ADVANCED DATA STRUCTURES

Labwork 6: Implementation of Floyd-Warhsall algorithm

Implement a java class FloydWarshall with the following API:
public class FloydWarshall

FloydWarshall (IWeightedGraph G) Computes a predecessor matrix and a matrix of min-
imum weights from each node to every other node in
the weighted graph G.
boolean connected(int i,int j) Is there a path from node i to node j?
double distance(int i,int j) The minimum weight of a path from node i to j in
G.

Integer predecessor(int i,int j) The prececessor of node i on a path with minimum
weight from 1 to j. Returns null if such a predecessor
does not exist.

Iterable<Integer> path(int i,int j) The nodes of a path with minimum weight from node
i to node j. Returns null if such a path does not
exist.

1 Setting up the programming environment
1. Download the library of java classes algs4. jar from
https://algs4.cs.princeton.edu/code/
2. Download the archive of java classes ADS.zip from
https://staff.fmi.uvt.ro/ mircea.marin/lectures/EduGraph/

and unzip it. You will get a directory src with source code of java classes, and sample
graph files.

3. Use eclipse to create a java project, say TGC, and

» add algs4d.jar as external JAR to the build path of this java project.

» overwrite the src directory of this project with the src directory downloaded in
step 2.

The java classes to work with graphs are in the package

ro.uvt.cs.graphs

1.1 A java API for weighted graphs

The interface IWeightedGraph provides the following API to work with weighted graphs:

public interface IWeightedGraph
int V() Number of nodes
int E()) Number of edges
boolean addEdge(int ¢,int j,double w) Add edge i—j with weight w
Iterable<WeightedEdge> adj(int i) Iterator of the outgoing weighted edges form node
i
int degree(int ¢) Outdegree of node i
boolean directed() Is the graph directed?
String toString() String representation of the weighted graph.

The outgoing weighted edges from a node are represented by instances of class WeightedEdge:

public class WeightedEdge
WeightedEdge(int i,double w) Creates an outgoing weighted edge to node ¢ with

weight w
int node() The destination node of the edge
double w() The weight of the edge

The classes which implement this interface are: (1) WeightedGraph for unoriented weighted
graphs, and (2) WeightedDigraph: subclass of class WeightedGraph for weighted digraphs.
Both classes implement a representation with adjacency lists where the nodes of a graph
with n nodes are 0, 1, 2, ..., n — 1. The additional capabilities of these classes are:

public class WeightedGraph
WeightedGraph(int n) Creates a weighted graph with n nodes and no edges
WeightedGraph(In in) Reads a weighted graph from input stream in

public class WeightedDigraph extends WeightedGraph
WeightedDigraph(int n) Creates a weighted graph with n nodes and no edges
WeightedDigraph(In in) Reads a weighted digraph from input stream in
int indegree(int) Indegree of node %
int outdegree(int ¢) Outdegree of node %
WeightedDigraph reverse() Reverse of this weighted digraph

The constructors WeightedGraph(In ¢n) and WeightedDigraph(In in) read a weighted
graph from an input stream consisting of 3m + 2 numbers: the number n of nodes, the
number m of edges, followed by m groups made of three numbers: two ints which indicate
the endpoints of an edge, followed by a double which is the weight of the edge.

For instance, if wgraph.txt is a text file with content

|
[y
[$)]

2.17

g o, WwWwooo,
N = NODND W~ N
SN e
w

|
[y
©

then the instruction

WeightedDigraph G = new WeightedDigraph(new In("wgraph.txt"));

creates an instance G which represents the weighted digraph

2.17 >3

Jl

> 2
Object G is the internal representation (in computer memory) of this weighted digraph, and
the content of file wgraph.txt is its external representation.

0

|

2 Algorithm description

Suppose G is a graph with n nodes numbered from 0 to n—1. The Floyd-Warshall algorithm
works in two stages:

Initialization: We set up two arrays of dimension n x n: the array of doubles dy and the
array of Integers Py, such that

e Pyli][j] =4 if G has an edge from i to j; and Py[é][j] undefined (that is, null),
otherwise.

e do[i][i] = 0; doli][j] =the weight of edge from i to j, if there is one; do[i][j] = +oo
otherwise.

For the weighted digraph G depicted above we have

e 0O e 0O e o 0 —1.5 400 217 4o H4oo
° ° 1 ° ° ° 400 0 -3 —+o0 —+o00 —+o00
Py — ° ° ° ° ° ° _ “+00 +o00 0 +oo —+o00 —+o00
0= e o 3 o o 30 =10 i 1 0 +4oo 2
e o o o o o “+o0 400 “+oo +oo 0 —+o00
e 5 5 e e o “+o0 4 —-19 400 4o 0

where e stands for null.
Update: For k =1 to n, compute the arrays P, and dj of dimension n x n, as follows:
d[t][5] = min(dr—1 [¢][5], dr—1 i} [k — 1] + dr—1 [k — 1][5])

= 5l 00~

For the weighted digraph G depicted above, the algorithm computes

0 —1.5 —14.83 2.17 +4oco 4.17
“+o00 0 -3 “+o0 400 +oo
“+o0 “+o0 0 “+o0 +oco +oo
di=... do=... dg=... da=... &= |12 ¢ e o, T
“+o00 —+o00 —+o00 400 0 400
+o0 4 —19 +oo 4o 0
e 0O 5 0 e 3
e o 1 o o o
e o o o o o
Pi=... Po=... P3=... Pu=... Ps=], 5 5 e e 3
L] ° L] ° L] L)
e 5 5 e e o

The algorithm guarantees that, if G is a weighted graph where all cycles have nonnegative
weight, then arrays d,, and P,, have the following properties for all 0 < 1,5 < n:

1. d,[i][j] = +oo if there is no path from i to j; otherwise, d,,[¢][4] is the minimum weight
of a path from ¢ to j.

2. P,[i][j] is null if ¢ = j or there is no path from i to j; otherwise, P,[i][j] is the
predecessor of j in a path with minimum weight from ¢ to j.

