Computational Geometry
 Labworks

November 11, 2020

Deadline: December 2, 2020.
Consider the java classes

```
class Point {
    public double x,y;
}
```

which we use to represent point coordinates in the Cartesian plane, and

```
class Point3D {
    public double x,y,z;
}
```

which we use to represent point coordinates in the Cartesian space.

Programming assignment 1 (30 points)

Write a java program that finds the closest pair of points from a set of $n \geq 2$ points. The program should read from the standard input the following data:
one line which contains the value of n, followed by
each of the following n lines contains two floating-point numbers separated by whitespace. These numbers represent the (x, y) coordinates of a point.

Note. This algorithm was presented in Lecture 7. More explanations can be found in the Appendix of this labwork assignment.

Programming assignment 2 (20 points)

Extend class Point with the static method
public static Point intersect(Point A,Point B,Point C,Point D); which checks if the segments AB and CD intersect, and returns

- null if $\mathrm{AB} \cap \mathrm{CD}=\emptyset$.
- otherwise, the point P which is at the intersection of $A B$ with $C D$.

Programming assignment 3 (20 points)

Suppose we represent a segment in the Cartesian space by an instance of the class

```
class Segment {
```

 public Point3D A,B; // the coordinates of the endpoints of the segment
 \}

We say that a segment s_{1} is above another segment s_{2} if there is a vertical line ℓ that intersects both segments, such that the $\ell \cap s_{1}$ is above $\ell \cap s_{2}$.

Extend class Segment with the static method

```
public static int above(Segment s1,Segment s2);
```

which returns
0 if s1 and s2 intersect,
1 if $s 1$ is above $s 2$,
2 if $s 2$ is above $s 1$, and
3 otherwise.

Programming assignment 4 (30 points)

Heron's formula tells us that the area of a triangle whose sides have lengths a, b, c is

$$
\operatorname{area}(A B C)=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=(a+b+c) / 2$.
Suppose $P_{1} P_{2} \ldots P_{n}$ is a convex polygon, and we want to compute its area Extend class Point with the static methods

```
public static double area(vector<Point> P);
public static double perimeter(vector<Point> P);
```

which compute the area and perimeter of $P_{1} P_{2} \ldots P_{n}$ when P is the vector of coordinates of points $P_{1}, P_{2}, \ldots, P_{n}$ in clockwise order.

Appendix: Finding the closest pair of points

Consider the problem of finding the closest pair of points in a set Q of $n \geq 2$ points.

- Closest refers to the usual euclidean distance: the distance between points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
- Several applications, e.g., in traffic control systems: identify two closest vehicles in order to detect potential collisions.
- The simple, brute-force closest-pair algorithm: look at all the $\binom{n}{2}$ pairs of points $\Rightarrow O\left(n^{2}\right)$ complexity.
- In this labwork, we consider a divide-and-conquer algorithm with running time $O(n \log n)$.

The divide-and-conquer algorithm

Each recursive call of the algorithm takes as input a subset $P \subseteq Q$ and arrays X and Y, each of which contains all the points of the input set P :

- X contains the elements of P sorted in increasing order of the x-coordinate
- Y contains the elements of P sorted in increasing order of the y-coordinate

A given recursive invocation with inputs P, X, and Y first checks if $|P| \leq 3$. If so, find the closest points in P with the brute-force approach, by trying all pairs of points. If $|P|>3$, the recursive invocation carries out the divide-and-conquer paradigm as follows.

Divide: Find a vertical line l that bisects the point set P into two sets P_{L} and P_{R} such that $\left|P_{L}\right|=\lceil|P| / 2\rceil, Q_{L}=\lfloor|P| / 2\rfloor$, all points in P_{L} are on or to the left of line l, and all points in P_{R} are on or to the right of l. Divide the array X into arrays X_{L} and X_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing x-coordinate. Similarly, divide the array Y into arrays Y_{L} and Y_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing y-coordinate.

Conquer: Having divided P into P_{L} and P_{R}, make two recursive calls, one to find the closest pair of points in P_{L} and the other to find the closest pair of points in P_{R}. The inputs to the first call are the subset P_{L} and arrays X_{L} and Y_{L}; the second call receives the inputs P_{R}, X_{R}, and Y_{R}. Let the closest-pair distances returned for P_{L} and P_{R} be δ_{L} and δ_{R}, respectively, and let $\delta=\min \left(\delta_{L}, \delta_{R}\right)$.

