Advanced Data Structures
 Labwork 7: Polynomials

January 2021

This labwork is related to Lecture 12: Polynomials. Fast multiplication with FFT, and is intended to verify your understanding of

- data structures for polynomial representation,
- operations on polynomials and their runtime complexity.

Deadline: by the end of the day when you received the labwork. You should upload images (or text files) with pseudocode for the following requirements:

1. Write down the pseudocode of Inverse-FFT(y) by modifying the pseudocode of REcursive-FFT (a) as suggested in the lecture notes.
2. Suppose $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is the coefficient representation of a polynomial $A(x)$ with degree-bound n, and $B(x)=(x-b) A(x)$.
(a) Write down the pseudocode of $\operatorname{Multiply}(a, b)$ which computes in time $\Theta(n)$ the coefficient representation $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ of polynomial $B(x)$.
(b) Write down the pseudocode of $\operatorname{Quotient} 1(a, b)$ which computes in time $\Theta(n)$ the coefficient representation $\left(b_{0}, b_{1}, \ldots, b_{n-2}\right)$ of the quotient of dividing $A(x)$ by $x-b$.
(c) Write down the pseudocode of REmainder1 (a, b) which computes in time $\Theta(n)$ the remainder of dividing $A(x)$ by $x-b$.

- Remark: the remainder of dividing $A(x)$ by $x-b$ is the value of $A(b)$.

