
Computational Geometry

Labworks

November 11, 2020

Deadline: December 2, 2020.

Consider the java classes

class Point {

public double x,y;

}

which we use to represent point coordinates in the Cartesian plane, and

class Point3D {

public double x,y,z;

}

which we use to represent point coordinates in the Cartesian space.

Programming assignment 1 (30 points)

Write a java program that finds the closest pair of points from a set of n ≥ 2
points. The program should read from the standard input the following data:

one line which contains the value of n, followed by

each of the following n lines contains two floating-point numbers separated
by whitespace. These numbers represent the (x, y) coordinates of a point.

Note. This algorithm was presented in Lecture 7. More explanations can be
found in the Appendix of this labwork assignment.

Programming assignment 2 (20 points)

Extend class Point with the static method

public static Point intersect(Point A,Point B,Point C,Point D);

which checks if the segments AB and CD intersect, and returns

• null if AB ∩ CD = ∅.

• otherwise, the point P which is at the intersection of AB with CD.

1

Programming assignment 3 (20 points)

Suppose we represent a segment in the Cartesian space by an instance of the
class

class Segment {
public Point3D A,B; // the coordinates of the endpoints of the segment

}

We say that a segment s1 is above another segment s2 if there is a vertical line
` that intersects both segments, such that the ` ∩ s1 is above ` ∩ s2.

Extend class Segment with the static method

public static int above(Segment s1,Segment s2);

which returns

0 if s1 and s2 intersect,

1 if s1 is above s2,

2 if s2 is above s1, and

3 otherwise.

Programming assignment 4 (30 points)

Heron’s formula tells us that the area of a triangle whose sides have lengths
a, b, c is

area(ABC) =
√
s(s− a)(s− b)(s− c)

where s = (a+ b+ c)/2.
Suppose P1P2 . . . Pn is a convex polygon, and we want to compute its area

Extend class Point with the static methods

public static double area(vector<Point> P);

public static double perimeter(vector<Point> P);

which compute the area and perimeter of P1P2 . . . Pn when P is the vector of
coordinates of points P1, P2, ..., Pn in clockwise order.

Appendix: Finding the closest pair of points

Consider the problem of finding the closest pair of points in a set Q of n ≥ 2
points.

• Closest refers to the usual euclidean distance: the distance between points
p1 = (x1, y1) and p2 = (x2, y2) is

√
(x1 − x2)2 + (y1 − y2)2.

• Several applications, e.g., in traffic control systems: identify two closest
vehicles in order to detect potential collisions.

2

• The simple, brute-force closest-pair algorithm: look at all the
(
n
2

)
pairs of

points ⇒ O(n2) complexity.

• In this labwork, we consider a divide-and-conquer algorithm with running
time O(n log n).

The divide-and-conquer algorithm

Each recursive call of the algorithm takes as input a subset P ⊆ Q and arrays
X and Y , each of which contains all the points of the input set P :

I X contains the elements of P sorted in increasing order of the x-coordinate

I Y contains the elements of P sorted in increasing order of the y-coordinate

A given recursive invocation with inputs P , X, and Y first checks if |P | ≤ 3. If
so, find the closest points in P with the brute-force approach, by trying all pairs
of points. If |P | > 3, the recursive invocation carries out the divide-and-conquer
paradigm as follows.

Divide: Find a vertical line l that bisects the point set P into two sets PL and
PR such that |PL| = d|P |/2e, QL = b|P |/2c, all points in PL are on or to
the left of line l, and all points in PR are on or to the right of l. Divide the
array X into arrays XL and XR, which contain the points of PL and PR

respectively, sorted by monotonically increasing x-coordinate. Similarly,
divide the array Y into arrays YL and YR, which contain the points of PL

and PR respectively, sorted by monotonically increasing y-coordinate.

Conquer: Having divided P into PL and PR, make two recursive calls, one to
find the closest pair of points in PL and the other to find the closest pair
of points in PR. The inputs to the first call are the subset PL and arrays
XL and YL; the second call receives the inputs PR, XR, and YR. Let the
closest-pair distances returned for PL and PR be δL and δR, respectively,
and let δ = min(δL, δR).

Combine: The closest pair is either the pair with distance δ found by one of
the recursive calls, or it is a pair of points with one point in PL and the
other in PR. The algorithm determines whether there is a pair with one
point in PL and the other point in PR and whose distance is less than δ.
Observe that if a pair of points has distance less than δ, both points of
the pair must be within δ units of line l. Thus, they both must reside in
the 2 δ-wide vertical strip centered at line l. To find such a pair, if one
exists, we do the following:

1. Create an array Y ′, which is the array Y with all points not in the 2 δ-
wide vertical strip removed. The array Y ′ is sorted by y-coordinate,
just as Y is.

3

2. For each point p in the array Y ′, try to find points in Y ′ that are
within δ units of p. As we shall see shortly, only the 7 points in Y ′

that follow p need be considered. Compute the distance from p to
each of these 7 points, and keep track of the closest-pair distance δ′

found over all pairs of points in Y ′.

3. If δ′ < δ, then the vertical strip does indeed contain a closer pair
than the recursive calls found. Return this pair and its distance δ′.
Otherwise, return the closest pair and its distance δ found by the
recursive calls.

Why are seven points sufficient for lookup?

We shall prove that we need only check the seven points following each point p
in array Y ′.

Suppose that at some level of the recursion, the closest pair of points is
pL ∈ PL and pR ∈ PR. Thus, the distance δ′ between pL and pR is strictly less
than δ. Point pL must be on or to the left of line l and less than δ units away.
Similarly, pR is on or to the right of l and less than δ units away. Moreover, pL
and pR are within δ units of each other vertically. Thus, as Figure below shows,
pL and pR are within a δ× 2δ rectangle centered at line l. (There may be other
points within this rectangle as well.)

We next show that at most 8 points of P can reside within this δ×2δ rectangle.
Consider the δ× δ square forming the left half of this rectangle. Since all points

4

within PL are at least δ units apart, at most 4 points can reside within this
square; The figure above shows how. Similarly, at most 4 points in PR can
reside within the δ × δ square forming the right half of the rectangle. Thus,
at most 8 points of P can reside within the δ × 2δ rectangle. (Note that since
points on line l may be in either PL or PR, there may be up to 4 points on
l. This limit is achieved if there are two pairs of coincident points such that
each pair consists of one point from PL and one point from PR, one pair is at
the intersection of l and the top of the rectangle, and the other pair is where l
intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle,
we can easily see why we need to check only the 7 points following each point
in the array Y ′. Still assuming that the closest pair is pL and pR, let us assume
without loss of generality that pL precedes pR in array Y ′. Then, even if pL
occurs as early as possible in Y ′ and pR occurs as late as possible, pR is in one
of the 7 positions following pL. Thus, we have shown the correctness of the
closest-pair algorithm.

Another key implementation issue

How to ensure that the arraysXL, XR, YL, and YR, which are passed to recursive
calls, are sorted by the proper coordinate and also that the array Y ′ is sorted
by y-coordinate? Note that if the array X that is received by a recursive call is
already sorted, then we can easily divide set P into PL and PR in linear time.

The following algorithm splits Y into YL and YR

5