Combine: The closest pair is either the pair with distance δ found by one of the recursive calls, or it is a pair of points with one point in P_{L} and the other in P_{R}. The algorithm determines whether there is a pair with one point in P_{L} and the other point in P_{R} and whose distance is less than δ. Observe that if a pair of points has distance less than δ, both points of the pair must be within δ units of line l. Thus, they both must reside in the 2δ-wide vertical strip centered at line l. To find such a pair, if one exists, we do the following:

1. Create an array Y^{\prime}, which is the array Y with all points not in the 2δ wide vertical strip removed. The array Y^{\prime} is sorted by y-coordinate, just as Y is.

2. For each point p in the array Y^{\prime}, try to find points in Y^{\prime} that are within δ units of p. As we shall see shortly, only the 7 points in Y^{\prime} that follow p need be considered. Compute the distance from p to each of these 7 points, and keep track of the closest-pair distance δ^{\prime} found over all pairs of points in Y^{\prime}.
3. If $\delta^{\prime}<\delta$, then the vertical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ^{\prime}. Otherwise, return the closest pair and its distance δ found by the recursive calls.

Why are seven points sufficient for lookup?

We shall prove that we need only check the seven points following each point p in array Y^{\prime}.

Suppose that at some level of the recursion, the closest pair of points is $p_{L} \in P_{L}$ and $p_{R} \in P_{R}$. Thus, the distance δ^{\prime} between p_{L} and p_{R} is strictly less than δ. Point p_{L} must be on or to the left of line l and less than δ units away. Similarly, p_{R} is on or to the right of l and less than δ units away. Moreover, p_{L} and p_{R} are within δ units of each other vertically. Thus, as Figure below shows, p_{L} and p_{R} are within a $\delta \times 2 \delta$ rectangle centered at line l. (There may be other points within this rectangle as well.)

We next show that at most 8 points of P can reside within this $\delta \times 2 \delta$ rectangle. Consider the $\delta \times \delta$ square forming the left half of this rectangle. Since all points
within P_{L} are at least δ units apart, at most 4 points can reside within this square; The figure above shows how. Similarly, at most 4 points in P_{R} can reside within the $\delta \times \delta$ square forming the right half of the rectangle. Thus, at most 8 points of P can reside within the $\delta \times 2 \delta$ rectangle. (Note that since points on line l may be in either P_{L} or P_{R}, there may be up to 4 points on l. This limit is achieved if there are two pairs of coincident points such that each pair consists of one point from P_{L} and one point from P_{R}, one pair is at the intersection of l and the top of the rectangle, and the other pair is where l intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle, we can easily see why we need to check only the 7 points following each point in the array Y^{\prime}. Still assuming that the closest pair is p_{L} and p_{R}, let us assume without loss of generality that p_{L} precedes p_{R} in array Y^{\prime}. Then, even if p_{L} occurs as early as possible in Y^{\prime} and p_{R} occurs as late as possible, p_{R} is in one of the 7 positions following p_{L}. Thus, we have shown the correctness of the closest-pair algorithm.

Another key implementation issue

How to ensure that the arrays X_{L}, X_{R}, Y_{L}, and Y_{R}, which are passed to recursive calls, are sorted by the proper coordinate and also that the array Y^{\prime} is sorted by y-coordinate? Note that if the array X that is received by a recursive call is already sorted, then we can easily divide set P into P_{L} and P_{R} in linear time.

The following algorithm splits Y into Y_{L} and Y_{R}

```
let \(Y_{L}[1 . . Y\).length \(]\) and \(Y_{R}[1 \ldots Y\). length \(]\) be new arrays
\(Y_{L}\).length \(=Y_{R}\).length \(=0\)
for \(i=1\) to \(Y\).length
    if \(Y[i] \in P_{L}\)
        \(Y_{L}\).length \(=Y_{L}\).length +1
        \(Y_{L}\left[Y_{L}\right.\).length \(]=Y[i]\)
    else \(Y_{R}\).length \(=Y_{R}\).length +1
        \(Y_{R}\left[Y_{R} \cdot\right.\) length \(]=Y[i]\)
```

