



Disjoint-set forests
Pseudocode for main operations (1)

With each node x , we maintain the int value x .rank which
is an upper bound on the height of x (the number of edges
on the longest path between x and a descendant leaf) The
initial rank of a node in a newly created singleton tree is 0.

MAKESET(x)
1. x .p = x
2. x .rank = 0

UNION(x , y)
1. LINK(FINDSET(x),FINDSET(y))

LINK(x , y)
1 if x .rank > y .rank
2 y .p = x
3 else x .p = y
4 if x .rank == y .rank
5 y .rank = y .rank + 1

Lecture 2:



Disjoint-set forests
Pseudocode for FINDSET(x)

FINDSET is a two-pass method:
1 It makes one pass up the find path to find the root
2 it makes a second pass back down the path to update

each node so that it points directly to the root.
FINDSET(x)
1 if x 6= x .p
2 x .p = FINDSET(x .p)
3 return x.p
B Each call of FINDSET(x) returns x .p in line 3.

B If x is the root then line 2 is not executed and p[x ] = x is
returned.

This is the case when recursion bottoms out.

B Otherwise, line 2 is executed and the recursive call with
parameter x .p returns (a pointer to) the root.

B Line 2 updates x to point directly to the root.

Lecture 2:



Disjoint-set forests
Effect of heuristics on running time

ASSUMPTIONS:

n = number of MAKESET operations,
m = total number of MAKESET, UNION and FINDSET operations.

Union by rank has time complexity O(m log n) [Cormen et al.,
2000]

When we use both path compression and union by rank, the
operations have worst-case time complexity O(m · α(m,n))
where α(m,n) is the very slowly growing inverse of Ackermann’s
function (see next slides.)

On all practical applications of a disjoint-set data structure,
α(m,n) ≤ 4.
⇒ we can view the running time as linear in m in all
practical situations.

Lecture 2:



Ackermann’s function and its inverse
Preliminary notions

B Let g : N→ N be the function defined recursively by

g(i) =


21 if i = 0,
22 if i = 1,
2g(i−1) if i > 1.

INTUITION: i gives the height of the stack of 2s that make up the exponent.

B For all i ∈ N we define

lg(i)(n) =


n if i = 0,
lg(lg(i−1)(n)) if i > 0 and lg(i−1)(n) > 0,
undefined if i > 0 and lg(i−1)(n) ≤ 0 or lg(i−1)(n) is undefined.

where lg stands for log2

B lg∗(n) = min{i ≥ 0 | lg(i)(n) ≤ 1}.

REMARK: lg∗(2g(n)) = n + 1.

Lecture 2:



References

Chapter 22: "Data Structures for Disjoint Sets" of
T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms. MIT Press, 2000.

Lecture 2:


