
Advanced Data Structures

Labwork 6: Implementation of Floyd-Warhsall algorithm

Implement a java class FloydWarshall with the following API:

public class FloydWarshall

FloydWarshall(IWeightedGraph G) Computes a predecessor matrix and a matrix of min-
imum weights from each node to every other node in
the weighted graph G.

boolean connected(int i,int j) Is there a path from node i to node j?
double distance(int i,int j) The minimum weight of a path from node i to j in

G.
Integer predecessor(int i,int j) The prececessor of node i on a path with minimum

weight from i to j. Returns null if such a predecessor
does not exist.

Iterable<Integer> path(int i,int j) The nodes of a path with minimum weight from node
i to node j. Returns null if such a path does not
exist.

1 Setting up the programming environment

1. Download the library of java classes algs4.jar from

https://algs4.cs.princeton.edu/code/

2. Download the archive of java classes ADS.zip from

https://staff.fmi.uvt.ro/~mircea.marin/lectures/EduGraph/

and unzip it. You will get a directory src with source code of java classes, and sample
graph files.

3. Use eclipse to create a java project, say TGC, and

I add �algs4.jar as external JAR to the build path of this java project.

I overwrite the src directory of this project with the src directory downloaded in
step 2.

The java classes to work with graphs are in the package

ro.uvt.cs.graphs

1



1.1 A java API for weighted graphs

The interface IWeightedGraph provides the following API to work with weighted graphs:

public interface IWeightedGraph

int V() Number of nodes
int E() Number of edges

boolean addEdge(int i,int j,double w) Add edge i−j with weight w
Iterable<WeightedEdge> adj(int i) Iterator of the outgoing weighted edges form node

i
int degree(int i) Outdegree of node i

boolean directed() Is the graph directed?
String toString() String representation of the weighted graph.

The outgoing weighted edges from a node are represented by instances of class WeightedEdge:

public class WeightedEdge

WeightedEdge(int i,double w) Creates an outgoing weighted edge to node i with
weight w

int node() The destination node of the edge
double w() The weight of the edge

The classes which implement this interface are: (1) WeightedGraph for unoriented weighted
graphs, and (2) WeightedDigraph: subclass of class WeightedGraph for weighted digraphs.
Both classes implement a representation with adjacency lists where the nodes of a graph
with n nodes are 0, 1, 2, . . . , n− 1. The additional capabilities of these classes are:

public class WeightedGraph

WeightedGraph(int n) Creates a weighted graph with n nodes and no edges
WeightedGraph(In in) Reads a weighted graph from input stream in

public class WeightedDigraph extends WeightedGraph

WeightedDigraph(int n) Creates a weighted graph with n nodes and no edges
WeightedDigraph(In in) Reads a weighted digraph from input stream in

int indegree(int i) Indegree of node i
int outdegree(int i) Outdegree of node i

WeightedDigraph reverse() Reverse of this weighted digraph

The constructors WeightedGraph(In in) and WeightedDigraph(In in) read a weighted
graph from an input stream consisting of 3m + 2 numbers: the number n of nodes, the
number m of edges, followed by m groups made of three numbers: two ints which indicate
the endpoints of an edge, followed by a double which is the weight of the edge.

For instance, if wgraph.txt is a text file with content

6 7

0 1 -1.5

0 3 2.17

3 2 1

3 5 2

1 2 -3

5 1 4

5 2 -19

then the instruction

2



WeightedDigraph G = new WeightedDigraph(new In("wgraph.txt"));

creates an instance G which represents the weighted digraph

G:

0

1 2

3

4

5

2.17

2
1

4 -19

-1.5

-3

Object G is the internal representation (in computer memory) of this weighted digraph, and
the content of file wgraph.txt is its external representation.

2 Algorithm description

Suppose G is a graph with n nodes numbered from 0 to n−1. The Floyd-Warshall algorithm
works in two stages:

Initialization: We set up two arrays of dimension n× n: the array of doubles d0 and the
array of Integers P0, such that

• P0[i][j] = i if G has an edge from i to j; and P0[i][j] undefined (that is, null),
otherwise.

• d0[i][i] = 0; d0[i][j] =the weight of edge from i to j, if there is one; d0[i][j] = +∞
otherwise.

For the weighted digraph G depicted above we have

P0 =


• 0 • 0 • •
• • 1 • • •
• • • • • •
• • 3 • • 3
• • • • • •
• 5 5 • • •

, d0 =


0 −1.5 +∞ 2.17 +∞ +∞

+∞ 0 −3 +∞ +∞ +∞
+∞ +∞ 0 +∞ +∞ +∞
+∞ +∞ 1 0 +∞ 2
+∞ +∞ +∞ +∞ 0 +∞
+∞ 4 −19 +∞ +∞ 0


where • stands for null.

Update: For k = 1 to n, compute the arrays Pk and dk of dimension n× n, as follows:

dk[i][j] = min(dk−1[i][j], dk−1[i][k − 1] + dk−1[k − 1][j])

Pk[i][j] =

{
Pk−1[i][j] if dk−1[i][j] = dk[i][j],
Pk−1[k][j] otherwise.

For the weighted digraph G depicted above, the algorithm computes

d1 = . . . d2 = . . . d3 = . . . d4 = . . . d5 =


0 −1.5 −14.83 2.17 +∞ 4.17

+∞ 0 −3 +∞ +∞ +∞
+∞ +∞ 0 +∞ +∞ +∞
+∞ 6 −17 0 +∞ 2
+∞ +∞ +∞ +∞ 0 +∞
+∞ 4 −19 +∞ +∞ 0



P1 = . . . P2 = . . . P3 = . . . P4 = . . . P5 =


• 0 5 0 • 3
• • 1 • • •
• • • • • •
• 5 5 • • 3
• • • • • •
• 5 5 • • •


3



The algorithm guarantees that, if G is a weighted graph where all cycles have nonnegative
weight, then arrays dn and Pn have the following properties for all 0 ≤ i, j < n:

1. dn[i][j] = +∞ if there is no path from i to j; otherwise, dn[i][j] is the minimum weight
of a path from i to j.

2. Pn[i][j] is null if i = j or there is no path from i to j; otherwise, Pn[i][j] is the
predecessor of j in a path with minimum weight from i to j.

4


